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SVAZEK 4 (1959) APLIKACE MATEMATIKY ¢isLo 2

STATISTICAL QUALITY CONTROL OF OUT-OF-ROUNDNESS
OF MACHINED PARTS

Voapimiv KLEGA

(Received March 27th, 1958.) DT : 330,655

In the article a method is proposed for the Statistical quality
control of deviations from roundness of machined parts. The method
is based on the assumption of Weibull’s distribution, further on the

ks uniformly most powerful test for verifying the exceeding of the pre-
scribed tolerance and on the test using the j : th value from the top in
a random sample.

1. INTRODUCTION

In current literature, various questions relating to deviations from roundness
of cylindrically shaped parts have been treated, since it is evident that such
deviations play an important role in the attainment of high quality of precise
products. The basic deviations from roundness are ovality and more generally
out-of-roundness [5]. In practice the method of measuring deviations from
roundness depends on the assumed geometrical shape of the crogs-section of
the machined part. When measuring on the basis of two-point contact (Fig. 1),
the detail in question is rotated between two parallel planes and the difference
between the maximum and minimum diameter of the detail is noted (ovality).
When measuring on the basis of three-point contact (Fig. 2), the detail is
rotated in a prismatic base and the difference between the maximum and
minimum measured value is noted. In this case the third point of contact is
that of the measuring indicator and lies in the plane of symmetry of the prisma-
tic base (out-of-roundness).

On the basis of experimental material it can be assumed, that the deviation
from roundness & has Weibull’s distribution

B ab

fW(:n;a,/ﬂ):;:nﬂ‘*le‘a, x>0, >0, =0, (L.1)
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f = 2). Thus & has the exponential distribution

with mean value ¢ and variance o2,

with parameters o and £ (e. g. Kuras [1] recommends this distribution for
(1.2)

0, >0,

fulwso) = —¢77, @

Fig. 2.

The problem is, assuming the parameter § to be known, to test the null
hypothesis H, : ¢ =< o, with respect to the alternative hypothesis H, : ¢ > 0,
which corresponds to the exceeding of the upper limit to the out-of-roundness.

2. THE UNIFORMLY MOST POWERFUL TEST

We begin with the simple hypotheses H,: 0 = 0, and H, : 6 = 0y, 0, > 0,
The most powerful test of level « must satisfy the Neyman-Pearson condition

(2.1)
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where ¢, depends on the level «. Inserting (1.1) in (2.1) we obtain

. . . . I<¢ . .
i. e. A is an increasing function of - Z af for all o, > g,, so that the region
n '

k-1
(2.1) is equivalent to the region
n
1 —
- Z X > Zon,a s
ko1

n
where 2g,n, 4, iti view of the fact that — Z &8 has the chi-square distribution
UO k=1
with 2n degrees of freedom, is equal to
/2n,o¢ 2 (22)

Zop,n, o = 4),'2

where 1, , is the 100x percent value of the chi-square distribution ( f Ao (0) dw ==

2 2n.a
== «). Since the critical region is independent of ¢,, ¢, > g, the test baJsed
on the statistic
n
-2,
=S B o .
Sk 2.3
n k-1 ( )

is the uniformly most powerful test of H, with respect to the alternative hy-

pothesis H,: o > o,. Moreover, if P ( Z E0 > 2, na | 0= 0y] = «, then

- . 1<, . .
for o << o, the relation P (7; Z 0> zopn,a | 0) <. ~ holds, so that the test is
[

uniformly most powerful also for the extended null hypothesis H,: o < o,.

3. TEST BASEFD ON THE RANGE BETWEEN THE = --1 —4j:TH
AND ¢ :TH VALUE OF THE n ORDER STATISTICS

" The test based on the statistic (2.3) is too complicated for practical work
and therefore we propose a further statistic

Oy = ‘«(ﬂu ‘i:(q) » 1< n '{ﬁ 1— 7 3 (31)

where g(k} = V(&8 &8, ..., $f) and the function V,(x, x,, ..., x,) denotes the
kth of the values z,, ,, ..., 2z, arranged in ascending order of magnitude and
&, = 0. From among all the statistics( 3.1) we choose that particular one

which gives the largest power when testing the null hypothesis H,: 0 =< g,
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against the alternative hypothesis H,: o > g, Using the conception of the
asymptotically largest power, it is shown in section 6 that this property is
possessed. by the statistic

Blopy = @) = Efn +1-7) s j =~ 0.203n,

. . - - m .
the asymptotic relative efficiency of which is equal to — a 0.65 (m and n are
; n

the sample sizes which give the same power when using the test based on
(2.3) and p(» respectively).

