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OF A LINEAR CONFORM TRANSFORMATION

Lusomir KUBACEK
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1. INTRODUCTION

In the two-dimensional Euclidean space E, we know the coordinates

x; = <xi>, i=1,..,N;N>2
Vi

of different points P;. The transformation T of the space E, onto the space E, — which
is also a two-dimensional and Euclidean one — is given by the relation

) [t =17 = (&4

W’hel.e
U O! 1 y X qZ aZ

The components of the vectors q and a are unknown, but one can determine the
position of the points T(P;) = Ni» i =1,..., N by means of indirect measurement
(further details in the following).

Our aim is to determine the estimates q, a of the vectors q, a and to investigate
the statistical properties of these estimates and eventually to point out some con-
sequences following from them for the transformation T.

When we consider the results of measurements of the vectors n;; i = 1, ..., N,
which are normally distributed with a covariance matrix independent of the index i
and stochastically independent, then the solution is known and is given e.g. in [1]
pp. 248 and foll.

The aim of this paper is to generalize the solutions in case of stochastically depend-
ent results of measurements of the vector x; and to point out geometrical interpret-
ations of the obtained results.
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Remark. The above mentioned problem of multidimensional regression occurs
often in mathematical cartography.

2. SYMBOLS AND ASSUMPTIONS

We arrange the coordinates of the points T(P;) in 2N-dimensional column vector
H(H' = (n}, ..., ny)). It is impossible to measure the components of the vector H
directly. Measurements can be carried out only for the components of the vector Z
(of the order m x 1; m > 2N) for which Z = GH holds where the matrix G with
known elements is of the order m x 2N and has the rank h(G) = 2N. The result
of the measurement Z of the vector Z is the realization of a random vector with
the distribution N(GH, ¢?P~"). The matrix P is a diagonal matrix of the weights
p; > 0 of the measurement of the i-th component of the vector Z and therefore
the dispersion of measurement of this components is ¢2[p;. The parameter ¢ (the
standard deviation of measurement with unit weight) is assumed in the following
to be unknown. The estimate of the vector 7; is denoted by y; and the 2N-dimensional
vector created by the subvectors y; is denoted by Y. According to [10] p. 145
it holds: ¥ = (G'PG)~! G'PZ is a normal regular vector with the distribution
N(H; ¢*(G'PG)~"). (See also the definition of a normal regular vector in [10] p. 45
and in [1] p. 29.)

We denote the matrix ¢*(G'PG)™* by X and we suppose that at least one submatrix
= M[(y. — ) (yi — )] for k # I is different from the zero matrix, ie. no
stochastic independence of random vectors y,,...,yy occurs. (In the following
we shall point out some simple consequences in case of stochastic independence.)

Denoting
E, .,E \ R
M, ..., M,

M, = (xk )’k>
Ve —Xk

we may denote the distribution of vector Y symbolically by

() Y, ... N <R’ (:\) , z).

The density of probability of the random vector Y is ([1], p. 29):

(22) n <Y| R (:) z) = f(Y;q.a) =

e - () - ()

where
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3. THE ESTIMATE OF gq, a

q
a
of the components of the vector t, whose partial derivatives of the first degree exist,

then the symbol 9f [0t denotes the column vector whose i-th component is Jf[dt;
(see also [4]).

For the sake of brevity we denote the vector ( ) by the symbol t. If f is a function

Lemma 1. The matrix of the positive definite form is regular.
Proof. The lemma is a consequence of the statement in [9] p. 181.
Lemma 2. Let A be a matrix of the order n X n of a positive definite form and

let the rank of the matrix B of the order m X n be h(B) = m < n, then BAB’
is a matrix of a positive definite form.

Proof. As Z’BAB’Z = 0 holds obviously for each m-dimensional vector Z
it will be sufficient to prove the implication Z'BAB'Z = 0= 2Z = 0. Thus let
Z'BAB'Z = 0. With regard to the positive definiteness of the matrix A there must
be B'Z = 0 and with regard to the rank of the matrix B there must be Z = 0.

