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STABILITY OF FLAT THERMAL FLUX IN A SLAB REACTOR

VAcLAvV BARTOSEK and ROSTISLAV ZEZULA

(Received March 17, 1967)

1. GENERAL SOLUTION OF THE EQUATION FOR FLAT THERMAL FLUX

The necessary condition for flat flux, @ = const., of thermal neutrons in the core
of a thermal reactor is given (in a two-group approximation and in slab geometry)
by the following equation for the distribution of the relative fuel absorption M(x) =
= 0,[3 % - Nu(x), (the notation is the same as in the paper [1]):

(1) Yyl + M) =gq,; M'(x)+ g[M(x)]=0,

where the real function g(z) € C* has the following properties:

1. g(z) has only two roots M{" and M{P.
2. g'(z) has the unique real root M, M{" < M§? < M§? and we have

g'(My) >0 for My <M g (My) <0 for My > M.
3. G(M) = [g(M)dM - + oo for M > + .

In reactor physics g(M) appears in the form:

2 g(M) = = {[np(M) — 1]M — 1}.

Q=

The dependence p(M) for the heterogeneous fuel arrangement can be expressed
by the relation

(3) p(M) = exp (=yM),

where y depands on the lattice parameters. In a homogeneous reactor, the dependence
p(M) is expressed by a more complicated relation, its qualitative behaviour, however,
remains the same so that g(M) again has the three above mentioned properties.

The physical requirement of symmetry of the solution from which the initial
condition

(@) M/(x) = 0

follows does not restrict the generality of the following analyses. Full generality
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will be reached by investigating the solution of the Eq. (1) corresponding to the
initial values (the Cauchy’s problem):

(5) M'(x) =0; M(xo) =My; — o0 <My< + 0.

According to [2] we rewrite the differential equation (1) in the usual form of the
system

(6) —=M(x)=yM); ==y =-g(M)),

-GtM)

M,(pp=1)
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which is obviously autonomous. Graphs of the functions M’ = y(M) can be then

plotted in the phase plane (M, M’) (Fig. 1) in the following way:
Substituting the relation (3) into (2) we obtain by integration:

-1 M? g 1
@ o) = [gomyamr = P Mt ! eXp(—yM)}.
T 2y Y
The first integral of the equation (1) has thus the form
r\2 \
®) (—Mz o) =c,

where C denotes the integration constant. The equation (8) represents in the phase
plane (M, M’) a one-parametric system of curves M’ = y(M; C) which are sym-
metric with respect to the axis M. The solution M(x) = M(x, M,) of the Cauchy’s
problem (1), (5) is given implicitly by the relation

M(x,Mo)
) X — Xo = —f ﬂ—
) Mo ly(M7 C)I
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From the initial condition (4) in the Cauchy’s problem (1), (5) it follows that the
integration constant C is a function of the initial value My: C = G(M,).
Thus the curves

(10) M= y(M; Mo) = £{2[G(M,) — GM)]} 5 G(Mo) — G(M) = 0

in the phase plane (M, M’) determine the solution (9) of the Cauchy’s problem (1),
(5)- The upper (lower) part of the curves represents the solution in the corresponding
(right or left) half-part of the slab reactor.
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Fig. 2.

The two roots M{" and M of the equation
-1
(l]) y = —-g(l\/l)ElT— {[np(M)—]]M— 1}=0

determine in the phase plane (M, M’) two singular points (M§",0), (M§”,0),
0 < M§V < M of the system of equations (6). The singular point (M, 0) is
a centre-point, the point (Mgz), 0) is a saddle-point as it can be seen from the shape
of the graphs in Fig. 1.

According to the qualitative theory of differential equations [3], [4], the following
conclusions can be made for all functions with the properties 1.—3.:

1. The initial values My, > M on the axis M are nonsingular points of the
system of equations (6) and to every of them there corresponds a unique nonperiodic
monotonously increasing (for X > Xo) resp. monotonously decreasing (for x < Xo)
real solution of the Cauchy’s problem (1), (5).

