Czechoslovak Mathematical Journal

Petr Gurka; Bohumir Opic
Continuous and compact imbeddings of weighted Sobolev spaces. III

Czechoslovak Mathematical Journal, Vol. 41 (1991), No. 2, 317-341

Persistent URL: http://dml.cz/dmlcz/102466

Terms of use:

© Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/102466
http://dml.cz

Czechoslovak Mathematical Journal, 41 (116) 1991, Praha

CONTINUOUS AND COMPACT IMBEDDINGS
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This paper is a direct continuation of [4], [5] where fundamental concepts and
notation were introduced. Continuous and compact imbeddings of weighted Sobolev
spaces into weighted Lebesgue spaces on unbounded domains are investigated.

11. PRELIMINARIES

In this section we shall prove some auxiliary assertions. The main result will be
a covering lemma, viz. Lemma 11.3.

11.1. Lemma. Let neN, I = (n, +oo), let r:1 — (0, +00 be a continuous non-
decreasing function such that

(11.1) lim[x — r(x)] = 4+, limr(x)>0.

X+ o0 x-=n.

Then there exists an increasing sequence {x;};~, < I with the following properties:
(11.2) I=UI, where I, = (x,— r(xy), x, + r(x));
k=1

(11.3) Lnl,=9 if |k—1>1.
Proof. Let us put r(n) = lim r(x) and x, = n. If the points X, Xy, ..., X, are
x=n-

defined, we choose a point x;4 € I such that

(11.4) Xp = Xpoq1 — H(Xks1) -

(This is possible because the function f(x) = x — r(x) is continuous on {n, + ),

f(x) = x, — r(x) < x, and lim f(x) = +00.) It is easy to see that the sequence
x=>+o

{xi}i=1 possesses the desired properties.
11.2. Remark. Let I, (k € N) be the interval from Lemma 11.1. Then
(11.5) I, = (xk-y, Xit1) - 1)

1) As in the proof of Lemma 11.1 we put Xg = n.

317



Proof. By (11.4) we have x, — r(x;) = x,- and further
xp + H(%) = Xguq — T(xeq) + F(XR) £ Xeny s
which completes the proof.
11.3. Lemma. Suppose neN, I = (n, + o),
M = {xvs_ RY; |x| > n}.

Let r:1 - (0, +0) be a continuous nondecreasing function such that

(11.6) x — r(x) is nondecreasing on 1,
(11.7) lim [x — r(x)] = +00, lim r(x)>0.
x=+ x—=n-

Then there exists a sequence {Xi}ii=1 = M with the following properties:
(11.8) "M < U B,;, where B,; = B(xy,r(|x]);
) k,i=1
(11.9) there exists a number t depending only on the dimension N such that

Y xs.(z) £t forall zeRY.
k,i=1

For x € R let us denote
1) = (x = (), x + ().
P(x) = {yeR"; |y|el(x)} .
Let M, r and I be the set, the function and the interval, respectively, from Lemma

11.3. Then by Lemma 11.1 there exists a sequence {x;};=, < I such that (11.2)
and (11.3) hold. Further, put

P, =P(x), keN.
The following lemma holds.

11.4. Lemma. If x € P,, ke N, then
(i) B(x, r(|x])) n (R"\ M) = 0 for k = 2;
(i) B(x, r(x)n U Py =0;
JeN,li—k[>2
(iii) B(x, r(|x|)) "M = P,_, UP,_; UP,UP,; UP;. %)
Proof. Let x € P,. As
B(x, r(|x])) = P(|x]),
yeP(x|) < |y| €I(]x]), and
yeRY\M < |y| €0, n),

it is sufficient to prove the following assertion.
2) Here we formally put P;=90 forj= 0.
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If x eI, ke N, then
(11.10) I(x)n<0,n) =0 for k=2;
(11.11) I(x) N U I;=0;

JeN,|j—k|>2
(11.12) Ix)ynIcl_,ul_ VLU, UL, ")
Thus, suppose x €I, k € N. By (11.5) we have
I, (xk—l’ xk+1)
and consequently
(11.13) I, © (X0, Xg41) > I © (X4oy, +0), keN.
Further, we have