Lemma 3. The rank of the matrix R is 4.

Proof. According to the theorem of Laplace ([7] p. 296) let us develop the determ-

inant of the matrix
A - E E
Ml MZ

with respect to the first two rows. We get:
|A| = —(ri + r} — 2ryrycos @) = —03(Py, Py) + 0

where ¢, is the metric in the two-dimensional space E,, r; = 0,(P,, P,), i = 1,2,
P, is a point in E, with zero coordinates and ¢ is the angle between the radiusvectors
of the points P, and P,.

Theorem 1. There exists just one maximum likelihood estimate of the vector t.
It is given by the solution of the system
(3) RZ-!'R't = RZ-'Y,
which can be written in the form
LY 3 YyEM, Yy,
Somer yime) (o) 5mery
i [

ij

(3a)
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where XV is the submatrix £' of the elements of the (2i — 1)-st and 2i-th rows
and of the (2j — 1)-st and 2j-th columns.

Proof. The likelihood equations ([3] pp. 477 —478) with respect to (2a) are given
by the relation

4) o(In L(t))/ot =
= (ofat) {In <{1/[2n)" |Z]'[*]} . exp [—4(Y — Rty (Y — R't)])} = 0“1,
The left hand side of the above equation may be rearranged:

(@fot) An {1J[2m)Y |Z|'[?]} — H[Y'Z-'Y — tRE-'Y —
— Y'Z-'R't + tRZ-'R't]) = RX-'Y — RZ'R't.

If we show that the matrix € = RZ~'R’ is the matrix of a positive definite form,
we show with respect to Lemma 1 the existence of only one solution of the equation
of likelihood (4). According to the assumption we have in E, N various points P,
thus with respect to Lemma 3 the rank of the matrix is 4 and with respect to Lemma 2
and Lemma 1 the existence of only one solution is proved. To complete the proof
it is sufficient to show that for t of (3) the function L attains its maximum. With
respect to the form of the function L = f from (Za) and of the theorem on the local
minimum [5] p. 505 it is sufficient to show that the matrix || —0® In L[ot; ot is the
matrix of a positive definite form. The last matrix, however, is equal to € which
proves the theorem.

Remark 1. As can be seen from (3), if we do not know the parameter ¢ in the
matrix X, it is still possible to determine t.

Remark 2. When comparing the expression (3a) with the solution of the problem
of linear regression between the variables x; and y; (with the normal distribution
N(ey + ¢,x;; 0%[p;)) we see that the role of the coordinate x;, of the result of the
measurement y;, of the weight of measurement p; of the value ¢; + c¢,x; and of the
constant ¢; and ¢, in our problem were taken over by the submatrix M,, the vector y;,
the expression ¢* Y 2/ and by q and a, respectively.

J

Lemma 4. If x is a normal vector NGI, 2), then t = Dx is a normal vector

N(Dp, DXD).

Proofisin [1] p. 41.

Theorem 2. The estimate t is a normally distributed N(t, C1).

Proof. With respect to (3) we have t = C~'RZ~'Y and thus with respect to [1]
p. 39 and Lemma 4 we have that ¢ is normally distributed with the vector of the
mean values M(t) = C"'RX~' M(Y) = C-'RZ~'R’t = t and with the covariance
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matrix M[(t —t)(t — t)] = C'RZ~! M[(Y — R't)(Y - Rt)]Z-'RC-!=C-’,
respectively.

Corollary. The estimate t from (3) is statistically unbiased.

Theorem 3. The estimate t from (3) is jointly efficient.
Proof. With respect to [6] p. 28 it is sufficient to prove that
|M(=&*InLfor; a1)| = C.

With respect to the last two sentences in the proof of Theorem 1, the last equality
is obvious.

4. STATISTICAL PROPERTIES OF VECTORS OF CORRECTIONS
AND OF VECTORS OF TRANSFORMED COORDINATES

When relation (1) is applied, further random vectors occur and it may be useful
to know their statistical properties.

