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SVAZEK 15 (1970) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

SOME STATISTICAL ASPECTS OF THE ESTIMATION O F PARAMETERS 
OF A LINEAR CONFORM TRANSFORMATION 

LUBOMIR KUBACEK 

(Received April 21, 1969) 

1. INTRODUCTION 

In the two-dimensional Euclidean space Ex we know the coordinates 

* . = ( * ' ) > i - l , . . . , N ; N > 2 

of different points Pt. The transformation Tof the space Ex onto the space E, — which 
is also a two-dimensional and Euclidean one — is given by the relation 

(1) [T (x)=H = (E,M)(«) 

where 

s f£\ c __ (U °\ M _.„ (x> y\ „ _ (<1\\ „ _ (ai M 
nJ V°5 V Vy> - x J V W Va2 

The components of the vectors q and a are unknown, but one can determine the 
position of the points T(P^) = rji9 i — 1, ..., N by means of indirect measurement 
(further details in the following). 

Our aim is to determine the estimates q, a of the vectors q, a and to investigate 
the statistical properties of these estimates and eventually to point out some con­
sequences following from them for the transformation T 

When we consider the results of measurements of the vectors rjt; i — 1, ...,N, 
which are normally distributed with a covariance matrix independent of the index i 

and stochastically independent, then the solution is known and is given e.g. in [1] 
pp. 248 and foil. 

The aim of this paper is to generalize the solutions in case of stochastically depend­
ent results of measurements of the vector rjt and to point out geometrical interpret­
ations of the obtained results. 
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R e m a r k . The above mentioned problem of multidimensional regression occurs 

often in mathematical cartography. 

2. SYMBOLS AND ASSUMPTIONS 

We arrange the coordinates of the points T(P,) in 2N-dimensional column vector 

H(H' = («i, .... rj'N)). It is impossible to measure the components of the vector H 

directly. Measurements can be carried out only for the components of the vector Z 

(of the order m X 1; m > 2N) for which Z = GH holds where the matrix G with 

known elements is of the order m X 2N and has the rank h(G) = 2N. The result 

of the measurement Z of the vector Z is the realization of a random vector with 

the distribution N(GH, a2P~r). The matrix P is a diagonal matrix of the weights 

Pi > 0 of the measurement of the i-th component of the vector Z and therefore 

the dispersion of measurement of this components is o2\pi> The parameter a (the 

standard deviation of measurement with unit weight) is assumed in the following 

to be unknown. The estimate of the vector rji is denoted by yt and the 2N-dimensional 

vector created by the subvectors yt is denoted by Y. According to [10] p. 145 

it holds: Y = ( G ' P G ) - 1 G'PZ is a normal regular vector with the distribution 

N(H; a 2 (G / PG)~ 1 ) . (See also the definition of a normal regular vector in [10] p. 45 

and in [1] p. 29.) 

We denote the matrix cr2(G'PG)~ * by I and we suppose that at least one submatrix 

Ikl = M[(yk — rjk) (yk — rjk)'~\ for k =f= / is different from the zero matrix, i.e. no 

stochastic independence of random vectors yu ..., yN occurs. (In the following 

we shall point out some simple consequences in case of stochastic independence.) 

Denoting 

f E 

where 
м„ 

м,( 

r*k y^ 

\yk -**> 

we may denote the distribution of vector Y symbolically by 

(2) Y,...,N(R'((,),Z). \°j 

The density of probability of the random vector Y is ([1], p. 29): 

(2a) n(Y\R'fq),z\=f(Y-,q,a) = 

У - R ' 1 ' l í - У - R'íq 
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3. THE ESTIMATE OF g, a 

For the sake of brevity we denote the vector ( ) by the symbol t. If/ is a function 

of the components of the vector t, whose partial derivatives of the first degree exist, 
then the symbol dfjdt denotes the column vector whose i-th component is dfjdt( 

(see also [4]). 

Lemma 1. The matrix of the positive definite form is regular. 

Proof. The lemma is a consequence of the statement in [9] p. 181. 

Lemma 2. Let A be a matrix of the order n X n of a positive definite form and 
let the rank of the matrix B of the order m X n be h(B) = m < n, then BAB' 
is a matrix of a positive definite form. 

