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Following I. Chajda [1] by a diagonal on an algebra S we shall mean a reflexive
and compatible binary relation on S. The set Ref(S) of all diagonals on S forms
a complete lattice with respect to set inclusion. By a quasiorder on S is meant
a transitive diagonal on S. Analogously, the set Qua (S) of all quasiorders forms
a complete lattice with respect to set inclusion but Qua (S) is no sublattice of Ref (S)
in a general case, see [2].

The aim of this paper is to describe all varieties of regular *-semigroups whose
lattices of all diagonals (quasiorders) are modular, distributive and boolean.

Recall that a regular *-semigroup (see [3]) is an algebra (S, -, %) where (S, ) is
a semigroup and * is a unary operation on S satisfying the following:

(l) (-\'*)* =x, x=xx*x and (xy)* = y*x*.
By #°(i = j) we denote the variety of all regular *-semigroups satisfying the identity

i = j. Terminology and notation not defined here may be found in [4] and [5].
Let S be a regular *-semigroup. For M, N € S x S we put

MN = {(ab, cd); (a,c)e M, (b,d)e N},
M* = {(a*, c*); (a,c)e M},
M = {(c,a); (a,c)e M} .

If M = {(a,c)} or N = {(b,d)}. then we simply write M = (a,c) or N = (b, d),
respectively. By a diagonal A on S we shall mean a reflexive regular *-subsemigroup
of the direct product S x S, i.e.

(2) idjc 4, AA< A and A*c 4.

By Ref(S) we denote the lattice of all diagonals on S with respect to set inclusion.
Denote by v or A the join or meet in Ref(S), respectively. The meet evidently
coincides with the set intersection. For M < S x S we denote by R(M) the least
diagonal on S containing M. It is easy to show the following:
(3) (x, y)e R(M) ifand only if

X =XXy...X,, and y =y, y,... 0,

where either (x;, y;,)eM or
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(xf,yf)eM or x;,=y; for
i=1,2,...,m.

(4) Av B=R(AUB) for A,BeRef(S) .

It is very easy to show that the mapping 4 — 4 on Ref (S) is an involution lattice
automorphism on Ref (S), i.e.

(5) A=A, AVB=AVvB and AAB=AVvB.

for any A, Be Ref(S). Evidently 4 = A4 if and only if A is a tolerance (symmetric
diagonal) on S. It follows from (5) that the set Tol (S) of all tolerances on S is
a sublattice of Ref(S).

A transitive diagonal on S is said to be a quasiorder on S. The set Qua (S) of all
quasiorders on S forms a lattice with respect to set inclusion but Qua (S) need not
be a sublattice of Ref(S). It is clear that Con (S) = Tol (S) n Qua (S) is the lattice
of all congruences on S. We have the following diagram:

Ref (S)
sublattice , ¢ \subset
~ N
(6) Tol (S) " Qua (s)
N A
subset\l, “sublattice
Con (S)

Let us note that in [6] there are described all varieties of regular *-semigroup
whose tolerance (congruence) lattices are modular, distributive and boolean. In fact
this paper is a continuation of [6].

Theorem 1. The following conditions for a variety ¥~ of regular *-semigroups
are equivalent:

1. v < W (xx* = yy*).

2. Con (S) = Ref(S) forall Sev".

Con (S) is a sublattice of Ref. (S) for all Se ¥".
. Con (S) is a sublattice of Tol (S) for all Se ¥ .
. Qua (S) is a sublattice of Ref(S) for all Se v .
. Qua (S) is a sublattice of Tol (S) for all Se ¥".
. The lattice Qua (S) is modular for all Se ¥ .
. The lattice Con (S) is modular for all Se ¥".

Proof. 1 = 2. Suppose that Se # (xx* = yy*). We shall show that Ref(S)
< Tol (S). Let A e Ref(S). If (x, y) e A, then by (1) and (2) we have (y, x)
= (yy*y, xx*x) = (xx*y, xp*y) € A. It follows from Theorem 1 of [6] that Tol (S) =
= Con (S) and so Ref (S) c Con (S). According to (6) we have Con (S) = Ref(S).

2= 3,4, 5and 6. It follows from (6).

4 or 5 or 6 = 3. It is clear.
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3 = 1. According to (6), we obtain 3 = 4 and by Theorem 1 of [6] we have 4 = 1.

1 = 7. Suppose that Se # (xx* = yy*). It follows from 1=-2 and (6) that
Qua (S) = Con (S) and so by Theorem 5 of [6] the lattice Qua (S) is modular.

7 = 8. See (6).