Definition 1. The vector V given by the relation V = R't — Y is called the vector
of corrections of the components of the vector Y.

Definition 2. A random vector x with p components, with a vector of the mean
values M(x) = 1 and with the covariance matrix M[(x — 1) (x — )] = X is called
normal if

1. there is a matrix A of the order p X r, so that the rank h(X) = r;

2. there is an r-dimensional normal regular vector y;

3. the following holds: x = Ay 4+ A where A is an r-dimensional vector. If
p, x is a singular normal vector of the rank r.

A

Lemma 5. Let us have two linear vector functions of the n-dimensional normal
vector x: y, = B x,y, = A,x where A is a matrix of the order m, X n and
A, is a matrix of the order m, x n. Then the equality A, XA, = 8 is a necessary
and sufficient condition for the stochastic independence of the vectors y, and y,, X
being the covariance matrix of the vector x.

Proofis in [10] p. 57.

Lemma 6. If the symmetrical matrix B is positively definite, then there is such
a regular matrix E that EBE' = | (unit matrix).

Proofisin [1] p. 457.
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Lemma 7. Let the p-dimensional vector x be normally distributed ...N(ﬁ, 2).
Then y = Cx is, for a regular matrix C, normally distributed ... N(Cﬁ, IC).

Proofisin [1] p. 32.

Lemma 8. For each symmetrical matrix A of a quadratic form, there is such
an orthogonal matrix Q that QAQ’ is a diagonal matrix.

Proof is in [9] p. 227.

Lemma 9. If A, ,, is a regular matrix of the order m X m, then the rank of the
matrix AB where B is a matrix of the order m X n, is equal to the rank of the
matrix B.

Proofisin [9] p. 101.

Lemma 10. For the rank of the matrix A = BC the relation h(A) < min {h(B),
h(C)} holds.

Proofisin [9] p. 101.

Theorem 4. Vector V is a normal singular vector of the rank 2N — 4.

Proof. With respect to Definition 1 and Theorem 1 wehave V = (R'C-'RZ~' — I)Y
where 1 is the unit matrix. With respect to Lemma 4, V is a normal vector with the
vector of the mean values M(V) = (R'C~'RZ~' — I)R’t = (R’C-'RZ"'R' — R') t=
= (R" — R) t = 0 and with the covariance matrix M(V.V’) = (I — RC-'RZ"1).
.3(1 — £-'RC-'R) = X — 2R'C~'R + RC-'RZ-!R'C-'R = ¥ — RC-'R.
With respect to Lemma 6 there is such a regular matrix F that ¥ = F~!'F'~!, Further,
with respect to Lemma 9 the following holds: h(£ — R'C~'R) = h(F~'F ! —
— R'C~'R) = h(F~1(1 — FR'C-'RF) F'~!) = h(l — FR'C~'RF’). Let us denote
U = FR'C-'RF. Obviously U’ = U and U? = U. With respect to Lemma 8
there is an orthogonal matrix H such that HUH’ = D is a diagonal matrix. D? =
= HUH'HUH' = HU?H' = HUH’' = D holds, which is possible only if there
are only 0 or 1 on the diagonal of the matrix. The number of ones is obviously equal
to the rank of the matrix B and (D) = h(U) with respect to Lemma 9. With respect
to Lemma 10 we have further h(U) = h(FR'C-'RF’) < 4. As RFUFR' = RF'.
.(FRC-'RF)FR' = RX"'R'C-'RZ"'R’ = C, it holds h(C) < h(U) with respect
to Lemma 10. With respect to Theorem 1 h(C) = 4, hence h(U) = 4. Further,
with respect to Lemama 9 h(l — U) = h[H(I — U)H"] = i(1 — D) = 2N — 4.
In the proof of Lemma 4 it is shown that in such a case V is a singular normal vector
with the rank 2N — 4.
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Theorem 5. The vectors t and V are statistically independent.