(11.14) x + r(x) < Xepq + AXpry) S Xppq + H(Xks2) =

= xk+2¢(xk+2a +00) = U I;, keN;
j=k+3 s
(11.15) x — 1(x) > Xoy — H(Xk=1) = Xy € (%0, X4—2) D 'Ullj , k=4,
j=

Obviously

k-3 ©
(11.16) U I;=Ulju U for k=4,
jeN,li—k|>2 j=1 j=k+3
£
(11.17) U I;= U I; for ke{1,2,3},
JeN,li—k|>2 j=k+3

and (11.14)—(11.17) immediately yield (11.11).
From the relations

I(x)nIcl=UI;
and (11.11) we obtain the inclusion (11.12).
If k = 2 then (11.15) yields

x — r(x) > x5 2 X,
so I(x) < I, which implies (11.10) and the proof is complete.

Proof of Lemma 11.3. By Lemma 11.1 there exists a sequence {X}5= such that
(11.2) and (11.3) hold. It is easy to see that

(11.18) M =UP,,
k=1
(11199 PnP =0, |k—1>1.

Fix k € N. By Lemma 3.3 from [4] (the Besicovitch covering lemma), where we set
A = Py, o(x) = r(|x]) for x e RV, there exists a sequence {x;}{ <= P, with the

3) Here we formally put I;=9forj< 0.
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following properties:

(11.20) P, C'GxB“’ where  By; = B(x, r(|xul)) 5

(11.21) there exists a number © depending only on the dimension N such that
ilx,,“(z) <O forall zeRN.

Now, (11.18) and (11.20) imply (11.8). It remains to verify (11.9).

First let x e M. By (11.18) there exists k € N such that x € P,. Lemma 11.4 (ii)
and (iii) implies that the point x is contained in no ball B(y, r(|y|)) provided y € P;
and |j - k[ > 2. So the point x can be contained only in balls from the system
(11.22) {Bji; i=1,2,...},

where |j — k| < 2 (not more than 5 systems from (11.22) are admissible). By (11.21),
for fixed j, lj - k[ =< 2, the point x is contained in at most @ balls from the system
(11.22). Hence we conclude that the point x is contained in at most 50 balls from the
system {B;; j,ieNj}.

Now let x ¢ M. Lemma 11.4 (i) yields that the point x can be contained only in
balls from the system

{Bui i= 1,2,...} .

Hence at most @ balls of the system {Bj;; j, i € N} contain x. Consequently, (11.9)
holds with 7 = 50.

11.5. Notation. For a domain Q = R" and ne N we set
(1123) @, ={ze® || <n}, @ =int(Q\Q,).

11.6. Lemma. Suppose no € N, I = (ny, +©), r:1 - (0, +0) is a function such
that

(11.24) Hy) S y2, yel.
Let n = n,, B(x, r(lxl)) N Q3 % 0. Then IZI > n for every z e B(x, r(|x])).
Proof. Let z e B(x, r(|x])), y € B(x, r(|x])) n @*". Then

W2 b= by =+l 2 o] = ol > 30 = B,

consequently
|x| > 2n.
Further,

Az = b=zl ) 2 - B =Bl
and the lemma is proved.

320



11.7. Definition. Let I = (n, + ), ne N, r:1 - (0, + o). The function r is said

to have the property ¥(n) (denoted r € ¥(n)) if
(i) r is continuous and nondecreasing on I;
(ii) x — r(x) is nondecreasing on I;
(iii) lim [x — r(x)] = +o0, limr(x) > 0;
x=+ o x=n-
(iv) r(x) £ x[2 for xel;
(v) there exists a constant ¢, = | such that
-~ < ij—’) <c
= ’.(X) = r

for all xelIand all yeI(x)n 1.

11.8. Remark. Let r € ¥(n). Then the following implication holds:

(11.25) xeRY, |x|>n, yeB(x, r(lxl)) , |yl >n= gt a()] <ec,.

