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SVAZEK 13 (1968) A P L I K A C E M A T E M ATI KY ČÍSLO 5 

STABILITY OF FLAT THERMAL FLUX IN A SLAB REACTOR 

VACLAV BARTOSEK and ROSTISLAV ZEZULA 

(Received March 17, 1967) 

1. GENERAL SOLUTION OF THE EQUATION FOR FLAT THERMAL FLUX 

The necessary condition for flat flux, <P = const., of thermal neutrons in the core 
of a thermal reactor is given (in a two-group approximation and in slab geometry) 
by the following equation for the distribution of the relative fuel absorption M(x) = 
= crJYjlf • Njx), (the notation is the same as in the paper [1]): 

(1) <P X M ( 1 + M) = qA; M"(x) + g[M(x)] = 0 , 

where the real function g(z) e C00 has the following properties: 

1. g(z) has only two roots M 0
1 } and M (

0
2 ). 

2. g'(z) has the unique real root M(
0\ M 0

1 } < M 0
3 ) < M 0

2 ) and we have 

g'(M0) > 0 for M 0 < M 0
3 ) ; g'(M0) < 0 for M 0 > M 0

3 ) . 

3. G(M) = J g(M) dM ~> + co for M -> ± oo . 

In reactor physics g(M) appears in the form: 

(2) g{M) = - {[,, p{M) - 1] M - 1} . 
T 

The dependence p(M) for the heterogeneous fuel arrangement can be expressed 
by the relation 

(3) p(M) = e x p ( - y M ) , 

where y depends on the lattice parameters. In a homogeneous reactor, the dependence 
p(M) is expressed by a more complicated relation, its qualitative behaviour, however, 
remains the same so that g(M) again has the three above mentioned properties. 

The physical requirement of symmetry of the solution from which the initial 
condition 

(4) Mf(x) = 0 

follows does not restrict the generality of the following analyses. Full generality 

367 



will be reached by investigating the solution of the Eq. (l) corresponding to the 
initial values (the Cauchy's problem): 

(5) M'(x0) = 0 ; M(x0) = M 0 ; - oo < M0 < + oo . 

According to [2] we rewrite the differential equation (1) in the usual form of the 
system 

(6) ^ í = M'(x) = y(M) ; ^ = j / = - ö ( M ) , 
dx dx 

y*J>8Ю-џ 

Fig. 1. 

which is obviously autonomous. Graphs of the functions M' = j(M) can be then 

plotted in the phase plane (M, M') (Fig, 1) in the following way: 

Substituting the relation (3) into (2) we obtain by integration: 

(7) G(M) = L(M) Цм + ^ + ^ M + - exp(-yM)i. 

The first integral of the equation (1) has thus the form 

(M')2 

(8) + G(M) = C , 

where C denotes the integration constant. The equation (8) represents in the phase 
plane (M, M') a one-parametric system of curves M' = y(M; C) which are sym­
metric with respect to the axis M. The solution M(x) = M(x, M0) of the Cauchy's 
problem (l), (5) is given implicitly by the relation 

[M(x,Mo) d M 

(9) x - x 0 = — r— ; • 
w J M„ \y(M,c)\ 
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From the initial condition (4) in the Cauchy's problem (1), (5) it follows that the 

integration constant C is a function of the initial value M 0 : C = G(M0). 

Thus the curves 

(10) M' = y(M; M 0 ) = ± V{2[G(M0) - G(M)]} ; G(M0) - G(M) ^ 0 

in the phase plane (M, M') determine the solution (9) of the Cauchy's problem (l), 

(5). The upper (lower) part of the curves represents the solution in the corresponding 

(right or left) half-part of the slab reactor. 

Fig. 2. 

The two roots M 0

1 } and M 0

2 ) of the equation 

( Ц ) 
g(M) = _ ! {[,, p(M) _ i ] M - 1 } = 0 

T 

determine in the phase plane (M, M') two singular points (M0

l\ 0), (M 0

2 ) , 0), 

0 < M 0

1 } < M 0

2 ) of the system of equations (6). The singular point (M{

0\ 0) is 

a centre-point, the point (M 0

2 ) , 0) is a saddle-point as it can be seen from the shape 

of the graphs in Fig. 1. 

According to the qualitative theory of differential equations [3], [4], the following 

conclusions can be made for all functions with the properties 1. —3.: 

1. The initial values M 0 > M 0

2 ) on the axis M are nonsingular points of the 

system of equations (6) and to every of them there corresponds a unique nonperiodic 

monotonously increasing (for x > x0) resp. monotonously decreasing (for x < x0) 

real solution of the Cauchy's problem (l), (5). 