Proof. As Z'BAB'Z ^ 0 holds obviously for each m-dimensional vector Z 
it will be sufficient to prove the implication Z'BAB'Z = 0 => Z = 0. Thus let 
Z 'BAB'Z = 0. With regard to the positive definiteness of the matrix A there must 
be B'Z = 0 and with regard to the rank of the matrix B there must be Z = 0. 

Lemma 3. The rank of the matrix R is 4. 

Proof. According to the theorem of Laplace ([7] p. 296) let us develop the determ­
inant of the matrix 

A = f E E 

with respect to the first two rows. We get: 

|A| = -(r\ + r\ - 2r1r2 cos <p) = -O 2 (P l 5 P2) 4= 0 

where O2 is the metric in the two-dimensional space Ex, rt = O2(P0, Pf), i — 1,2, 
P0 is a point in Ex with zero coordinates and cp is the angle between the radiusvectors 
of the points Pl and P2. 

Theorem 1. There exists just one maximum likelihood estimate of the vector t. 
It is given by the solution of the system 

(3) R I - ^ R ' t = RZ-'Y, 

which can be written in the form 

i J i J \ I T \ _ / - J 

\H,"čJt. YZMjZJiMt}\aJ IZZM^V, 
* J l J I \ » J 
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where IlJ is the submatrix I i of the elements of the (li — l)-st and 2i-th rows 
and of the (2j — l)-st and 2j-th columns. 

Proof. The likelihood equations ([3] pp. 477 — 478) with respect to (2a) are given 
by the relation 

(4) 3(lnL(t))/at = 

= (a/3t){ln<{l/[(2^|r|V2]}.exp[-Ky- R ' t ) ' ! - ' ( / - R't)]» = 0 < - , > . 

The left hand side of the above equation may be rearranged: 

(d\dt) <ln {l/[(27rf jZl1/2]} - \\Y'Z-lY - tRl'Y -

- Y'I-lK't + t 'RI^R't ] ) = RIlY - RI lRt. 

If we show that the matrix C = R r _ 1 R ' is the matrix of a positive definite form, 
we show with respect to Lemma 1 the existence of only one solution of the equation 
of likelihood (4). According to the assumption we have in Ex N various points Ph 

thus with respect to Lemma 3 the rank of the matrix is 4 and with respect to Lemma 2 
and Lemma 1 the existence of only one solution is proved. To complete the proof 
it is sufficient to show that for t of (3) the function L attains its maximum. With 
respect to the form of the function L = f from (2a) and of the theorem on the local 
minimum [5] p. 505 it is sufficient to show that the matrix || — d2 In Ljdtt dtj\\ is the 
matrix of a positive definite form. The last matrix, however, is equal to C which 
proves the theorem. 

R e m a r k 1. As can be seen from (3), if we do not know the parameter a2 in the 
matrix I, it is still possible to determine t. 

R e m a r k 2. When comparing the expression (3a) with the solution of the problem 
of linear regression between the variables xt and yt (with the normal distribution 
N(c! + c2xt; o"2/Pi)) we see that the role of the coordinate xh of the result of the 
measurement yh of the weight of measurement pt of the value ct + c2xi and of the 
constant c1 and c2 in our problem were taken over by the submatrix H., the vector yh 

the expression a2 £Z"J and by q and o, respectively. 
j 

Lemma 4. If x is a normal vector N(/I, I), then t = Dx is a normal vector 
N(D?, DZD). 

P r o o f is in [1] p. 41. 

Theorem 2. The estimate t is a normally distributed N(t, C - 1 ) . 

Proof. With respect to (3) we have t = C~1Rr~1Yr and thus with respect to [ l ] 
p. 39 and Lemma 4 we have that t is normally distributed with the vector of the 
mean values M(i) = C " 1 R T _ 1 M(Y) = C ^ R I ^ R ' t = t and with the covariance 
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matrix M[(i - t)(t - t) '] = C ^ R I " 1 M[(Y - R't) (Y - R't)'] Z - ^ ' C " 1 = C" 1 , 
respectively. 

Corollary. The estimate i from (3) is statistically unbiased. 

Theorem 3. The estimate tfrom (3) is jointly efficient. 

Proof. With respect to [6] p. 28 it is sufficient to prove that 

\\M(-d2 In Ljdudtj)]] = C . 

With respect to the last two sentences in the proof of Theorem 1, the last equality 
is obvious. 

4. STATISTICAL PROPERTIES OF VECTORS OF CORRECTIONS 
AND OF VECTORS OF TRANSFORMED COORDINATES 

When relation (l) is applied, further random vectors occur and it may be useful 
to know their statistical properties. 