2. The initial values M, + M from the interval M§® < M, < M (Fig. 1)
on the axis M are nonsingular points of the system of equations (6) and to every
of them there corresponds a unique periodic solution of the Cauchy’s problem (1), (5)
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which initially decreases for M, > M{" (increases for My < M) and is represented
in the phase plane (M, M’) by the oval given by Eq. (10) which passes through the
points (M,, 0) and (M, 0). These solutions represent a (conservative) space oscilla-
tion with the amplitude M, and with a space period n(M,) given by:

. I
(122) (o) L,o ;)|

so that xo = + nn(Mg) (n=0,1,2,3,...).

\
|
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Fig. 3.

Therefore the solutions with the initial conditions (M,, 0) and (M,, 0) are only
mutually shifted by (+ n + ) 7(M,) in the (M, x) plane (see Fig. 3).

3. Through the singular points (M, = M{, 0) resp. (M, = M, 0) pass the
singular “trivial” solutions of the Cauchy’s problem

(12b) M(x) = M{V = const; resp. M(x) = M = cons’t.

from which the first one is stable, the second one unstable. These trivial solutions are
the unique solutions which assume the initial values M = M, M’ = 0 for finite
values x,, and they are the limits (on an arbitrarily chosen finite interval {xo — N,
Xo + N) of the periodic solutions as My — M{" resp. My, - M. Moreover, there
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are further solutions which assume the values M{”, M’ = 0 as x, > + oo (see
Fig. 3), from which one takes on the values M, M’ = 0 for finite x = Xx,, is non-
periodic, nonmonotonous and corresponds to the closed part of the separatrix-curve
M'(M, M) in the phase plane. The others take on the values My > M), M’ =
= & [M'(My, M)| (for finite x), are monotonously increasing resp. decreasing
and correspond to the two monotonous branches of the separatrix.

4. To the initial values M, < M{? on the axis M there corresponds the unique
nonperiodic solution with a nonmonotonous second derivative (see Fig. 3).

2. PARTICULAR SOLUTIONS FOR THE PHYSICALLY REALIZABLE BOUNDARY
CONDITIONS

From the physical meaning of M as the relative absorption in fuel the requirement
M(x, My) > 0 follows for physically realizable part of the solution, independently
of the boundary conditions for the investigated problem. It is as well evident from

M
My
¥ M(X)
dx)
/// core-halfspace
{
X, 17 X"
7
L
/
o
A reflector

Fig. 4.

the physical reasons that the singular “asymptotic” solutions corresponding to the
singular points (M{", 0) and (M§?, 0) describe the critical state of the core of
infinite dimensions so that they may fulfil only the trivial boundary conditions, i.e.
finite value of the flux and slowing-down density and their derivatives in the infinity.

Solutions corresponding to the initial value My, > M, resp. M, < M are
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monotonously increasing for x > x, and can obey e.g. the boundary conditions
which describe neutron sources on the boundary. For M, £ M’ < 0 the reactor
must obviously have an inner reflector (see Fig. 4).

The finite critical core could appear in the interval of the initial values M >
> Mo(£M{V) > M, for which the usual conditions of continuity on the interface
of the core and reflector could be fulfilled as well as the conditions of zero value of the
flux and slowing-down density on the extrapolated boundary of the reflector. The
mentioned conditions of continuity on the interface b of the core (4) and the reflector
(R) have the form (for reactor with a flattened flux):

(13a) Dp(b) = Du(b) = ®; Dp(b) =0,
(13b) ‘Ik(b) ={. qA(ba Mo) > ‘I;a(b) = q;,(b, Mo) TA/TR 5 (4 = (éZs)R/(fZ\)A) .

From the boundary conditions (13a), (13b) we determine four constants in the well
known general solution of the usual two-group equations in the reflector.
The conditions on the external (extrapolated) boundary of the reflector a:

(14) Pp(+a) =0; gp(+a) =0

determine the relations among the critical core size b, the thickness of reflector t =
= a — b and the initial relative fuel absorption M,. From the conditions (14) we
obtain a linear system for M(b, M,) and M’ = y[M(b, M,), M,] which has the fol-
lowing solution:

X (U -Lifw) L
(152) M(b, Mo) = ¢ i | — Lr tanh 1Ly =50,

J7r tanh t/{/tg
(156) M’ = y[M(b, Mo), Mo] = —= % L [M(b, My) + 1] = 9,(1).
JTr T4 tanh tf /1,

The relations (15a), (15b) give us a parametric representation of a “critical”” curve
in the phase plane (M, M’) and determine two of the three values M, b, 1.