4. STATISTICAL QUALITY CONTROL

As the first suitable statistic for the statistical quality control of out-of-
-roundnesses we have indicated the random variable (2.3), which assumes the

1 —
~ - 4 o
S Z , Vs (4.7)

where x,, according to our application, are the observed values of the deviation

observed value

from roundness £ and #» is the size of the random sample of machined parts.
We take as the upper control limit the value 2, , ,, for which the cquation

15, 1 Zo s )
- oz — S E EB - - x 2 = e ?
P(,n Z Cl«ﬂ T SOy R, a ) T P 7’1»(70 ‘wf = Z],n,ac =, S e ﬁg ) E

{(4.2)

holds, where we choose the values « = 0.01 or 0.05. (The lower control limit
equals zero.) By (4.2) we then have

z = Oy Zypa - (4.3)

os Ty &

The values 2z, ,, , (Tab. 1) are obtained from (2.2) using the tables of the critical
values of the chi-square distribution.

It remains to determine the value of the parameter g, in (4.3). There are
two ways. Hither we estimate the parameter o, by means of the unbiased
estimate (4.1) when = is sufficiently large in which case

2. 2l,w,,m > (44)

z:r“,n, a
or we start out from the specified percent of defectives 100¢ %, and from the
upper limit to the out-of-roundness 7',. According to (1.1) and (1.2) we may
write

o o
Sl 0, ) dv = [fies o) do =
3 T
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It then follows that
T =l .o, k=—1lge¢,

(the coefficient k, is tabulated for certain values of ¢ in Table 2), so that

g
A (4.5)

- —
Zogn, & = ],7 -1,
Ve

where the coefficient D = _Z!_'/]Lrﬁ is tabulated in Table 3).

(N
As the second suitable statistic for the statistical quality control of out-of-
roundness we have indicatgd the random variable o) = &, 5, forj &~ 0.203n,
the observed value of which is

Ty = Vgaes @A ol o af) (4.6)

2

where x;, are the observed values of the deviation from roundness £ We start
out again from the relation for the control limit
(4.7)

T(.J'),rruﬂl.,d = Gy . r(j),l,n,a

the validity of which we can prove as in (4.2), where 7y, ,., =270
| ' Gy

The values 7y, .., for j=1,2 are tabulated (Tab. 1) on the basis of the
relation
P ('le)" < v/r) = IFE(.’G,U (n - 7 + 1, .7) ’ (‘18)

where I, (a, b) is the Incomplete Beta-Function and F(z, 1) is the distribution
. &h . .
function of 2. The value of the parameter o, may, for sufficiently large =,
o

be estimated by the unbiased estimate
L0 N
E(ogy lo=1)~
using the relation (6.8). If we estimate o, on the basis of the specified percent-
age defectives 100¢ 9%, then we have

T?
r(j),o'q,n,qx == 7E7 7(5),],1."0. =

€

DE LTS, (4.9)

where the coctficient D¥ = Z@ L fop j == 1, 2 is tabulated in Table 4. From
Vs

the equation

B B
- Emmme—
P(Q(]) > r(j),cru, n,oa) =P (.[/ 2 > ]/7'(.7‘),%. n,a)
B__
it follows, that for values of the statistic /gy, (see (4.6))
1
l/r(f) = [VI!'F.I*J'(CC,/]}’ wgv R 15)? = I])I"'l",'i ('T'll Los +oey xn) H (410)

113



which are thus caleulated directly from the observed values of the deviations
from roundness &, we obtain the control limit

PR _
S(J')»U'a,rl;a - ]//00 - 7(1’),1,%.1 N

Inserting (4.9) we obtain
ﬂ.-——
8, 00,0, « —"VD;k /A

The advantage of this method consists in the fact that the deviations
from roundness are plotted on the control chart direct in the technical units
and that the calculation of values (4.10) is quite simple. On the other hand
the change in the value of the parameter § evokes the change in the control
limit.