Definition 1. The vector V given by the relation V = R't — Y is called the vector 
of corrections of the components of the vector Y. 

Definition 2. A random vector x with p components, with a vector of the mean 
values M(x) = ft and with the covariance matrix M[(x — /T) (x — /I)'] = I is called 
normal if 

1. there is a matrix A of the order p x r, so that the rank h(l) = r; 
2. there is an r-dimensional normal regular vector y; 
3. the following holds: x = Ay + X where X is an r-dimensional vector. If 

r < p, x is a singular normal vector of the rank r. 

Lemma 5. Let us have two linear vector functions of the n-dimensional normal 
vector x: y1 = Axx, y2 = A 2 x where Ax is a matrix of the order ml x n and 
A2 is a matrix of the order m2 x n. Then the equality A ^ A ^ = 0 is a necessary 
and sufficient condition for the stochastic independence of the vectors y1 and y2,% 
being the covariance matrix of the vector x. 

P r o o f is in [10] p. 57. 

Lemma 6. If the symmetrical matrix B is positively definite, then there is such 
a regular matrix E that EBE' = I (unit matrix). 

Proof is in [1] p. 457. 
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Lemma 7. Let the p-dimensional vector x be normally distributed ...N(jl,Z). 
Then y = Cx is, for a regular matrix C, normally distributed ... N(C/I, CZC). 

P r o o f is in [1] p. 32. 

Lemma 8. For each symmetrical matrix A of a quadratic form, there is such 
an orthogonal matrix Q that QAQ' is a diagonal matrix. 

P r o o f is in [9] p. 227. 

Lemma 9. If Am m is a regular matrix of the order m X m, then the rank of the 
matrix AB where B is a matrix of the order m x n, is equal to the rank of the 
matrix B. 

P r o o f is in [9] p. 101. 

Lemma 10. For the rank of the matrix A = BC the relation h(A) ^ min {h(B), 
h(C)} holds. 

P r o o f is in [9] p. 101. 

Theorem 4. Vector V is a normal singular vector of the rank 2N — 4. 

Proof. With respect to Definition 1 and Theorem 1 we have V = (R' C " ] RZ ~1 — I) Y 
where I is the unit matrix. With respect to Lemma 4, V is a normal vector with the 
vector of the mean values M(V) = ( R ' C ^ R I " 1 - I) R't = ( R ' C ^ R I ^ R ' - R')t = 
= (R' - R') t = 0 and with the covariance matrix M(V. V) = (I - R'C ^ R I " 1 ) . 
. Z(\ - Z ^ R ' C ^ R ) = Z - 2R'C~1R + R ' C ^ R I ^ R ' C ^ R = Z - R ' C ^ R . 
With respect to Lemma 6 there is such a regular matrix F that Z = F~1P~i. Further, 
with respect to Lemma 9 the following holds: h(Z - R C ^ R ) = h(f-1F"1 -
- R'C~ lR) = ^ ( F - ^ i - FR C - R F ) F '-1) = h(\ - F R ' C ^ R F ) . Let us denote 
U = F R ' C ^ R F . Obviously U = U and U2 = U. With respect to Lemma 8 
there is an orthogonal matrix H such that HUH' = D is a diagonal matrix. D2 = 
= H U H ' H U H ' = H U 2 H ' = H U H ' = D holds, which is possible only if there 
are only 0 or 1 on the diagonal of the matrix. The number of ones is obviously equal 
to the rank of the matrix D and h(D) = /z(U) with respect to Lemma 9. With respect 
to Lemma 10 we have further h(U) = ^ (FR 'C^RF ' ) ^ 4. As RF'UFR' = RF' . 
. (FR'C- X RF) FR' = R I ^ R ' C -1R2? " R = C, it holds h(C) ^ h(U) with respect 
to Lemma 10. With respect to Theorem 1 h(C) = 4, hence h(U) = 4. Further, 
with respect to Lemma 9 h(l - U) - h[H(l - U) H'] = li(! - D) = 2N - 4. 
In the proof of Lemma 4 it is shown that in such a case V is a singular normal vector 
with the rank 2N - 4. 
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Theorem 5. The vectors t and V are statistically independent. 