8 = 1. Apply Theorem 5 of [6].

Theorem 2. The following conditions for a variety ¥~ of regular *-semigroups
are equivalent:

1. ¥ < #(xpy*x* = xx*).

2. The lattice Ref (S) is modular for all Se ¥ .

3. The lattice Tol (S) is modular for all Se ¥ .

Proof. 1 == 2. Suppose that S e # (xyy*x* = xx*). It is easy to show that

(7) X ex* = xx*

for every x € S and every projection e of S (i.e. e = €* = e*).
Let A, B € Ref (S). We shall prove that for every projection e of S we have

(8) AB = A(e,e) B,

(9) (e, e) A(e, €) = (e, e) A(e, e) ,
(10) (e, ) AB(e, e) = (e, e) BA(e, e) ,
(11) ABAB < AB.

Identity (8). Suppose that (a, c)€ A and (b, d) € B. There by (1), (2) and (7) we
have (a, c) (b, d) = (a, c) (bb*c*c, bb*c*c) (e, e) (c*c, c*c) (b, d) € A(e, e) B. Conse-
quently AB < A(e, e) B < AB.

Identity (9). Assume that (a, c¢)e A. According to (1), (2) and (7), we obtain
(e, €) (a, c) (e, €) = (e, €) (ce, ce) (c*, a*) (ea, ea) (e, €) € (e, e) A(e, e). Thus we have
(e, ) A(e, e) < (e, €) A(e, e). Analogously we can show that (e, e) A(e, e) <
S (e, e) A(e, e).

Identity (10). Let (a,c)e A and (b, d) e B. By (1), (2), (8), (7) and (9) we have
(e, ) (a, c) (b, d) (e, e) = (e, e) (cde, cde) (d*, b*) (c*, a*) (eab, eab) (e, €) € (e, e) .
.B A(e, e) = (e, e) B(e, e) A(e, e) = (e, e) B(e, e) A(e, e) = (e, ) BA(e, e). Thus we
obtain (e, e) AB(e, ) < (e, e) BA(e, e) and analogously we can get (e, ) BA(e, ) <
c (e, e) AB(e, e).

Inclusion (11). It follows from (8), (10) and (2) that ABAB = A(e, ¢) BA(e, ) B =
c Ale, e) AB(e,e) B < AB.

Suppose that 4, B, C e Ref(S) and A < C. First we shall show that

(12) AB A C < A(BnC),

(13) BA nCc(BnC)4,

(14) ABANC < A(BN C) 4,

(15) BAB~C < (BnC)A(Bn C).
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Inclusion (12). Suppose that (x, y) € AB 0 C. Then by (8) and (2) we have (x,») =
= (a, c) (eb, ed), where (a, c) € A, (eb, ed) € B and e is a projection of S. It follows
from (7) and (2) that (eb, ed) = (ea*e, ec*e)(x, y)e AC < C.

Inclusion (13). This is dual to (12).

Inclusion (14). Assume that (x, y) € ABA n C. Then by (8) we have (x,») =
= (ue, ve) (a, ¢), where (ue, ve) € AB, (a, ¢) € A and e is a projection of S. According
to (7) and (2) we obtain (ue, ve) = (x. y) (ea*e, ec*e) e CA < C. It follows from (12)
that (ue, ve) € A(Bn C) and so (x, y) € A(Bn C) A.

Inclusion (15). Suppose that (x, y) € BAB n C. Then we have (x, y) € (b, d) AB
where (b, d)e B. Using (1), (2) and (7) we get (xx*, yy*) = (bb*, dd*)e Bn C.
It follows from (1), (2),(7) and (11) that (x, y) = (xx*e, yy*e) (ex, ey) € (xx*e, yy*e) .
. ABAB < (xx*e, yy*e) AB, where e is a projection of S. Consequently by (8) we
obtain (x, y) = (xx*, yy*) (eu, ev), where (eu, ev) € AB. According to (2), we have
(eu, ev) = (ex, ey) € C and so, by (12), we get (eu, ev) € A(B n C). Therefore (x, y) =
= (xx*, yy*) (eu, ev)e (B n C) A(Bn C).

Finally, it follows from (11), (12), (13), (14), (3) and (4) that (A v B) A C =
=(AUBUABUBAU ABAU BAB)n C < AU(BNC)u A(BNC)u(Bn C).
.AUABNC)AU(BNC)ABNC)=AVv (BAC)c(AVv B)v C.

Therefore the lattice Ref(S) is modular.

2 => 3. This follows from (6).

3 = 1. See Theorem 4 of [6].