Proof. With respect to Theorem 1 and Definition | the following holds: ¥ =
=(RC-'RX™' - 1)Y; t=C-'RX"'Y. As (RC'RZ'-1)Zr-'RC! =
= R'C'RZ'RC-! — RC-!' = RC™' — RC~' =0, Theorem is proved by
means of Lemma 5.

Theorem 6. The random variable V'2~'V has y*-distribution with 2N — 4 degrees
of freedom.

Proof. With respect to Theorem4 V'X-'V=Y'(I - 2~ 'R'C-'R) - '(I - R'C~! |
CRZ-HY =Y(2~! —Z'RCRE")Y = (Y — Rty (27! — Z-'R'C-'RZY).
. (Y — R’t). With respect to Lemma 6 there is such a regular matrix F that FXF' = I.
If the matrix from the proof of Theorem 4 is considered as U we have V' Z-'V =
= w/(I — U) w where w = F(Y — R't) is, according to Lemma 7, a normally distributed
vector N(O, ). We have further V'Z~'V = wH'(I - HUH') Hw = Z'(1 - D) Z
where Z is, according to Lemma 7 and Lemma 8, a normally distributed N(O, I) and H
is an orthogonal matrix from the proof of Theorem 4. Thus V'2~'V = Z} + ... +
+ Z,-ZZN_4 where iy, ..., i,y_4 are the indices of those components of the vector Z
in the rows of which there are zeros along the diagonal of the matrix D. With respect
to the definition of the y?-distribution, Theorem is proved.

Corollary. With respect to the assumption it holds X = ¢*(G'PG)~' where o
is an unknown parameter. According to Theorem 6 V'G'PGY = ¢*y5y_, and thus

1. 6 = [1)(2N — 4)] V'G'PGV is, regarding the properties of the y*-distribu-
tion, an unbiased estimate of the a priori unknown dispersion a?.

2. The confidence interval for the parameter o is given by the relation

P{J(V'G'PGV|x,) < 0 < J(V'G'PGV/x,)} =

_ f " (N 9= w2 (QGN -9 [(oN — 4)[2])] du.

Remark. To determine the vector Y one may use also the vector ¥V, = GY — Z.
In [10] p. 151 and in the following it is shown that the random variable V{PV, =
= o2y} _,n- As it is statistically independent of V'G'PGY, we have V;PV, + V'G'P .
.GV = o(y3y_4 + xm_2n) = 0*1%_4 With respect to the inequality m > 2N this
may be used for a better estimate of the parameter o.

Theorem 7. The random vector R't (vector of the transformed coordinates of the
points Py, ..., Py) is a singular normal vector N(R't; R'C~'R) of the rank 4.

Proof. With respect to Theorem 2 and Lemma 4 the following holds: R't =
= R'C~'RX-'Y is a normal vector with the vector of the mean values M(R't) =
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= R'C-'RX~'R’t = R't and with the covariance matrix M[R'(t — t) (t — t) R] =
= R’'C-'R. With respect to Definition 2 and to the proof of Theorem 4 it is sufficient
to show that the rank of the matrix R'C~'R is h(R'C~'R) = 4. With respect to
Lemma 10 evidently h(R’C“R) < 4 and with respect to Lemma 9 and Lemma 10
h(RC-'R) = H(R'C-'RZ~') 2 h(R'C-'RZ'R’) = h(R’) = 4 (with respect to
Lemma 3), which completes the proof.

Definition 3. Let us call the vector A = Rt — Y the vector of errors.

According to the assumption concerning the distribution of the random vector Y,
4 is obviously a normaly distributed N(O, X). By the expression (E, M)t —y,
the vector of error 4; at the point T(P;) is denoted, thus in E, it is the vector from
the measured position of the point T(P;) to the true position T(P)), ie. 4" =
= (41, ..., 4y). Similarly we decompose V, V' = (v{, ..., v}).

Lemma 11. The symmetrical matrix is only then the matrix of a positive definite
form, if all its principal subdeterminants are positive. For the proof see [9] p. 181.