Proof. With respect to Theorem 1 and Definition 1 the following holds: V = 
^ ( R ' C ^ R i r 1 - \)Y; t = C'RZ 'Y. As ( R ' C ^ R r - 1 - I) I I ^ R ' C - 1 = 
= R ' C - ^ R I ^ R ' C - 1 - R ' C - 1 = R C 1 - R C 1 = 0, Theorem is proved by 
means of Lemma 5. 

Theorem 6. The random variable VZ~1V has x2-distribution with 2N — 4 degrees 
of freedom. 

Proof. With respect to Theorem 4 VZ1V=Y'(\ - Z--R'C--R)2--(l - R 'C" 1 . 
. R I - 1 ) Y = Y^Z'1 - Z-'R'C-^Z-1) Y = (Y - R't)' (Z"1 - r ^ R ' C ^ R i ; - 1 ) . 
. (Y — R't). With respect to Lemma 6 there is such a regular matrix F that F.TF' = I. 
If the matrix from the proof of Theorem 4 is considered as U we have VZ~1V = 
= w'(l — U) w where w = F(Y — R't) is, according to Lemma 7, a normally distributed 
vector N(0, I). We have further VZ'V = wH(\ - HUH') Hw = Z'(\ - D) Z 
where Z is, according to Lemma 7 and Lemma 8, a normally distributed N(0, 1) and H 
is an orthogonal matrix from the proof of Theorem 4. Thus VZ~1V = Z2

h + ... -f-
+ Z2

2N_4 where iu ..., Z2JV-4 a r e the indices of those components of the vector Z 
in the rows of which there are zeros along the diagonal of the matrix D. With respect 
to the definition of the ^-distribution, Theorem is proved. 

Corollary. With respect to the assumption it holds Z = a2(G'PG)~1 where a 
is an unknown parameter. According to Theorem 6 V'G'PGV = a2X2N-4. and thus 

1. a2 = [l/(2N — 4)] V'G'PGV is, regarding the properties of the x2-distribu­
tion, an unbiased estimate of the a priori unknown dispersion a2. 

2. The confidence interval for the parameter a is given by the relation 

Py(V'G'PGV/a2) S o S yKVG'PGVj^)} = 
2 

|"(ut(2<V-4)/2]-le-„/2^2(2W-4)/2 ^ ^ _ 4 ^ ] ) ] d t < . 

1 

Remark . To determine the vector Y one may use also the vector Vt = GY — Z. 
In [10] p. 151 and in the following it is shown that the random variable ^ i P ^ = 
= °2Xm~2N' As it is statistically independent of V'G'PGV, we have V[PVi + V'G'P . 
. GV = a(x2

2N-A. + XII-2N) = v2Xm-4.- W r t h respect to the inequality m > 2N this 
may be used for a better estimate of the parameter a. 

Theorem 7. The random vector R't (vector of the transformed coordinates of the 
points Pu ..., PN) is a singular normal vector N(R't; R 'C - 1 R) of the rank 4, 

Proof. With respect to Theorem 2 and Lemma 4 the following holds: R't = 
= R ' C ^ R Z " 1 / is a normal vector with the vector of the mean values M(R't) = 
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= R / C- 1 Ri; - 1 R' t = R't and with the covariance matrix M[R'(t - t) (t - t) ' R] = 
— R'C~1R. With respect to Definition 2 and to the proof of Theorem 4 it is sufficient 
to show that the rank of the matrix R ' C ^ R is l^R'C^R) = 4. With respect to 
Lemma 10 evidently /i(R'C_1R) <L 4 and with respect to Lemma 9 and Lemma 10 
^ R ' C ^ R ) = ^ (R 'C-^Rr - 1 ) ;> hfi'C-'RZ-'R') = h(R') = 4 (with respect to 
Lemma 3), which completes the proof. 

Definition 3. Let us call the vector A = Rt — Y the vector of errors. 
According to the assumption concerning the distribution of the random vector Y, 

A is obviously a normaly distributed N(0, Z). By the expression (E, M-)t — /. , 
the vector of error At at the point T(P,) is denoted, thus in Ey it is the vector from 
the measured position of the point T(Pt) to the true position T(Pt), i.e. A' = 
= (Ai, ..., AN). Similarly we decompose V, V = (v[, ..., vN). 

Lemma 11. The symmetrical matrix is only then the matrix of a positive definite 
form, if all its principal sub determinants are positive. For the p roo f see [9] p. 181. 