According to the results in section 6, the well known statistics o, or g,
B 8

— 1 . . .
(V@m or [/ E'(z)) for sample sizes n = 5 or 10 respectively are very convenient
for practical purposes.

Table 1

n “ e T(1)lenn T(2)Laroex
| j x = 0-01 & = 0-05 & = 0-01 x = 0:05 x = 0-01 & = 0:05
Lo 2-802 2:099 5-700 4077 2-833 2:000
" 2-511 1-938 5-987 4-363 3-174 2.397
| 5 2321 1-831 6211 4585 3-429 2578
L6 | 2185 1-752 6-392 4766 3-635 2769
[ 2-081 1-692 6-547 4-920 2-802 2033
s L 2000 1-644 6631 5053 3934 3-075
Lo 1-934 1-604° 6798 5170 4-087 3195
| 10 1-878 1-571 6-904 5275 4212 3-309
l
Table 2 Table 3
T
| £ l ke | n & = 0-005 & = 001
l ‘ x = 0-01 x = 0-05 & = 0-01 ® = 0-05
[ 000500 | 520832 1 3 0-396 0-608 0-456
! {oevson 4 0-366 0545 0-421
L0010 00 460517 | N o o it
0-020 00 3-912 02 5 . 346 0-50 0-39
. o 6 0-412 0-331 0-474 0-380
0-049 79 3-000 00 > ;i ; oo
; S Uy o 7 0-393 0-319 0-452 0-367
0-050 00 | 2.995 73 i : e
‘ o : X 8 0-377 0-310 0-434 0-357
013534 | 200000 | ! : )
| 036788 | 100000 | 9 0-365 0-303 0420 0-348
| ! | 10 0-855 0-296 0-408 0-341
1 { i
‘. 1 |
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Table 4

5. LIMITING DISTRIBUTION OF THE STATISTIC o(i,,)

{ D,* D,*
n e = 0-005 e = 001 ¢ = 0-005 g = 0-01
x =001 =005|a=001]c=005 0 =00l|x=005] x =001 ! x = 0-05
3 | 1.076 0-770 1238 | 0885 0-535 0-377 0-615 0-434
4 1-130 0823 1-300 0-947 0-599 0-439 0-689 0-505
5 \ 1.172 0-865 1-349 0096 0-647 0-486 0-745 | 0559
6 | 1.207 0-900 1.388 1.085 0-686 0- 0.789 0-601
7 ‘ 1236 | 0-929 1-422 | 1068 0-718 0-554 0-826 0-637
8 1261 | 0954 1451 | 1097 0-742 0380 0-854 0-668
9 1.283 0-976 1476 14123 0771 0-603 0-887 0-694
10| 1303 0-996 1499 | 1146 0-795 0625 | 0915 0-719
‘ r | o 3 ol L
Takle 5
Values h3(p, q)
”\"—;”*‘ T h ‘ .
}- .9 4 -5 -6 7 .
AN 01 0 -3 ' 0-4 0-5 0-6 07 0-8
— \ SR e o S S S, — r——
- ‘ J ‘
01 0-543 0-494 0-442 | 0385 0-324 0-256 0-181 | 0096 |
. _ _ | ‘ |
0-2 0-582 0-512 0-439° | 0362 | 0-280 0192 0097
03 0-543 0-462 0-377 0-288 0-196 0-099
0-4 0473 0-384 0-292 0-197 0-100
L 05 0-389 0-205 0-198 0-100
[ o
{06 0-296 0-199 0-100
I
l‘ 0.7 0-199 0-100 |
“l 0-8 0-100 ‘
|

In the next section we shall use the limiting property of the statistic (3.1),
which is stated in the following

Theorem 1: Let i, and j, depend on n so, that

lim j, =

N—rc0

lim
N—>0

(e Ly —§) =0

(5.1)
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Then the statistic o(¢,],) = & 1iy — Sfi,;n) has the asymptotic normal distribu-

n— iy n -1,

’ 1 1
: 7 S ! 2 -
tion N (O‘ s o 92) .
ety

~ ¢
§=In

Lemma: Let 5, 1y, ... 1, ... be mulually independent random variables
equally distributed with mean value a, finite variance b > 0 and the distribution
Junction. F(x).