Eliminating the thickness of the reflector ¢ from the equations (15a,b) we obtain
the equation of the “critical” curve in the form of an implicit dependence between
the values M(b, M) and M’ = y[M(b, M,), M| which we denote as F{M(b, M),
M’ = y[M(b, M), M,]} = 0. On the other hand, mutual dependence of M and M’
in the core is given by the first integral (8) of the Equation (1) which forms an oval
for M < Mo(£MG"?) < M. The intersection of the oval with the curve F =0
determines the points

+b + n (M) for M > My > MG resp. n(Mo) (£n+ %) F bfor M <My <M{V
(n=01,2,..),

where the conditions of continuity of fluxes and normal currents (13a,b) on the inter-
face of the core and reflector in a critical reactor with a flattened thermal flux in the
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core are fulfilled. By choosing M,, the intersection point M = M[t(M,)]; M’ =
= y[t(M,)], of the oval going through M, with the curve F = 0 in phase plane is
given so that the reflector thickness t = #(M,) can be calculated from (15b). The
halfthickness b = b(M,) of the critical core can be then determined from (9) and (12a).

The form of the curve F = 0 depends on the physical qualities of the core and
reflector and is plotted in Fig. 2 for the core moderated by D,0 with the reflector
formed by H,0, D,0, C, Be. The improper integral (9) exists (for My + M, M)
because the integrand has the singularity of the type 1/,/Z.

In the phase plane the function F = 0 attains values M = 3,(o0), M' = 9,(c0)
for t = oo to which, as it is evident from Fig. 2, there corresponds, according to
(10), the minimal initial value of the relative absorption density M§™ = M{" uniquely
determined by the inequality M < Mg™ < M§? and by the relation (10) from which
it follows that

(16) G(M5™) = 3[9:(0)]* + G[3:(x0)] ;

then (9) yields the critical dimension of the core b,;,. For initial values Mg™" <

< M, < Mj™ the boundary conditions (13a,b) and (14) obviously cannot be fulfilled.
The point of intersection of the curve F = 0 with the separatrix-oval (10), cor-
responding to the initial value M§? corresponds to the minimal thickness of the
reflector

i M[(MG)] + 1
(17) tmin = +/Tg artanh I:\/TR - ¢ W}

for which the boundary conditions are fulfilled for the finite value of the coordinate
x — X, (see Fig. 4):

(18) X = Xo = 3n(MP) = by = J‘M[t(Mo(Z))] dMm .
o [Y(M, MEY)|
while the half-period
(19a) TM@) = 1im  in(M,) =
2 Mo—Mo(2) —
and the core halfthickness
(19b) b = lim b(My) = + o
Mo—Mo(2) —

so that in this case the reactor core has the form of a halfspace (42 — b, ., )
[5]; the corresponding reflector lies in the interval (3™ —p . —t

max min»

1 Me®) — p ). The fuel distribution in the halfspace-core is given implicitly by the
formula

M (x,Mo(®)) dM
(20) (%R(MSZ)) - bmnx) + X =X = f 2)

MH(Mo™)] |y(M M )[
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Moreover, it is clear that M{ = M®™>* is the maximal physically allowable initial
fuel concentration, in the critical core with flattened thermal flux.
Results of the calculations of ., (by (17)), Mg™ (by (16)), and M§™ = M{? (by

(11)) are given in Table 1. Values of the concentrations M = M

o, M = M§*™ are

normalized, as usual [1], with the help of the relation Ny, = (Y4,/oy) M .