Lemma 12. If the square matrix A can be divided into submatrices
A — (All A12>
AZl A?_Z
where A, is square and regular, then

]Al = ‘Aul IAzz - A21A1_1lA12‘ .
For the proof see [1] p. 463.

Lemma 13. Let the components of the vector x be divided into two parts x,, X,;
x' = (x}, x3). Analogously the components of the vectors of the mean values n
are divided into two vectors iy, fi,, and we assume further that the covariance
matrix X of the vector x is regular and is divided into corresponding submatrices
211> 212, 2, With respect to the division of vector x, which are covariance matrices
of vectors xy; x; and x,; x,. Then, if x is a normal vector, the conditional distribu-
tion x, at the given x, is also normal with the vector of the mean values [i; +
+ 212255 (%, — J1,) and with the covariance matrix £, — 2,25, 2,;.

For the proof see [1] pp. 43—45.

; E) .
Theorem 8. If the matrix X; — (E, M) C“( > is regular, then the vector
i
of error A; at the point T(P;) conditioned by the knowledge of the corresponding
vector of the correction v, is regularly normally distributed with the mean value

M(4;|v;) = v; and with the covariance matrix M(4,4;|v;) = (E, M) C~! (:)

197



Proof. Since

M(vi4) = M{[4; - (E,M;) C~'RZ~'4] 4}} =

M(AIA:-)
=M(A,~A:-)— (E, M,-) C-'Rx-! =
M(4,4)
(o]
2y :
=Z‘,-,-~(E, M,.)C"RZ“1 =X,-,-—(E, M,.)C“'R E| =
Zyi :

= Z; — (E M) c [i]

Lemma 4 and Theprem 4 implies that (4}, v}) is a normal vector with the zero vector
of the mean values and with the covariance matrix B

b 5. — (E, M) C-! (E )
M,
E E
5. — (E, M) C! : X, —(E.M)C!
"’ ( ) <Ml> ( ) (Mi)._

Hence, in order that the covariance matrix may have the rank 4 (i.e. for the sake
of regularity of distribution) it is sufficient to show that its determinant is positive.
With respect to Lemma 12, Lemma 11 and the assumptions of Theorem there is

|B| = ]z,.,.||z,.,. - (E, M) C! <:")i >0.

i

With respect to Lemma 13, theorem is proved.

5. GEOMETRICAL INTERPRETATION

The transformation (1) can be interpreted as the shifting of the origin of coordinates
S to the point T(S) with the coordinates q, as a change of the original metric by
multiplying it by the number m = \/(a’a) (scale) and as a rotation of the point
field by the value « = arctan (a,/a,). After such a transformation an arbitrary
point P € E, will have the position T(P) given by the vector y = q + Ma.

Since the parameters t of the transformation (1) are estimated by means of the
random vector Y, the estimates ?1, m, a, y will be also random variables. The accuracy
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of the estimate will be characterized by the corresponding dispersion, eventually
by the covariance matrix or the confidence interval and the confidence domain.

Lemma 14. If y is the m-dimensional normal regular vector N(O, X), then the
random variable y'X~'y has a y*-distribution with m degrees of freedom.

For the proofsee [1] p. 77.

Lemma 15. If x is the random vector with the normal distribution N(ﬁ, Z), then
the joint distribution of an arbitrary group of components of the vector x is a
multidimensional normal distribution with mean values, dispersion and covariances
equal to the corresponding elements in 1 and X.

For the proof see [1] p. 38.

In the following we assume the matrix € to be divided into submatrices of the

order 2 X 2
C — (Cll CIZ)
C21 c22

or the matrix C~* similarly divided into submatrices, using the superscripts C.

Theorem 9. The true position of the point T(S) is with probability P in the ellipse
©) (9 - q) (Ciy — €,,C5/Cyy) (9 — q) = —2In(1 - P).

