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SVAZEK 10 (1965) APLIKACE MATEMATIKY ČÍSLO 3 

NUMERICAL METHODS FOR SOLVING LINEAR LEAST 
SQUARES PROBLEMS1) 

GENE H. GOLUB 

(to topic d) 

One of the problems which arises most frequently in a Computer Laboratory is 
that of finding linear least squares solutions. These problems arise in a variety of 
contexts, e.g., statistical applications, numerical solution of integral equations of the 
first kind, etc. Linear least squares problems are particularly difficult to solve because 
they frequently involve large quantities of data, and they are ill-conditioned by their 
nature. 

Let A be a given m x n real matrix with m = n and of rank r, and b a given vector. 
We wish to determine a vector x such that 

(i) Ax = min . 

where || ... || indicates the euclidean norm. It is well known (cf. [4]) that x satisfies* 
the equation 

(2) ATAx = ATb 

Unfortunately, the matrix ATA is frequently ill-conditioned [4] and influenced greatly 
by roundoff errors. The following example of LAUCHLI [2] illustrates this well. 
Suppose 

A = 

1,1, 1, 1,1" 
«, 0, 0, 0, 0 

0, £, 0, 0, 0 
0, 0, £, 0, 0 
0, 0, 0, E, 0 
0, 0, 0, 0, £ 

1) This report was supported in part by Office of Naval Research Contract Nonr — 225(37) 
(NR 044-11) at Stanford University. 
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then 

(3) A'A = 

l + £ 2 
, 1, 1 L, 1, L 

1, 1 + є2, 1 U 1, 1, 

- • J 1, 1 + e2, 1, 1, 
1 , 1, 1 l, 1 + s2, 1, 
1, 1, 1 l, 1, 1 + e 

Clearly for 8 + 0, the rank of ATA is five since the eigenvalues of ATA are 5 + 82, 
2 2 2 2 

8 , 8 , 8 , 8 . 

Let us assume that the elements of ATA are computed using double precision 

arithmetic, and then rounded to single precision accuracy. Now let n be the largest 

number on the computer such that fl(1.0 + rj) = 1.0 where fl(...) indicates the 

floating point computation. Then if 8 < vA//2, the rank of the computed representa­

tion of (3) will be one. Consequently, no matter how accurate the linear equation 

solver, it is impossible to solve the normal equations (2). 

In [1], HOUSEHOLDER stressed the use of orthogonal transformations for solving 

linear least squares problems. In this paper, we shall exploit these transformations. 

Since the euclidean norm of a vector is unitarily invariant, 

||b - Ax\\ = ||c - QAx|| 

where c = Qb and Q is an orthogonal matrix. We choose Q so that 

KN 

(4) QA = R = 
0 / } ( m - л ) x и 

where R is an upper triangular matrix. 

Clearly, 

x = K_1c 

where c is the first n components of c and consequently, 

j = m+l 

Since K is an upper triangular matrix and RTR = ATA, RTR is simply the Choleski 

decomposition of ATA. 

There are a number of ways to achieve the decomposition (4); e.g., one could apply 

a sequence of plane rotations to annihilate the elements below the diagonal of A. 

A very effective method to realize the decomposition (4) is via Householder transfor­

mations [1]. Let A = A(1), and let A(2), A(3), ..., A(n+1) be defined as follows: 

A(k+i) = p(k)A(k) (kz= i$29..'.,n). 
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P(k) is a symmetric, orthogonal matrix of the form 

P(k) = / - 2w(k)w(k)T 

for suitable w(k) such that w(k)Tw(k) = 1. A derivation of P(*) j s g i v e n in [5]. In order 
to simplify the calculations, we redefine P(k) as follows: 

P(fc) = / - pku
(k)u(k)T 

m 

where ak = ( £ (a£»)2)*, ft = [at(crk + | a <«| ) ] - i , and 
i = A; 

«<*> = 0 for i < k , u[k> = sgn « > ) (fflk + | a « | ) , „(*> = a« f o r ,- > k . 

Thus 
^tt+D = 4 w _ „(") (ftuWT^(")) _ 

After P{k) has been applied to A{k), Aik+1) appears as follows: 

£(*+!) 

A(k + 1) = 

where R^k+1) is a k x k upper triangular matrix which is unchanged by subsequent 
transformations. Now a(

k
k
k
X) = - (sgn a(k)

k) ak so that the rank of A is less than n 
if Gfc = 0. Clearly, 

R = A(n + 1) 

and 
Q __ p(n)p(n-l) p ( l ) 

although one need not compute Q explicitly. 

Let x be the intial solution obtained, and let x — x + e. Then 

where 
|| b — Ax| — || r — Ae|| 

r — b — Ax , the residual vector. 

Thus the correction vector e is itself the solution to a linear least squares problem. 
Once A has been decomposed then it is a fairly simple matter to compute r and solve 
for e. Since e critically depends upon the residual vector, the components of r should 
be computed using double precision inner products and then rounded to single 
precision accuracy. Naturally, one should continue to iterate as long as improved 
estimates of x are obtained. 
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The above iteration technique will converge only if the initial approximation to x 
is sufficiently accurate. Let 

x(« + n = x(t) + e(«) (q = o, 1,...) with x ( 0 ) = 0. 

Then if | | e ( 1 ) | | / | | x ( 1 ) | | > c and if c < J, i.e., "at least one bit of the initial solution 
is correct", one should not iterate since there is little likelihood that the iterative 
method will converge. Since convergence tends to be linear, one should terminate the 
procedure as soon as | | e ( k + 1 ) | | > c||e(k)[|. 
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