Lemma 12. If the square matrix A can be divided into submatrices 

A = A n A12 

i^A21 A 2 2 y 

where A u is square and regular, then 

|A| = | A n | |A22 — A 2 1 A n A12j . 

For the p r o o f see [1] p. 463. 

Lemma 13. Let the components of the vector x be divided into two parts x1? x2 ; 
x' = (x l s x2). Analogously the components of the vectors of the mean values /I 
are divided into two vectors /i1} p.2, and we assume further that the covariance 
matrix Z of the vector x is regular and is divided into corresponding submatrices 
^ii> ^i2> ^22 with respect to the division of vector x, which are covariance matrices 
of vectors x x ; xt and x2 ; x2 . Then, ifx is a normal vector, the conditional distribu­
tion xx at the given x2 is also normal with the vector of the mean values fit + 
+ Z12Z22(x2 — Ji2) and with the covariance matrix Zlt — Zi2Z22Z21. 

For the p r o o f see [1] pp. 43 — 45. 

Theorem 8. If the matrix ZH — (E, M- )C _ 1 I " ) is regular, then the vector 

of error A{ at the point T(Pt) conditioned by the knowledge of the corresponding 
vector of the correction vt is regularly normally distributed with the mean value 

M(At | v,.) = vt and with the covariance matrix M(AfA^ | vt) = (E, Mt) C
- 1 / J. 

\ M . / 
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Proof. Since 

M(vИÍ) = M{[At - (E, M;) C-iRZ-^A-] A't} = 

~M(Å_Afî 
= м(.d í .d;.)-(E,м i )c- 1 Ri- 1 ; 

_M(ANA't)_ 

= 2 ł ł - ( E , M ł ) C - 1 R 

2ľ ł ł -(E,M ł )C- 1 RГ- ł 
" н 

"«- (-, м,; •^•r-j-
Lemma 4 and Theprem 4 implies that (A-, vj) is a normal vector with the zero vector 

of the mean values and with the covariance matrix B 

".,-; Г „ - ( E , M , ) C - 1 

r„ - (E, M.) C-1 (= ) ; r„ - (E, M,) C"1 ( * ) 

Hence, in order that the covariance matrix may have the rank 4 (i.e. for the sake 

of regularity of distribution) it is sufficient to show that its determinant is positive. 

With respect to Lemma 12, Lemma 11 and the assumptions of Theorem there is 

I „ - ( E , M , ) C - . ( E

м J 1-1 = I". 

With respect to Lemma 13, theorem is proved. 

> 0 . 

5. GEOMETRICAL INTERPRETATION 

The transformation (l) can be interpreted as the shifting of the origin of coordinates 

S to the point T(S) with the coordinates q, as a change of the original metric by 

multiplying it by the number m = s/(a'cs) (scale) and as a rotation of the point 

field by the value a = arctan (a2jal). After such a transformation an arbitrary 

point P e Ex will have the position T(P) given by the vector y = q + Ma. 

Since the parameters t of the transformation (1) are estimated by means of the 

random vector Y, the estimates q, m, a, y will be also random variables. The accuracy 

198 



of the estimate will be characterized by the corresponding dispersion, eventually 
by the covariance matrix or the confidence interval and the confidence domain. 

Lemma 14. If y is the m-dimensional normal regular vector N(0,I), then the 

random variable y ' £ _ 1 y has a x2-distribution with m degrees of freedom. 

For the p r o o f see [1] p. 77. 

Lemma 15. If x is the random vector with the normal distribution N(/I, I), then 
the joint distribution of an arbitrary group of components of the vector x is a 
multidimensional normal distribution with mean values, dispersion and covariances 
equal to the corresponding elements in Ji and I. 

For the p r o o f see [1] p. 38. 

In the following we assume the matrix C to be divided into submatrices of the 
order 2 x 2 

Q _ IC n C, 2 

x^ii C2 2 

or the matrix C _ 1 similarly divided into submatrices, using the superscripts ClJ. 

Theorem 9. The true position of the point T(S) is with probability P in the ellipse 

(5) (q - q)' ( C u - C12C2-2
1C21)(q - q) = - 2 1 n ( l - P) . 