12. IMBEDDING THEOREMS — THE CASE 1S p=¢< ®

In this section we suppose that 1 < p < g < . We will study imbeddings of
weighted Soblev spaces into weighted Lebesgue spaces on unbounded domains of

special types.

12.1. Theorem (sufficient conditions for the continuous imbedding). Let Q be
adomaininR",1 < p < q < o,N/qg — N[p + 1 2 0. Suppose that the following

conditions are fulfilled:
D1 There exists noe N such that Q™ = {x e R"; |x| > no}.

D2 WI.P(Q"; v, Ul) G Lq(-Q,,, W) , h g hg .

D3 There exist positive measurable functions a,, a, defined on Q™ and a function

r e V(no) such that for all x € Q™ and for a.e. y € B(x, r(|x|)) we have
(12.1) w(y) =< ao(x),

a,(x) £ vy(y) .
D4 There exists a constant K, > 0 such that

(12.2) vy(x) r77(|x]) £ Ko vo(x) forae xeQ™.
D5 lim &, < o0, where

1/q,
(12.3) o, = sup 45" (x) rVO= (NP I([x])

xeQn a}“’(x)
Then
(12.4) W'H(Q; v, v,) G L(2; w) .
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Proof. Let us denote X = W'?(Q; vy, v,). By [4], Lemma 3.1 (where we put
Q = Q, G, = Q,,, neN)is is sufficient to verify the condition

(12.5) lim sup [u]g 06w < .
n-ow |lullxs1

If we set M = Q™ then by Lemma 11.3 there exists a sequence {x;;}p;=; = Q™
with the following properties:

(126) Q"o Ck ngki s Where Bki = B(xkb r(lxkil)) ;
(12.7) there exists a number t depending only on the dimension N such that
Y xp(z) St forall zeRN.
k,i=1

For n = n, let us denote
H,={(k,i)eN x N; B;n Q3" + 0} .
By Lemma 11.6 we have U B,; = Q" < Q™ and this fact enables us to use con-

(kD)X n
ditions D3 and D4 for points y € By;.

Now, analogously as in the proof of Theorem 2.2 from [4] we get the estimate

(12.8) ]l g,nGuow = 77Kt | x
where K; = K[max (c?K,, 1)]*/? (the number K > 0 is from (3.7)). This combined
with D5 implies (12.5).

12.2. Theorem (sufficient conditions for the compact imbedding). Let Q be a domain
inR¥, 1 <p=<gq<o,Nlg— N[p+12Z0. Suppose that conditions D1, D3, D4
are fulfilled and let

Dz* Wl ’p(Qn; UO’ vl) QQ Lq(Qn; W) s n g nO 5
D5* lim o/, = 0, where o, is defined in (12.3).
Then

(12.9) W'P(Q; v, v,) QQ (25 W) .
Proof. From (12.8) and’D5* we obtain

lim sup  [uflg.o\Gw = O

n=o ||4]l1,p,0swevn =1

and the proof can be completed by Remark 3.2 from [4].

Necessary conditions for continuous and compact imbeddings follow from the
next two theorems.

12.3. Theorem. Let Q be a domain in RV, 1 < p, ¢ < 0. Let the condition D1
and, moreover, the following conditions be satisfied:
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D "3 There exist positive measurable functions &,, 4, defined on Q™ and a function
r € ¥(n,) such that for all x € Q™ and for a.e. y € B(x, r(|x]))

(12.10) w(y) 2 do(x),
é,(x) 2 vy(y) -
D "4 There exists a constant k, > 0 such that
(12.11) ko vo(x) S vy(x) r(|x|) forae. xeQ™.
D*5 lim &, = +o0, where

n—+o0

27 86/%(x) o=+
(12.12) » = Sup a0) r (Ix]) -

Then the space Wo'?(Q; vo, v4) is not continuously imbedded in the space I{Q; w).

Proof is analogous to that of Theorem 2.4 from [4].

12.4. Theorem. Let Q be a domain in RY, 1 < p, q < oo0. Suppose conditions
D1, D"3, D"4 and D"5* are satisfied, where

D~5* lim &Z, > 0, where the number o, is defined by (12.12).