Proof. With respect to Lemma 15 and Theorem 2 the two-dimensional vector q
is a normal vector N(q, C''). We have further

(a) C, C''+C,C" =1 =cC'" =] - Cj'C,,c
-C;, ¢, ¢l

Il

(b) C,,C'' + C,,C?! = O = C!
From (a) and (b) we have C'' = C{|' + C;'C,,C;,'C,,C!". By rearrangement

we have (C,; — C,,C;,C,,) C'"" = 1. Considering further that the probability
integral for the y?-distribution with two degrees of freedom satisfies the following

k2
—-x/2 —k2/2
J%e Mdx =1 — e

0

then with respect to Lemma 14 the Theorem is proved.

Remark. If we estimate the parameter o by means of the vector ¥ (see Theorem 6
and the following Corollary) we obtain as the confidence ellipse instead of (5) the
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following ellipse (see also [10] p. 317):

(5a) (9 - ‘})’ ”Z(CH - c12C521C21) C &) =

=V'022”‘V[<N—2 ! >—- 1]
1—p

which results from the definition of Fisher’s random variable, Theorem 5 and the
properties of the probability integral of Fisher’s random variable with 2 and 2N — 4
degrees of freedom, respectively.

B r{F(N = DIIF(V = 2 r(OJ} [1 + F[(N = 2]~V dF =

—~N+2
=1 (14T .
N -2

Further one must realize that if in the matrix £ = ¢*(G’PG)~! only the parameter
a? is not known, then ¢~ 2Z is evidently a matrix with known elements.

Conditions (A). Let Z,; = O be independent of k for k | and let Xy, = X, not
depend on k. Let further the point S (the origin of the system of coordinates in E.)
be situated at the centre of gravity of the points P, ..., Py.

Conditions (B). Let X,, = O for k # | and Z,, = ¢*l. Let the point S again
be situated at the centre of gravity of the points Py, ..., Py.

Corollary 1. Let Conditions (A) be satisfied. Then the submatrix C,;; = NX5*
and C,, = ZZX”M =2;! ZM =2,'0 = O. The confidence domain (5)

is similar to the confidence domam of the determination of the position of the
point T(P,), but the half-axes of this confidence ellipse are multiplied by the number

1/\/N. (See also in [8].)

Corollary 2. Let Conditions (B) be satisfied. The confidence ellipse (5) then
changes into a circle with the centre at q and with the radius o \/{[ —21n(1 — P)]/N}.
In the case of (5a) the radius is equal to (V'VIN)'[* ([1/(1 — P)]V/®-» — 1)!/2,

Lemma 16. 1. Let in a certain neighbourhood of the point @ = a the function H(a)
be continuous and let it have continuous partial derivatives of the first and second
order with respect to the argument a,, a,.

2. Let for all possible values of a [H| < CNP” hold, where C and p are positive
constants.

3. There is a number a > 0 independent of N such that the set of the points
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P, ..., Py is outside the circle with the radius a and with the centre at the centre
of gravity T of these points.

4. There are numbers b, r, independent from N, for which 0 < b < O4(N) <
< O,(N) < r holds where O,(N) or O,(N), are the values of the minimum or
maximum half-axis respectively of the ellipsoid Y'X='Y = 1 in the 2N-dimensional
Euclidean space.

If we denote by H,, H,, H, the values which the function H and its first partial
derivatives assume at the point a, then we have for the mean values M(H) and the
dispersion ¢?(H) of the random variable H(a)

(6) M(H) = H, + O(N7"),

H,

) oX(H) = (H,, H,) €22 (H ) L O(N-12)

2

The definition of the function O see in [3] p. 121.

Proof. The Lemma results from a modification of the Lemma in [3] p. 339.
Therefore in the following we shall make use of the proof presented there. Let
Z = r?l where r? is the constant from Condition 4. Thus

1(5e?(Py 7). 0
0 1(Ee P, 7))

C22 — ',2
and consequently ¢(d,) < r*/(Na*) = O(N~"). Similarly ¢*(d,) < O(N~') and
M[(d; - a;)(d; = a3)] = O(N7).