2. The initial values M 0 =j= M (

0

1 } from the interval M 0

2 ) < M 0 < M 0

2 ) (Fig. 1) 

on the axis M are nonsingular points of the system of equations (6) and to every 

of them there corresponds a unique periodic solution of the Cauchy's problem (l), (5) 
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which initially decreases for M 0 > M 0

1 } (increases for M 0 < M(

0

1}) and is represented 

in the phase plane (M, M') by the oval given by Eq. (10) which passes through the 

points (M 0 , 0) and (M 0 , 0). These solutions represent a (conservative) space oscilla­

tion with the amplitude M0 and with a space period n(M0) given by: 

(12a) H M 0 ) = ~ 

so that x0 = ± n n(M0) (n = 0, 1, 2, 3, 

'MO dМ 

M o \y(M; M0) 

Fig. з. 

Therefore the solutions with the initial conditions (M 0 , 0) and (M 0 , 0) are only 

mutually shifted by ( ± n + i ) 7r(M0) in the (M, x) plane (see Fig. 3). 

3. Through the singular points (M 0 = M 0

1 } , 0) resp. (M 0 = M (

0

2), 0) pass the 

singular "trivial" solutions of the Cauchy's problem 

(12b) M(x) = M 0

1 } = const ; resp. M(x) = M 0

2 ) = const. 

from which the first one is stable, the second one unstable. These trivial solutions are 

the unique solutions which assume the initial values M = M 0

2 ) , M' = 0 for finite 

values x 0, and they are the limits (on an arbitrarily chosen finite interval <x0 — N, 

*o + iV>) of the periodic solutions as M 0 -• M0

X) resp. M 0 -> M 0

2 ) . Moreover, there 
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are further solutions which assume the values M0
2), M' = 0 as x0 ~> ± oo (see 

Fig. 3), from which one takes on the values M0
2), M' = 0 for finite x = x0, is non-

periodic, nonmonotonous and corresponds to the closed part of the separatrix-curve 
M'(M, M0

2)) in the phase plane. The others take on the values M 0 > M0
2), M' = 

= ± \M'(M0, M0
2))\ (for finite x), are monotonously increasing resp. decreasing 

and correspond to the two monotonous branches of the separatrix. 
4. To the initial values M 0 < M0

2) on the axis M there corresponds the unique 
nonperiodic solution with a nonmonotonous second derivative (see Pig. 3). 

2. PARTICULAR SOLUTIONS FOR THE PHYSICALLY REALIZABLE BOUNDARY 
CONDITIONS 

From the physical meaning of M as the relative absorption in fuel the requirement 
M(x, M0) > 0 follows for physically realizable part of the solution, independently 
of the boundary conditions for the investigated problem. It is as well evident from 

Fig. 4. 

the physical reasons that the singular "asymptotic" solutions corresponding to the 
singular points (M0

1}, 0) and (M0
2), 0) describe the critical state of the core of 

infinite dimensions so that they may fulfil only the trivial boundary conditions, i.e. 
finite value of the flux and slowing-down density and their derivatives in the infinity. 

Solutions corresponding to the initial value M 0 > M0
2), resp. M 0 < M0

2) are 
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monotonously increasing for x > x0 and can obey e.g. the boundary conditions 
which describe neutron sources on the boundary. For M 0 = M0

2) < 0 the reactor 
must obviously have an inner reflector (see Fig. 4). 

The finite critical core could appear in the interval of the initial values M0
2) > 

> M 0 (+M 0
1 ) ) > M0

2), for which the usual conditions of continuity on the interface 
of the core and reflector could be fulfilled as well as the conditions of zero value of the 
flux and slowing-down density on the extrapolated boundary of the reflector. The 
mentioned conditions of continuity on the interface h of the core (A) and the reflector 
(R) have the form (for reactor with a flattened flux): 

(13a) 4>R(b) = 4>A(b) = <P ; $'R(b) = 0 , 

(13b) qR(b) = C . qA(b, M0) ; q'R(b) = q'A(b,M0)xA\xR; (£ = (&S)RI(&S)A) • 

From the boundary conditions (13a), (13b) we determine four constants in the well 
known general solution of the usual two-group equations in the reflector. 