= 00472, 10%4 atoms/cm3 (for pure natural uranium)

Table 1

y reflector D,0 Be C
toin  Lom] 20,0 12,1 251
7-8.107% | Nmex(y) 0-00455 . 10%* 0-00455 . 10%4 0-00455 . 10%4
Nmin 0-000366 . 10%4 0-001035 . 10?4 0-000827 . 10%+
tpia lcm] 350 19-1 330
174 .107% | Nmax(y) 0-00201 .10%* 0-00201 .10%* 0-00201 .10%*
Nmin 0-000366 . 10%+ 0-001035 . 10?4 0-000827 . 10?4
toin  [cm] 535 26,0 49,5
homog. NI2X (3) 0-00150 . 10** 0-00150 .10%* | 0-00150 .10%*
“.
Nmin 0-000366 . 10%4 0-001035.10%* | 0-000827 . 10%*

Globally, it can be stated that for the initial fuel concentration M, from the inter-
val M3™ < My, < M§™ the Cauchy’s problem (1), (5), (13a,b), together with the
relations (10) and (15a,b) is equivalent with the problem of eigenvalues for the same
equation as considered in (Barto$ek and Zezula, [1]) and describes physically the
critical reactor with the thickness n n(Mo) — b(M,), n n(My) + b(M), (n = 0, 1, 2,
...) of the core with the flattened flux of the thermal neutrons and with the thickness
of reflector #(M,). .

Thus, this means that in contrast to the reactor with the constantly distributed
fuel, where to the given multiplication coefficient of the core there corresponds an
infinite number of pairs of the dimension of the core and reflector, in the case of the
reactor with a flattened flux, just as a consequence of the requirement of flattening
of thermal flux, to the given initial fuel concentration M, (and thus also to the de-
termined initial multiplication coefficient) there corresponds only one pair of the
dimension of the core and reflector.

Acknowledgement: The authors would like to express their thanks to M. HRON,
V. LELEK, I. MAREK, J. RoCEK and Z. VOREL for valuable discussions.
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Souhrn

STABILITA VYROVNANEHO TOKU TEPELNYCH NEUTRONU
V DESKOVEM REAKTORU

VAcLAV BARTOSEK a ROSTISLAV ZEZULA

S pouZitim kvalitativni teorie diferencidlnich rovnic dokazuji autofi ekvivalenci
okrajové tlohy a Cauchyho tlohy pro deskovy reaktor. Je dokdzdna existence in-
tervalu po&dtegnich (tj. pro x = 0) koncentraci paliva, pro které Cauchyho problém
(se dvéma algebraickymi podminkami) popisuje kriticky deskovy reaktor, zatimco
feSeni mimo tento interval popisuji podkritické systémy nebo nendsobici prostiedi.

Pes3ome

VCTOMYUBOCTH MMOCTOSAHHOIO TIOTOKA
TEILJIOBBEIX HEMTPOHOB B JJIOCKOBOM PEAKTOPE

Bacnap Bapromek u Pocrucnas 3ezyna (VACLAV BARTOSEK a ROSTISLAV ZEZULA)

Hcnonp3yst XadeCcTBEHHYIO Teopuio AubdepeHIManbHbIX YpaBHEHWH IOKa3aHa
SKBUBAJICHTHOCTH KpaeBoil 3amaun u 3amauu Ko 11 HavaIbHBIX 3HAUCHUI B CITy-
Yae JOCKOBOTO PEaKTOpa C MOCTOSIHHBIM NMOTOKOM TEILUIOBBIX HeWTpoHoB. ITokasa-
HO, YTO CYIIECTBYeT WHTEPBAJ HAYAIbHBIX (T. €. IEHTPAIbHBIX) KOHIEHTPALUil
TOPIOYEro, UL XOTOPBIX 3aJava O HavaJbHBIX 3HAYCHMSX (BMecTe C AByMs aJre-
OpanvecKMMHU YCIOBHSIMH) ONMCHIBACT KPUTHYECKUI PEaKTOP C ypPaBHOBEIUCHHBIM
(cTaGIIM3MPOBAHHBIM) TOKOM, B TO BPeMsI KaK DPEIICHHE JIeXallee BO BHELIHOCTH
9TOr0 MPOMEXKYTKA OIUCHIBACT MOJKPUTHYCCKHE CHCTEMBI, WIM HEYMHOXAFOLIYIO
cpeny.
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