Proof. With respect to Lemma 15 and Theorem 2 the two-dimensional vector q 
is a normal vector N(q, C11). We have further 

(a) C U C U + C 1 2 C 2 1 = 1 => C1 1 = C .7 - C ^ C ^ C 2 1 

(b) c 2 1 c u + c2 2c2 1 = o => c21 = -c2-2
1c2 1c1 1 

From (a) and (b) we have C1 1 = C"*/ + C]"1
1C12C2~2

1C21C11. By rearrangement 
we have ( C n — C12C2~2 C21) C1 1 = S. Considering further that the probability 
integral for the x2-distribution with two degrees of freedom satisfies the following 

\e~xl2 àx = 1 - e-"2/2 

then with respect to Lemma 14 the Theorem is proved. 

Remark . If we estimate the parameter o by means of the vector V (see Theorem 6 
and the following Corollary) we obtain as the confidence ellipse instead of (5) the 
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following ellipse (see also [10] p. 317): 

(5a) (q - q)' a 2 ( C n - C12C2"2
1C21) (q - q) = 

/ 1 
- V'o2IlV 

1 - P 
- 1 

which results from the definition of Eisner's random variable, Theorem 5 and the 
properties of the probability integral of Fisher's random variable with 2 and 2N — 4 
degrees of freedom, respectively. 

p = {r(N - i)/[r(jv - 2) r(i)]} [1 + FJ(N - 2)]-<N-1> dr = 

N - 2 

Further one must realize that if in the matrix I = o2(G'PG) * only the parameter 
o2 is not known, then o~2I is evidently a matrix with known elements. 

Conditions (A). Let Ikl = O be independent of k for k 4= I and let Zkk = Z0 not 
depend on k. Let further the point S (the origin of the system of coordinates in Ex) 
be situated at the centre of gravity of the points Pl9 ..., PN. 

Conditions (B). Let Ikl = O for k 4= / and Ikk = o2\. Let the point S again 
be situated at the centre of gravity of the points P l 9 ..., PN. 

Corollary 1. Let Conditions (A) be satisfied. Then the submatrix C t l = NIQ l 

and C 1 2 = XX-£uMj = Z$ * ^M7- = IQX0 = O. The confidence domain (5) 
i J J 

is similar to the confidence domain of the determination of the position of the 
point T(Pf), but the half-axes of this confidence ellipse are multiplied by the number 
1/7N. (See also in [8].) 

Corollary 2. Let Conditions (B) be satisfied. The confidence ellipse (5) then 
changes into a circle with the centre at q and with the radius o%/{[ — 21n(l — P)]/N}. 
In the case of (5a) the radius is equal to (V'V/N)1/2 ([1/(1 - p ) ] 1 / ^ - 2 ) - I)1 /2 . 

Lemma 16. 1. Let in a certain neighbourhood of the point a = a the function H(a) 
be continuous and let it have continuous partial derivatives of the first and second 
order with respect to the argument au a2. 

2. Let for all possible values of a |H| < CNP hold, where C and p are positive 
constants. 

3. There is a number a > 0 independent of N such that the set of the points 
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Pl9 ..., PN is outside the circle with the radius a and with the centre at the centre 
of gravity T of these points. 

4. There are numbers b, r, independent from N, for which 0 < b < 0X(N) ^ 

= 02(N) — r holds where 0X(N) or 02(N), are the values of the minimum or 
maximum half-axis respectively of the ellipsoid Y'I~iY = 1 in the 2N-dimensional 
Euclidean space. 

If we denote by H0, Hl9 H2 the values which the function H and its first partial 
derivatives assume at the point a, then we have for the mean values M(H) and the 
dispersion o2(H) of the random variable H(a) 

(6) M(H) = H0+ 0 ( N - J ) , 

(7) o2(H) = (Hl9 H2) C22 QM + 0(N"3/2) . 

The definition of the function O see in [3] p. 121. 

Proof. The Lemma results from a modification of the Lemma in [3] p. 339. 
Therefore in the following we shall make use of the proof presented there. Let 
I = r2\ where r2 is the constant from Condition 4. Thus 

l/(2j?2(! \ T), 0 

o, ' i/(Ie2(P,-, T)) 
i 

and consequently a2(dt) ^ r2/(Na2) = o(N-'). Similarly a2(a2) ^ 0(N~l) and 
M[(«, - a 1 ) ( a 2 - « 2 ) ] = o(iV-1). 