We introduce the relation J
7771 - Z {”ns ns‘ 2 Cns > 0 M

If, for m — oo,

2
ll’“d‘( C71 o
Z8EN
w0 (5.2)
~2
§=1
- . n
then the random variable v, has the asymptotic normal distribution N (q S
n 8=1
25 % 2
b* Z Cns)-
s=1

Proof. The random variables

l
]

/
Nns = CnsMs » s=12,...,n,
n=12 ...

. . )
have the mean values ac,,, the Varlfmceq b2, and the distribution fynctions

.F(cx) The Lindeberg condltlon [8] has, therefore, for #* = Z Mg the form

L, 0, where

4

/ 1< s %)
,,4” — ]—_— Z f (13 - CL(,,”.) dF (a) =0 , T > 0 N

s=1

\.

1% — atye| > 7By

and B} = DnF) = bzzc Substituting for B, we obtain by simple ¢alcql-

ation the relation

7

' 1 : -
L, = — z c2, f (@ — a)? dF (z) =
bzzcm an\.x—“fé’m[xa
<L 2 — a)? AP (%)
= 2 (x—a :
iw—-al>1b /@:s,,,.
125 ons
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Now, if (5.2) holds, then

Ise,
S s o ,

max ¢

ns
Igssn

/)

and as n tends to infinity (the variance b? is finite) we have

(x —a)*dF(x) = 0.

Ve,

max €,

|@--a| > b

Thus the lemma is proved.

Proof of Theorem 1. The statistic (3.1) can be written [2]

N, fﬂ
Olingy) = Z N (5.3)
34y
where the & have the distribution (1.2). If we put 9, =&, a =b=0> 0
and

1 . ; .
C,s=—TForj, =s=n—1
b s

J e = — N3
= 0 otherwise ,

then the condition (5.2) has the form

1
I 5
s e— = 0. (5.4)
1
2
§=7,
But
1 1 i
Qo in in o
n "En = n in I 1 1 -
1 1 el
o de nmAL—,
Z o ? se+1) 7 (5.5)
n-+1—1, 1 1

= — -+ —=

AR T SR AR B

50 that (5.4) really follows when n — co from (5.5). From (5.3) we then have,

i, .
.. 1 . . ar e s
that the mean value E(0(2,5,)) = ¢ z - and the variance D*(p(i.j,)) =
. $=dp g

n—iﬂ. 1

= ¢* Z “. thus proving Theorem 1.
e
83y,
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6. ASYMPTOTIC RELATIVE EFFICIENCY OF THE STATISTIC g,

From the point of view of the application (section 4) it is important to
select 4, and §, so, that we obtain a test with as large a power as possible. Let
us find the asymptotic solution when n — oo, which is a guide to the solution
for small n occurring in practice. We shall let the alternative hypothesis approach
the null hypothesis as n — oo in such a way, that the power converges to a
number < 1, thus avoiding the convergence of the power to 1 as » — <o and
hence the vanishing of the difference between possible tests.

Let us assume, that for n = 1, 2, ... we have the alternative hypothesis

d
01y = Op + 0 dy >0, (6.1)
In

and that we wish to test it by the test (we denote it as Test 1) with the critical
region

Q(zn]‘n) - Efn vl-dy) T 5?1‘,,) > 6l(ny Yns jm C‘) ) (62)
where ¢,(n, ¢,, 7, &) is selected so that the level is equal o.

Theorem 2. If

lim 2% =g, lim 2 =p, (6.3)

neson M N—sc
and if (5.1) holds, then the power of Test 1 under the alternative hypotheses (6.1)
converges to the number
1—7¢
d lg Tp
— i, — L S K
-2 l»p-q)-% ’ (6.4)

@ —(;0 . (” -
q(1 — p)
where @ is the standardised normal distribution function and t, the solution of the
gquation 1 — d(t,) = x. The expression (6.4) is maximal for p = 0, ¢ = 0.203 ...