Theorem 3. The following conditions for a variety ¥~ of regular *-semigroups are
equivalent:

1. v < #(xyx* = xx*).

2. The lattice Ref(S) is boolean for all Se ¥ .

3. The lattice Tol (S) is boolean for all Se€ ¥ .

4. The lattice Ref (S) is distributive for all Se V.

5. The lattice Tol (S) is distributive for all Se Y.

Proof. 1 = 2. Suppose that S e # (xyx* = xx*) € #(xyy*x* = xx*). We have

(16) exe =e, x=xex and xyz = xez

for any x, y, z€ S and each projection e of S. Indeed, it follows from (7) and (1)

that xex = xex*ex = xx*x = x and xvz = xexyzez = xez.
Let 4, B, C € Ref (S). We shall show that

(17) ABC = AC,

(18) ABAC =(AnC)(Bn C).

Identity (17). According to (8), (16) we have ABC = A(e, ¢) B(e, €) C = A(e, ¢) .
.C = AC.

Identity (18). Suppose that (u,v)e ABn C. Then by (8) we obtain (u,v) =
= (a, c) (e, ) (b, d) where (a,c)e A and (b, d)e B. It follows from (16) and (2)
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that (ae, ce) = (aebe, cede) = (ue, ve) e A n C and analogously (eb, ed) = (eu, ev)
€ Bn C. Hence we have (u,v) = (ae, ce)(eb, ed)e (A n C)(Bn C). Therefore
ABng(AmC)(BmC)g ABn C.

Accordingto (3),(4),(17) and (18), we have (4 v B) A C = (AU BuU AB U BA)n
NC=(ANC)UBAC)U(ANC)(BAC)U(BAC)(ANC)=(AArC)v
v (B A C).

Therefore the lattice Ref(S) is distributive.

Now we shall prove that the lattice Ref(S) is boolean. Let 4 € Ref (S). Choose
a projection e of S and put B = R((Se x Se)\ 4).

Let u, ve S. According to (1) and (16), we have (u, v) = (ue, ve) (u*e, v*e)*. It is
casy to show that (ue, ve), (u*e, v*¢) € A U B. By (3) and (4) we have (u,v)e A v B.
Therefore A v B=S x S.

Assume that A A B + id,. Then there exist u, v e S such that (u,v)e A n B and
u # v. According to (3) and (16), we have (u, v) = (a, c) (e, €) (b, d), where (a, c),
(b,d)eid;, U ((Se x Se)N A) U ((Se x Se)\ A)*. If (a,c)e(Se x Se)\ A, then by
our assumption we obtain (a,c) = (ae, ce) = (aeb, ced) (e, e) = (u, v) (e, e) € A,
which is a contradiction. Thus we have (a, ¢) ¢ (Se x Se)\ A. If (b, d)e((Se x
x Se)\ A)*, then (b*, d*)e(Se x Se)NA and so by our assumption we have
(b*, d*) = (b*e, d*e) = (b*ea*, d*ec*) (e, e) = (u,v)* (e, e)€ A, a contradiction.
Therefore (b, d) ¢ ((Se x Se)\ A)*.

Consequently we have the following possibilities:

Casel.a = c.Then b + dandso (b, d) e (Se x Se)\ A.Hence by our assumption
we have (u, v) = (aebe, aede) = (ae, ae), a contradiction.

Case2. b = d.Thena #+ c and so (a, ¢) € ((Se x Se)\ A)* < eS x eS. Therefore
(u, v) = (eaeb, eceb) = (eb, eb), a contradiction.

Case 3. a + cand b # d. Then (a,c)eeS x eS and (b, d) € Se x Se. Thus we
have u = aeb = e = ced = v, a contradiction.

Therefore A A B = id,. Consequently the lattice Ref (S) is boolean.

2= 4. Itis clear.

4 = 5. This follows from (6).

5= 1. See Theorem 6 of [6].

2 = 3. Suppose that the lattice Ref (S) is boolean.
According to (6), Tol (S) is a sublattice of Ref(S) and so the lattice Tol (S) is dis-
tributive. Let A € Tol (S). Then there exists B € Ref (S) such that 4 A B = id, and
Av B=S x S. We have 4 = 4 and so by (5) we obtain 4 A B = id; and 4 v
v B =5 x S. Therefore B = BeTol(S). Consequently the lattice Tol(S) is
boolean.

3 = 5. This follows from (6).

Note. Let be a variety of regular »-semigroups. If the lattice Qua () is distributive
for all S € ¥7, then ¥~ is trivial.
This follows from (6) and from Theorem 7 of [6].
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