The conditions on the external (extrapolated) boundary of the reflector a: 

(14) <PR(±a) = 0; qR(±a) = 0 

determine the relations among the critical core size b, the thickness of reflector t = 
= a — b and the initial relative fuel absorption M0 . From the conditions (14) we 
obtain a linear system for M(b, M0) and M' = y\M(b, M0), M0] which has the fol­
lowing solution: 

(15a) M(b, M0) = i | £ . - {\~\RllR)
flT ~ 1 - »i(0 > 

C LM { LR tanh t\LR 

^JxR tanh t\yjxR 

(15b) M' = y[M(b, M0), M 0 ] = -=-£ ^ *- [M(b, M0) + 1] = 82(f) . 
V T R TA t a n h r / V T R 

The relations (15a), (15b) give us a parametric representation of a "critical" curve 
in the phase plane (M, M') and determine two of the three values M0 , b, t. 

Eliminating the thickness of the reflector t from the equations (15a,b) we obtain 
the equation of the "critical" curve in the form of an implicit dependence between 
the values M(b, M0) and M' = y[M(b, M0),

SM0~] which we denote as F{M(b, M0), 
M' = y\M(b, M0), M0]} = 0. On the other hand, mutual dependence of M and M' 
in the core is given by the first integral (8) of the Equation (l) which forms an oval 
for M0

2) < M 0 (+M 0
1 ) ) < M0

2). The intersection of the oval with the curve F = 0 
determines the points 

± b ± n n(M0) for M0
2) > M0> M0

l) resp. TI(M0) ( ± n + \) + b for M0
2 )< M0 < M0

X) 

(n = 0,1,2,...), 

where the conditions of continuity of fluxes and normal currents (13a,b) on the inter­
face of the core and reflector in a critical reactor with a flattened thermal flux in the 
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core are fulfilled. By choosing M 0 , the intersection point M = M\t(Moy\\ M' = 

= y\t(M0)\ of the oval going through M 0 with the curve F = 0 in phase plane is 

given so that the reflector thickness t = t(M0) can be calculated from (15b). The 

halfthickness b = b(M0) of the critical core can be then determined from (9) and (12a). 

The form of the curve F = 0 depends on the physical qualities of the core and 

reflector and is plotted in Fig. 2 for the core moderated by D20 with the reflector 

formed by H2O, D2O, C, Be. The improper integral (9) exists (for M 0 4= M 0

2 ) , M 0

1 } ) 

because the integrand has the singularity of the type l/^/Z. 

In the phase plane the function F = 0 attains values M = #x(oo), M' = #2(oo) 

for t = oo to which, as it is evident from Fig. 2, there corresponds, according to 

(10), the minimal initial value of the relative absorption density M 0

i n _ M 0

1 } uniquely 

determined by the inequality M 0

l ) < M 0

i n < M (

0

2 ) andby the relation (10) from which 

it follows that 

(16) G(ALr) = i | > 2 ( o o ) ] 2 + G[St{oo)] ; 

then (9) yields the critical dimension of the core bmin. For initial values M 0

i n < 

< M 0 < M 0

i n the boundary conditions (I3a,b) and (14) obviously cannot be fulfilled. 

The point of intersection of the curve F = 0 with the separatrix-oval (10), cor­

responding to the initial value M 0

2 ) corresponds to the minimal thickness of the 

reflector 

r 1 -- MVt(M(2)\ 

(17) tm i n = JTR artanh 
• 1 т, MjҲM<2>)] + Г 

JxRrÁ y\}(M0
2))\ _ 

for which the boundary conditions are fulfilled for the finite value of the coordinate 
x — x 0 (see Fig. 4): 

/*M[ř(Л 

(18) x - x0 = łтr(Mo2)) - bmax = 
Jм0

(2> 

M[í(M0(
2>)] j м 

\y(M, M0

2))\ 

while the half-period 

(19a) - (M(

0

2)) = lim in(M0) = + oo 

2 M 0 -^M 0

( 2 >-

and the core halfthickness 

(19b) fomax = lim b(M0) = + oo 
M 0 - ^ M 0

( 2 > -

so that in this case the reactor core has the form of a halfspace (j7i(M°(2)) — bmax, oo) 

[5]; the corresponding reflector lies in the interval (2-7i(M°(2)) — bmax — tmin, 

i.7r(M0(2>) _ ^ m a J xhe fuel distribution in the halfspace-core is given implicitly by the 

formula 

(20) (НМ<02)) ~ Ьтах) + X ~ X0 = 
J 1 

M(дr,M0(-)) dM 

M[r(M„<2))] \y(M, M0

2))\ 
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Moreover, it is clear that M 0

2 ) = M 0

a x is the maximal physically allowable initial 

fuel concentration, in the critical core with flattened thermal flux. 