Proof. First of all the choice of o does not effect the statistic £ i,E( i)

D(0(:,1.)) ’
so that according to Theorem 1 the statistic g(;;,) has under the hypothesis

" =iy n=i,
. e . . 1
{6.1) the asymptotic normal distribution N(Gm Z —, o2 Z -8—2) and as
S=dy 8 S=Jn
n — 20 we have
e (n,%,,7,, ) —E(o;i4] 0 :
1,( ._’_,!’,7,'-?_.,) _,,,._((’Kin?n)iw?) — 1t . (6.5)

! D(Q(;in‘) | 99)
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Now

IimP {Q(inin) = Cl('I’L, in: jn: [ l Uln} =

-0

N> 00

= limP {Q(’injn) - E(Q(irzfn) [ 0"lu) - €y — E(Q(i"i"_)_[_f_)-{’l) [ . }
D(o(1,3; | 010) B(0¢,5, | 012) Lr

— lim [1 @ (Cl_____l_i_(g(_infn) ‘EM))] — 1 — G’)(lim CIE(Q“?”M!UL?)) -
— D(0¢i,5,) | 012) nsw P05 | 010)

=1— [Iim ('?((Qﬁm) 1 oo) €1 — E(ow,im]00)

OGiwiw | 1) P(0in | 00)

T E(0ci,50 | 70) — E(00i,90 | Gn))] .

M0

(6.6)
D(Q(infn) | 12)
The sums in the expressions for the moments
{ R Ny 1 n—iy
E(ouim |0) =0 > 50 Do o) =0 D> =, (6.7)
S In NEETA

can be suitable modified. Using the Euler-MacLaurin sum formula for the
function f(x) = x* we have the relation

ny Ny Ny
1 —% 1 ! 1 kL P —(&+1)
P r (1+*‘WTW“¥ W(z) Cax,
¢ =iy Ity

Sty 7y Ty

where we shall assume, that the integers &k = 1 and 0 << n; < n,. The function
P (x) is determined as follows (m is an integer):

1
Pix)=m —zx + 5, m<x<m 41,
2

=0, x=m

so that |P,(z)| < = for all z. Therefore

Ty
? P (x) k1) da | << .M..L dax < ,-1__
‘ ! ) okt = 2enk’

DO}

7y 7y
thus -
1 1
z;: — dw 4 &
é‘—«.‘nl ,nl
where
. 3 1
ke
el <5 2
1
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Inserting this result in (6.7) we have

E(0(iin | 0) = 0 (lg ?L?T—z-"- + 8;“) ;

o l (6.8)
n-1, —q,
T Eﬁf’) ,

r]m — l?i)

D(0(i,i, | 0) = o (

3 1 . . L .

where |e] < 3 Using this relation in (6.6), where we insert also the
n

alternative hypothesis (6.1) and make use of the limits given in (6.3) and (6.5),

we obtain (6.4). The expression (6.4) becomes a maximum, when the function

1—p) b 1-—p
h(p, q) = (,,;4#) gL 6.9
_(pq)' 1-p—q)% (6.9)
is maximal. First of all the function Z(p, ¢) has no extreme values for 0 <

Zp<1l—gq< 1 Nowlet p = p;; then the equation 4 h(py, ) = 0 may be

dg

written in the form

~ 2(1~i) .
Vg = € e
We then find ‘
v, — 2P0 4990
q

— Po

. ~ 1 .
The function A(py, g) has thus a maximum ¢, = , which increases

with decreasing p,, so that it is largest for p, = 0, i. e.
- 1
Go = — = 0.203 ...
0 'Uq
Thus Theorem 2 is proved.

We now compare Lest 1 with the uniformly most powerful test. Therefore
we use the alternative hypothesis
ds
m’
and we shall test it by the uniformly most powerful test (we denote it as Test 2)
with the critical region

Oy = 0y + dy >0, m=1,2,..., (6.10)

1 m
o Z EB > cy(m, ) .
=1

The asymptotic power of Test 2 is obtained in a way similar to that used in
Theorem 2 in the form

d, '
1-@(;1 »«(70). »(6.11)
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jomparing (6.4) and (6.11) we see, that Test 1 has the same asymptotic
power with respect to the alternative hypothesis (6.1) as Test 2 with respect
to the alternative hypothesis (6.10), when (see (6.9))

(gﬁ—): R(p, q) .