If Condition 4 is satisfied and if the random vector Y from (2) is replaced by the 
vector z with the normal distribution N(R't, r2l), then the estimate of the position 
of the point T(Pt); i = 1, . . . ,N is replaced by an estimate with an undiminished 
generalized dispersion (on generalized dispersion see [1] pp. 231 to 240). When 
estimating the values ax and a2 by using the vector z and respecting Conditions 3 
and 4, we have a, = 0(N~ 1 ) ,a 2 = O ^ - ^ a n d M ^ a , - a1)(d2 - a2)] = 0(N~1); 
all the more must these equalities hold if the vector Y is used. 

According to the inequality of TCHEBYSHEFF [3] p. 179 and with respect to the 
normality of the vector a (Theorem 2) for each e > 0 the following holds 

P{o\ : |a i - a,\ =e} = P{di : |a \ - ax\
2k

 = e2k} = 

= M(d, - ai)
2kle2k = 1 . 3 . 5, ..., (2fe - 1) o - 2 ^ ) ^ 2 * = 

1 .3.5...(2fe - l ) r 2 f e 

Nkake2k 
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An analogous inequality holds for d2. By the symbol Z we denote the set of all 

points Y in the 2N-dimensional Euclidean space for which |a\ — a±\ < e and \d2 — 

— a2\ < s simultaneously holds. By the symbol Z' we denote the complement 

of this set. 

If we now substitute in [3] on p. 340 for A the 1 . 3 . 5 ... (2k — 1) r2k\ak, we can 

almost verbatim complete the proof of Lemma 16 by repeating the procedure from 

[3] pp. 340-342 starting from the relation (27.7.4). 

Lemma 17. Let in a certain neighbourhood of the point a the function H(a) 

be continuous, let it have continuous partial derivatives of the first and the second 

order with respect to the argument a1 and a2 and let Conditions 3 and 4 of Lemma 16 

be satisfied. Then the random variable H(a) is asymptotically normally distributed 

with the mean value and with the dispersion equalling the main expression on the 

right-hand side of (6) and (7). 

Proof. Lemma results by some non-essential rearrangements of the Lemma in [3] 

p. 351 and therefore the proof is completed by the same argument. 

Theorem 10. If Conditions 3 and 4 of Lemma 16 are satisfied, then the random 

variable a = arctan (a2/a\) n a s t n e mean value and the dispersion 

M(&) = arctgn (a2lat) + O(N_1) 

sin a\ 

ff2(бг) = I _ __^ ^ ___^\ C 22 '« + 0(^-3/2) ; 

m m ) cos a 

m 

while being asymptotically normal according to Lemma 17. 

Proof. It suffices to consider the relations m2 = a\ + a 2, tan a = a2jal9 Lemma 16 

and Lemma 17. 

Corollary. If Conditions (B) are satisfied, then 

<r2(a) = a2\(m2 £ Q2(Pt, T)) + 0(N'^2) . 
i=l 

Theorem 11. The random variable m = ^J(a] + a2
2) is, when Conditions 3 and 4 

of Lemma 16 are satisfied, asymptotically normal and 

M(rh) = m + 0(N~l) 

a2(m) = (cos a, sin a) C2 2 fC°S *) + O(iY~3/2) = m2 a2(6t) + O(N~3/2). 
\sin ocj 
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Proof. It is sufficient to consider Lemma 16 and Lemma 17 and Theorem 10 
respectively. 

Corollary. If Conditions (B) are satisfied, then 

a2(m) = <r2/i>2(P,T). 
1 = 1 

Definition 4. The distribution function 

F(u, v) - -1- (T e-i/2[<*-«»>+**] dx dj; = 

e-1/2(x
2+y2)dxdy^ 

^nJJ (x-v)2+y2<u2 

where v is a parameter, is called the Rayleigh-Rice function ([2] p. VI). 

Theorem 12. For the distribution function G(u) of the random variable m we 
have F(ul; v) = G(u) = P(m < u) _ F(u2; v) where F(u; v) is the Rayleigh-Rice 
distribution function, ul(u2) is the minor (major) half-axis of the ellipse r'FF'r = u2 

and the parameter v = ^l\a'(C22)~l a]. For the matrix F the following must hold: 
F ^ 2 2 ) - 1 F' = I. 

Proof. If we consider the substitution o — o + F'r where F(C 2 2 ) - 1 F' = I 

(according to Lemma 5) in the integral 

we have 

where 

P(m < u) = n(a | o, C22) do , 
J J a'a<u2 

P(m < u) = n(r | O; I) ár 

Q = {r : (г + F ' - 1 ^ ) ' FF'(r + F '- 1 ^) й u2} , 

i.e. the interior of an ellipse, the centre of which is at the distance v = ^ / ( a ' F - 1 F ' - 1 a) — 

— ^ / ( o ^ C 2 2 ) - 1 o) from the origin, which completes the proof according to Defi­

nition 4. 