Results of the calculations of t m i n (by (17)), M™n (by (16)), and M™x = M 0

2 ) (by 

(11)) are given in Table 1. Values of the concentrations M = M 0

i n , M = M 0

l a x are 

normalized, as usual [ l ] , with the help of the relation Nv = (XM/^C/) M . 

Table 1 

jVa = 0-0472 . 102 4 atoms/cm3 (for pure natural uranium) 

7 reflector D 2 O Be c 

m̂in [cm] 20,0 12,1 251 

7-8 лo-4 
Nľax (ľ) 000455 . 10 2 4 000455 . 10 2 4 000455 . 1 0 2 4 
дrmin 

lyu 0000366 . 10 2 4 0-001035 . 10 2 4 0000827 . 10 2 4 

^min þ m ] 350 191 330 
17-4 лo-4 NГ" (ľ) 000201 . 1 0 2 4 000201 . 10 2 4 000201 . 1 0 2 4 

дгmin 
ЛУ u 

0000366 . ю24 0001035 . 10 2 4 0000827 . 1 0 2 4 

'min [cm] 53-5 26,0 49,5 

homog. дгmax ( y ) 000150 . Ю 2 4 000150 . 10 2 4 000150 . 10 2 4 

д/min 
ЛУ u 0000366 . ю24 0001035 . 10 2 4 0000827 . Ш 2 4 

Globally, it can be stated that for the initial fuel concentration M 0 from the inter­
val M£ in g M 0 < M 7 the Cauchy's problem (l), (5), (I3a,b), together with the 
relations (10) and (I5a,b) is equivalent with the problem of eigenvalues for the same 
equation as considered in (Bartosek and Zezula, [1]) and describes physically the 
critical reactor with the thickness n n(M0) — b(M0), n n(M0) + b(M0), (n = 0, 1, 2, 
...) of the core with the flattened flux of the thermal neutrons and with the thickness 
of reflector t(M0). K 

Thus, this means that in contrast to the reactor with the constantly distributed 
fuel, where to the given multiplication coefficient of the core there corresponds an 
infinite number of pairs of the dimension of the core and reflector, in the case of the 
reactor with a flattened flux, just as a consequence of the requirement of flattening 
of thermal flux, to the given initial fuel concentration M 0 (and thus also to the de­
termined initial multiplication coefficient) there corresponds only one pair of the 
dimension of the core and reflector. 

A c k n o w l e d g e m e n t : The authors would like to express their thanks to M. HRON, 
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Souhrn 

STABILITA VYROVNANÉHO TOKU TEPELNÝCH NEUTRONŮ 
V DESKOVÉM REAKTORU 

VÁCLAV BARTOŠEK a ROSTISLAV ZEZULA 

S použitím kvalitativní teorie diferenciálních rovnic dokazují autoři ekvivalenci 
okrajové úlohy a Cauchyho úlohy pro deskový reaktor. Je dokázána existence in­
tervalu počátečních (tj. pro x = 0) koncentrací paliva, pro které Cauchyho problém 
(se dvěma algebraickými podmínkami) popisuje kritický deskový reaktor, zatímco 
řešení mimo tento interval popisují podkritické systémy nebo nenásobící prostředí. 

Резюме 

УСТОЙЧИВОСТЬ ПОСТОЯННОГО ПОТОКА 
ТЕПЛОВЫХ НЕЙТРОНОВ В ДОСКОВОМ РЕАКТОРЕ 

Васлав Бартошек и Ростислав Зезула (VАС̂ АV ВАКГОЗЕК а КозтI5^АV 2 Е 2 ^ А ) 

Используя качественную теорию дифференциальных уравнений показана 
Эквивалентность краевой задачи и задачи Коши для начальных значений в слу­
чае доскового реактора с постоянным потоком тепловых нейтронов. Показа­
но, что существует интервал начальных (т. е. центральных) концентраций 
горючего, для которых задача о начальных значениях (вместе с двумя алге­
браическими условиями) описывает критический реактор с уравновешенным 
(стабилизированным) током, в то время как решение лежащее во внешности 
этого промежутка описывает подкритические системы, или неумножающую 
среду. 

АШкогз' аМгеззез: Т>х. Уас^ ВаПозек С8с, ^8^аV ^аа,е^пёпо Vу2кити С8АУ, Ке2 и РгаЬу. 
Т>г. 1п§. КомШш) 2еги1а С8с, МагетаИску й з ^ К а г ^ у ип^егзку, РгаЬа 8, З о к о ^ з к а 83. 
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