The expression h2(p, q) is the asymptotic relative efficiency (some values
are given in Table 5), because if

m o (do)
no \d,)”’

10—

o8& >

3 =
o

N/
/

I3 26, 38, <8, 5¢,

Fig. 3. The power curves of the Test 1 and 2.
7

4
1= M3 5005 2— Migg,s 0.05;10); 3 — M3 > &6 0.05); 4 — M(oq): 0.05; 5) .
key =1

then the alternative hypotheses (6.1) and (6.10) are equivalent and Test 1
for the sample size n has the same power as Test 2 for the sample size m,

. . ™m .
i. e. the fraction — states to what number we could reduce the number of
"

observations if we used the Test 2 in place of the Test 1.

From Theorem 2 and (6.9) it follows, that the largest asymptotic relative
efficiency equals £2(0; 0.203 ...) = 0.647....,1i. e. when Test 1 has the critical
region (6.2) in the form

0 = &y i sy > (0, Jny &), Ju A 0.2030 .

We use this result as an approximation for small m and ». Since m, n and j
are integers, we shall proceed as follows: We start with the sample size n and
put -

j = [0.203n] ,
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where [2] is the largest integer = x, and
m = [0.64Tn]* ,

where [2]* is the smallest integer = x. As we have experimentally ascertained,
we obtain by this procedure the best agreement between the power curves
of the two tests for small sample sizes. The power of Test 1 may be written
(see sections 3 and 4)

M(oiy; o, 1) = P(@(j) = Ty oo n, o o = kay), (k> 1)

and the power of Test 2 equals (see sections 2 and 4)

1 m 1 m
— 8. = . 6~ _— — I  ~ )

In this way the power curves of both tests were obtained as shown in Fig. 3

4
for the pairs [M(Q(U; 0.05; 5), M (71125,{{; 0.05)] and [M(g(z); 0.05; 10),
1

7
1 . ‘
M(7 E &4 0.05}] . From the course of these curves good agreement is evident
1

thus indieating the relatively high efficiency of Test 1 (using the order statistic
é&fn i+1)) even when using small samples.

7. CONCLURSION

On the basis of tests performed on antifriction bearings it has been verified,
that the distribution (1.1) is a suitable model for various deviations from
geometrical shape. For these cases the coefficients for determining control
limits for the statistical quality control of out-of-roundness are given. The
detailed quality control procedure is omitted, since it is analogous to known
methods of control by variables. Application of the method presented here
together with that proposed by B. PARDUBSKY [6] makes possible statistical
quality control in the wide field, where deviations from geometrical shape
of precise machined parts have to be restricted to a minimum.
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Souhrn

STATISTICKA REGULACE ODCHYLEK NEOKROUHLOSTI
TVARU SOUCASTI

VoapiMir KLEGA
(Doislo dne 27. bfezna 1958.)

Na zékladé experimentilniho materidlu lze piedpoklidat, #e odchylka
neokrouhlosti £ se #idi Weibullovym rozdélenim (1.1} s parametry o a 8, z nichz
p se bthern vyroby neméni. Prekroteni horni mezni odchylky neokrouhlosti
tvaru T, odpovida alternativa H, : o > g, proti nulové hypotéze H,: o = o,.
K testovéni nulové hypotézy jsou navrizeny dva testy: stejnomérné nejmo-

”

v . L 1 . i
hutnéjsi test (1) pomoci statistiky EZSQ a test (2) pomoci rozpéti o ==
k=1 .
= Ef}n,fl,,,-) — Ef,,-) mezi j-tou nejvétdi a i-tou nejmendl hodnotou v uspora-

daném vyberu &, ..., &
Pro aplikaci testu (1) je vhodné uziti kritického oboru

k-1
(koeficient D je tabelovan v tab. 3) a pro aplikaci testu (2) uziti velmi jedno-
duchého oboru ‘

b P
Vewn = &uias = VDF T, j~ 0.203n

(koeficient D} je tabelovan’ v tab. 4), kde ¢ je povolené procento zmetki.
V souvislosti s volbou kriteria (2) jsou dokdzany dvé véty:

Véta L. Necht' i, a j, zdvisi na n tak, Zelim j, = lim (n 4+ 1 — 4, — §,) == oo.
N—ro0 'Il-‘)‘:}c

Potom md statistika o, , = asymptoticky normdlni rozdélent

n*inl n—iy 1
N(O’ Z—, a2 Z?)
2 8 8

$=4dn S dn



Véta 2. Je-li

: ‘VI M /L‘H

lim 22 =q, lim - ==

n—saw T n—sw N
a je-li splnéno (5.1), pak mohutnost testu pomoct ,;, PFt alternativich (6.1)
konverguje I islu (6.4), kde @ je normovand normding distribuéni funkee a t, je
fedentm rovnice 1 — P(t,) = x. Vijraz (6.4) dosahuje maxima pii p =0, ¢ =
= 0,203 ...

Pesome

CTATUCTUYECKUI KOATPOJb OTHJIOHEHNNI OOPMDI
HOETAJEN OT OKPYHIHOCTHI

BIAINMHUP KJIETA (Vladimir Klega) .

(Mocrynmio & peparumio 27/11T 1958 r.)

IMa ocroBanum OMEITOB MOM{HO IPEJUTOIATarh, YT0 OTKIOHeHUe GopMbl & pac-
npenerniero 1o saxouy (1.1) (WEIBULL) ¢ mapamerpamu ¢ u ff, u3 KOTOPEIX  He
U3MCHAETCA B TCUEHMH NPOMSBOCTBA. 1IpCBBIMEHHI0 BEPXHOIoO MPEIEITLIIOrO
OTKTOHEHNsI JOPMBI COOTBETCTBYCT abTepHaTURHAA THHOTesa H, @ 0 > g4 wpo-
THB HYNCBOH rumotess ¢ = o, H mpoBepke 1IyneBoiil rimoressl NpemioKe-

HBL IBa KPHUTEPWs: PaBHOMEepPHO Haubosice MOIDHLUT kputepuii (1), monnsyio-
n

AY

UTHCS CTATACTHIROM - &8, m xpnrepmit (2), HOJNB3YIONIIHACS PA3MAXOM ;) ==
n ’

k-1
= 5/31 legy — éﬁ) Merny (n -+ 1 — J)-BIM 7 -BIM WjlcHAMEI BapHAI{MOLHOIO Psaja
&8 éﬁ Sﬁ
S1r 525 c s s Spe

K npumencumo gpurepna (1) yootua kpurudeckas obIacts
1 n
\
= > &> prt
7
. k=1

(wosdepumuenr 1) rabGemuponan 1 1a6. 3), a k npumMencuwo Kpurepus (2) yIooma
O¥EeHb IpPocTas 0BJacTh

s 8
l/g(oj) = ‘S(rri'l-i') > VD; . TE , j AR 0,2037&

~ E3 o
(wosdgduunent DT rabemmposai B Tal. 4), rjie ¢ — A03BOTCHALIT TPOLEIT Gpaka.
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B e¢Basn ¢ nudopoM kprrepnst (2) TOKa3annl cac yonpie TCoPeMD:

Teopema L. Mycme i, v j, sasucum om n mak,wmo lim j, = lim (n + 1 —
Ny O Nn—0

7 y — ARy 1 -~ i ¢ g 4 -
— i, — Jn) = 0. T0eda cmamucmuria i) pacnpededenta RO ACUMIINOIMU
UCCKT HOPMAABHOMY SAKOTY

3

5y s=1dp
Teopema 2. Ecan
lim » = g, lim " =p
N—s00 G Nn—>aw T

u ecan eunoaneno (5.1), mo mownocms kpumepua o 5 049 AABINCPHATUCTIOTL
eunomeswvr (6.1) cxodumes & wucay (6.4), 20e @ — HOPMUPOEANTIAL HOPMALGILAL
Pymkyus pacnpedesennus u t, ennosniem paselicmeo 1 —— d(t,) = «. Bupa-
acenue (6.4) marcumansno, koeda p = 0, ¢ = 0,203 ...
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