If Condition 4 is satisfied and if the random vector Y from (2) is replaced by the
vector z with the normal distribution N(R't, r*I), then the estimate of the position
of the point T(P;); i = 1,..., N is replaced by an estimate with an undiminished
generalized dispersion (on generalized dispersion see [1] pp. 231 to 240). When
estimating the values a, and a, by using the vector z and respecting Conditions 3
and 4, we have a, = O(N~'), a, = O(N~")and M[(d, — a,) (4, — a,)] = O(N~');
all the more must these equalities hold if the vector Y is used.

According to the inequality of TcHEBYSHEFF [3] p. 179 and with respect to the
normality of the vector a (Theorem 2) for each ¢ > 0 the following holds

P{d, :|d, — a,| = ¢} = P{d, :|d, — a,[** = e} <
< M(d, — a,))¥e** =1.3.5,..., (2k — 1) o?"(a,)[e** <
1.3.5...(2k — 1) r?*

=<
= Nkghe2k
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An analogous inequality holds for d,. By the symbol Z we denote the set of all
points Y in the 2N-dimensional Euclidean space for which |4, — a,| < ¢ and |d, —
- azl < ¢ simultaneously holds. By the symbol Z’ we denote the complement
of this set.

If we now substitute in [3] on p. 340 for 4 the 1 .3.5... (2k — 1) r**/a*, we can
almost verbatim complete the proof of Lemma 16 by repeating the procedure from
[3] pp. 340— 342 starting from the relation (27.7.4).

Lemma 17. Let in a certain neighbourhood of the point a the function H(a)
be continuous, let it have continuous partial derivatives of the first and the second
order with respect to the argument a, and a, and let Conditions 3 and 4 of Lemma 16
be satisfied. Then the random variable H(a) is asymptotically normally distributed
with the mean value and with the dispersion equalling the main expression on the
right-hand side of (6) and (7).

Proof. Lemma results by some non-essential rearrangements of the Lemma in [3]
p. 351 and therefore the proof is completed by the same argument.

Theorem 10. If Conditions 3 and 4 of Lemma 16 are satisfied, then the random
variable & = arctan (d,/d,) has the mean value and the dispersion

M(8) = arctgn (a,/a,) + O(N~')

sin o
R sina Cos o m
X d) = — —, c2? + O(N‘3/2),
m m COS o
m

while being asymptotically normal according to Lemma 17.
Proof. It suffices to consider the relations m> = aj + a3, tano = a,/a,, Lemma 16

and Lemma 17.

Corollary. If Conditions (B) are satisfied, then
N
o*(8) = o?*[(m* Y. @*(P,, T)) + O(N~3/).
i=1

Theorem 11. The random variable n = \/(af + a%) is, when Conditions 3 and 4
of Lemma 16 are satisfied, asymptotically normal and

M(m) = m + O(N~")

o?(1h) = (cos x, sin 2) €2 (C"S “) + O(N-372) = m? 6?(8) + O(N-*7) .

sin o




Proof. It is sufficient to consider Lemma 16 and Lemma 17 and Theorem 10
respectively.

Corollary. If Conditions (B) are satisfied, then

az(ﬁi) = 0'2/ glgz(l"-, T) .

i

Definition 4. The distribution function

1 - - ,
F(u,v) = — If PtE Gl P
x2+y2<u?

2n

1 —1y 2
- e 1/2(x2+y2) dx d}‘ ,
2n (x—v)2+y2<u

where v is a parameter, is called the Rayleigh-Rice function ([2] p. VI).

Theorem 12. For the distribution function G(u) of the random variable 1 we
have F(uy;v) < G(u) = P(f < u) < F(uy; v) where F(u;v) is the Rayleigh-Rice
distribution function, u,(u,) is the minor (major) half-axis of the ellipse F'FF'r = u?
and the parameter v = \/[a'(C*?)~* a]. For the matrix F the following must hold:
F(C?) 1 F = I,

Proof. If we consider the substitution @ = a + Fr where F(C??)"'F =1
(according to Lemma 5) in the integral

P(h < u) = _[[” n(a|a, C**)da,
we have e
P(h < u) = J‘j‘ n(r ] O; hdr
where ’
Q={r:(r+ F~'ay FF(r + F~'a) < u*},

i.e. the interior of an ellipse, the centre of which is at the distance v = \/(a'F~'F'~'a)=
= /(a'(C**)~" a) from the origin, which completes the proof according to Defi-
nition 4.