Then the space Wy(Q; v, v4) is not compactly imbedded in the sapce I}(Q; w).

Proof is analogous to that of Theorem 2.5 from [4].

From Theorems 12.1 and 12.3 (or 12.2 and 12.4, respectively) we easily obtain the
following two theorems.

12.5. Theorem (continuous imbedding). Let Q be a domain in R¥, 1 S p<gq <
< o, N[qg — N[p + 1 2 0. Suppose, in addition to D1, D2, that the following
three conditions are fulfilled:

D™3 There exist positive constants ¢y < Cy, ¢; < C, and positive measurable
functions ay, a, defined on Q™ and a function r eV (n,) such that for all
x € Q™ and for a.e. y € B(x, r(|x|)) we have

(12.13) co ag(x) £ w(y) = Cpao(x),
¢y ay(x) £ vy(y) £ Cyay(x).
D™~4 There exist positive constants k, < K, such that
(12.14) ko vo(x) £ v4(x) r77(|x]) < Ko vo(x) forae. xeQ™.
Then W' H(Q; v, v,) Q L(2; w)
(and also WyP(Q; vy, v,) Q LH(R2; w))
if and only if the condition D5 is satisfied.

12.6. Theorem (compact imbedding). Let  be a domain in R", 1 < p < g < o,
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N/q — N/p + 1 2 0. Let the conditions D1, D2*, D~3 and D"4 be satisfied. Then
WP(Q; vy, v,) QC LA(2; w)
(and also WgP(Q; v, v,) QG IH(Q; w))
if and only if the condition D5* is fulfilled.
12.7. Remark. It is easy to see that the conclusion of Theorem 12.5 (or Theorem

12.6) concerning the imbedding W§?(£2; vy, v;) Q L{(Q; w) (or Wo'P(2; v, 1) QQ
QQ I4(2, w), respectively) holds for an arbitrary unbounded domain 2 = RM.

13. EXAMPLES — THE CASE 1< p=< ¢g< o

From Theorems 12.5 and 12.6 we obtain the following examples.
13.1. Example. Let Q = int(R¥\Q), where 0eQ3e%®!, 1 <p<gq< o,
o, B e R. For x € Q we define
w(x) =[x, vo(x) = [x"7P, 0a(x) = [x]".
Then
W@ x| [x") G LA [x[7)
or
wh(@; X777 X)) GG (s [x)
if and only if
q
or

respectively.*)

13.2. Example. Let Q = int (R¥\ Q) where 06 3e %', 1 < p<g < w, a, fe
€ R. For x € Q we define

L vg(x) = vy(x) = lxlﬂ-

w(x) = |x
Then
W@ [ ) G 2 )

W@ x P, [x]) QQ 2@ [x[7)
if and only if

(%
o

0, +1

|
N ™
IA
=z
==z

IR

4) In Theorems 12.5 and 12.6 we put (r) = #/3, tER*.
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or a E +1>0,
p

q
respectively.®)

N N
9 p

If a domain Q satisfies the condition D1, we write Q € D1. If Q € D1 has the cone
property (in the sense of [1]), we write Q € G1.

13.3. Example. Suppose 2eG1,1 < p £ g < o0, «, e R. For x € Q we define

w(x) = e, vy(x) = vy(x) = ¥,

Then
w! ,p(Q; eﬂIXI’ eBIXI) Q EI(Q; eaIXI)
or w! .P(Q; eﬂle, eleI) QQ lf’(.Q; ea|xl)
if and only if
E—é§0,§—ﬁ+1;0
q9 p 9 p
o 2_Poo, NN 5o,
9 P 9 p

respectively.?)