Corollary. If Conditions (B) are satisfied we have 

G(u) = F(uaj £ Q2(P-, T); ma\ £ Q\Ph T)) . 
i = l i = l 

If we denote y = (E, M) t there holds 
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Theorem 13. The point T(B) with the coordinates y = (E, M) t is with the prob­
ability P in the ellipse 

(8) (Y ~~ y ) ' ( C n + MC2 1 + C12M + MC 2 2M)~ 1 (y - y) = - 2 1 n ( l - P). 

P r o o f is analogous to that of Theorem 9. 

Corollary. If Conditions (B) hold, then the ellipse (8) changes into a circle with 

the centre at y and with the radius 

o V [ - 2 ln (1 - P)] V[l/iV + Q2(B, T)l Z Q\PҺ T)] . 
N 

E 
i = i 

If we estimate the parameter a by means of the vector V, we replace the expression 

< - V [ - 2 1 n ( l -P)] by 

yy 

N 
Л/-2 

1 - P 
1 

Theorem 14. If the vector Vt = (E, Mf) t — Yi is known, the end point of the 
true error At at the point T(Pt) is with the probability P in the ellipse 

(E, M.) C - i ( * ) J ' (A, - V.) = - 2 ln (1 - Р) 

Proof. Considering Theorem 8, the proof is analogous to that of Theorem 9. 

Corollary. If Conditions (B) are satisfied, then the confidence domain for the 
end point of the vector At is a circle with the centre at the end point of the vector Vt 

with the radius 

o V [ - 2 ln (1 - P)] V[1/!V + Q

2(Ph T)l £ Q\Ph T)] . 
t = l 

6. CONCLUSION 

The linear conform transformation T is characterized from the geometrical point 
of view by a shifting of the coordinates q, by a rotation a and by a change of scale m. 
After these steps an arbitrary point P of the first system is mapped into the point 
T(P). The parameters of the transformation ql9 q2, al9 a2, m = sj(a\ + a2

2)\ a = 
= arctgan (a2\a x) can be determined if we know the coordinates of at least two so-called 
identical points Pl9 P2 in the first system, or T(Pi), T(P2) in the second system. 

In the present paper relations are derived that make it possible to calculate an 
efficient estimate of parameters and to consider the estimates q, a and m and the 
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position T(P) defined by means of parameters estimated under the following condi­

tions: 

1. The coordinates of the identical points Pt i =- 1,...,N; N > 2 are given. 

2. The coordinates of the points T(P f); i = 1,..., N are determined as the realiz­

ation of the random vector Y with 2N componente having a non-diagonal covariance 

matrix (the so-called joint determination of coordinates by indirect measurement). 

Until now this problem, frequently occurring in mathematical cartography, 

has been approached by the method of the least squares, which, under the above 

conditions, does not yield any efficient estimates. 
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Súhrn 

NIEKTORÉ STATISTICKÉ ASPEKTY PRI ODHADE 
PARAMETROV LINEÁRNEJ KONFORMNEJ TRANSFORMÁCIE 

LUBOMÍR KUBÁČEK 

V práci sú odvodené vztahy pre výpočet efektívnych odhadov parametrov lineárnej 
konformnej transformácie T a pre ocenenie niektorých funkcií týchto parametrov. 

Přitom sú uvažované nasledujúce předpoklady: 

1. Sú dané súradnice tzv. identických bodov Pt; i = 1, ..., N; N > 2. (Za identický 
bod považujeme každý bod Pt dvojrozměrného euklidovského priestoru Ex, ktorého 
súradnice v Ex poznáme, pričom súčasne poznáme statistický odhad súradníc bodu 

-W) 
2. Súradnice bodov T(Pt); i = 1, ..., N sú odhadované realizáciou náhodného 

vektora Y s 2N komponentami. Vektor Y má nediagonální! kovariačnú maticu 
(tzn. ide o združené určenie súradníc pomocóu nepriameho merania). 

Authoťs address: RNDr. Lubomír Kubáček, CSc, Ústav teorie merania SAV, Bratislava, Dúb-
ravská cesta p.p. 1127. 
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