Corollary. If Conditions (B) are satisfied we have
N

G(u) = F(ua/zlgz(P‘.; T); ma/iglgz(Pi, T)).

i=

If we denote y = (E, M)t there holds
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Theorem 13. The point T(B) with the coordinates y = (E, M)t is with the prob-
ability P in the ellipse

(8) (y—y)y(C'' + MC?' + C'2M + MC22M) ! (y — y) = —2In(l — P).

Proof is analogous to that of Theorem 9.

Corollary. If Conditions (B) hold, then the ellipse (8) changes into a circle with
the centre at y and with the radius

o/[-2In(1 = P)] J[1/N + ¢*(B, T)/iigz(Pi, T)].

If we estimate the parameter ¢ by means of the vector V, we replace the expression

R A |

Theorem 14. If the vector V; = (E, M)t — y, is known, the end point of the
true error A; at the point T(P;) is with the probability P in the ellipse

(4, - vy [(E, M,)C-! (';)]1 (4, = V) = —2In(1 — P).

Proof. Considering Theorem 8, the proof is analogous to that of Theorem 9.

Corollary. If Conditions (B) are satisfied, then the confidence domain for the
end point of the vector A; is a circle with the centre at the end point of the vector V;
with the radius

o[-2In(1 = P)] J[I/N + @*(P,, T)/igz(P,., T)].

6. CONCLUSION

The linear conform transformation T is characterized from the geometrical point
of view by a shifting of the coordinates q, by a rotation o and by a change of scale m.
After these steps an arbitrary point P of the first system is mapped into the point
T(P). The parameters of the transformation q,, q,, ay, a,, m = /(aj + a3); « =
= arctgan (a,/a, ) can be determined if we know the coordinates of at least two so-called
identical points P,, P, in the first system, or T(P,), T(P,) in the second system.

In the present paper relations are derived that make it possible to calculate an
efficient estimate of parameters and to consider the estimates q, o and m and the
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position T(P) defined by means of parameters estimated under the following condi-
tions:

1. The coordinates of the identical points P; i = 1,...,N; N > 2 are given.

2. The coordinates of the points T(P,); i = 1, ..., N are determined as the realiz-
ation of the random vector Y with 2N componente having a non-diagonal covariance
matrix (the so-called joint determination of coordinates by indirect measurement).

‘Until now this problem, frequently occurring in mathematical cartography,
has been approached by the method of the least squares, which, under the above
conditions, does not yield any efficient estimates.
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Stuhrn

NIEKTORE STATISTICKE ASPEKTY PRI ODHADE
PARAMETROV LINEARNEJ KONFORMNEJ TRANSFORMACIE

Lusomir KUBACEK

V praci su odvodené vztahy pre vypocet efektivnych odhadov parametrov linedrnej
konformnej transformdcie T a pre ocenenie niektorych funkcii tychto parametrov.

Pritom su uvaZované nasledujuce predpoklady:

1. Su dané stradnice tzv. identickych bodov P;;i = 1,..., N; N > 2. (Za identicky
bod povazujeme kazdy bod P; dvojrozmerného euklidovského priestoru E,, ktorého
suradnice v E, pozndme, priCom sicasne pozname Statisticky odhad stradnic bodu
T(P;))

2. Stradnice bodov T(P;); i =1,...,N si odhadované realizdciou ndhodného
vektora Y s 2N komponentami. Vektor Y md nediagondlnu kovariaéni maticu
(tzn. ide o zdruZené urdenie suradnic pomocou nepriameho merania).

Author’s address: RNDr. Lubomir Kubdéek, CSc., Ustav tedrie merania SAV, Bratislava, Dub-
ravska cesta p.p. 1127.
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