13.4. Remark. Let @ be a bounded domain in RY, 0+ M <« M < &, |[M| = 0.
Let Q be a domain such that @2\ M < Q < &. For x € Qlet us put d(x) = dist (x, M).
It is easy to see that Theorems 2.6 and 2.7 from [4] remain valid with this d(x).
(The proof is quite analogous.) Hence we have

13.5. Example. Let O be a bounded domain in RY, 1 £ p < q < o, a, feR.
Let Q be a domain in R¥, 3\ {0} = @ < &. For x e Q we put

wx) = [x[*, vo(x) = X777 oi(x) = [+

Then
WER(Q; x|, [x]7) G (s [x]7)
or W@ |x77, [xI”) GG (s [%[)
if and only if
2 BN N is0, NoNiiso
9 P 4 p q p
o » BN N oo, NN oo,
9 P 4q p q p
respectively.

5) In Theorems 12.5 and 12.6 we put 7(x) = 1.
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Theorems 12.5, 12.6 and Example 13.5 imply

13.6. Example. Let Q be a domain in RY such that R¥\ {0} < @ = RY, let | =
Sp=q< o,a 8eR. For x e Q we define
w(x) = |x[*, vo(x) = x|"77, vy(x) = |x]°.
Then
wh(Q; [x|P77, [x[f) G (s [x[)
if and only if
« B N N, _o N_N
49 P 49 4 q p
The space W'(Q; |x|%) is not compactly imbedded in L¥(Q; |x|*) for any o, € R.
[Let us remark that in the case Q = RM the spaces Wo(Q; |x|f~, |x[%),

WP(Q; |x|P 77, |x|?) are defined (due to the condition (1.4) from [4]) only for
p—N<pB<N(p-1)]

+ 1

v

0.

For an unbounded domain 2, 0 + Q < RY let us define
(13.1) «a = inf {|x|; xe @} .
If Qe D1, we put
_ fsup{|x]; xeR"\@Q} if Q@+ RY
(132 a= {0 if @=R".

13.7. Example. Suppose Qe G1, ,a>1, 1 Sp<q< o, «f,7,0€R. For
x € 2 we put

W) = [xpTog? [+] . oo(x) = [ 1og? ] 0.(x) = <P log? ]
1. Then
WP(Q; vy, v1) G LH(Q; w)
if and only if

N_Niixo,
q p
and
N N o
BN N ool Thio0, ToSs0
q9 49 4 4 qa pr 4 p q P
IL. Then W'2(Q; vy, v,) QQ LX(Q; w) if and only if
JX—IX+1>0,
q p
and
N N v _ 9
S BN N g BN N g 70
9 p 4q p a9 p 4 p q »p
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14. EQUIVALENT NORMS
In this section we will study equivalent norms on the spaces W},"’(Q; Vg, Vy)s
W'P(Q; vy, v,). We will assume that
1sp< .
The weight functions v; (i = 0, 1) will be radial, i.e.
vi(x) = o(|]x]), xeQ,
with
(14.1) ;€ #W((sa, ©)), i=0,1.
Further, we intrcduce the following notation. If I is an unbounded open interval
in R, then by
(14.2) Wwe(I) [or #w(I)]
we mean the set of all weight functions ¢ € #(I) bounded from below and from above
by positive constants on each bounded interval J < I (or on each compact interval
J < I, respectively).
In the proofs of theorems on equivalent norms we shall use the following lemma,
the proof of which can be found in [6] and in [7].

14.1. Lemma. Let 1S p<g=< 0, —w=a<bsgow, o, e#(a,b)).
Then there exists a constant C > 0 such that the inequality

(14.3) (Ja [u(D)] 2o(r) d1)'/* = C(fa [u'(1)|? 4(r) d2)*/?
holds for all functions
(14.4) ue T (a,b) ={fe AC((a, b)); xlil:1+f(t) = 0}

or

(14.5) ue T ,(a, b) = {fe AC((a, b)); lim f(f) = 0}
x=b—

or

(14.6) uwe T (a,b) = T (a,b)n T ,(a,b)
if and only if

(14.7) BY%(a, b; g, w;) = supb(jf; wo(t) dt)' 4 (% o] 77(1) di)/?" < o
a<x<

or

(14.8) BYYa, b; 0y, wy) = sqpb(jj; wo(t) dD) (% i (1) dt)'"" < o
or

(149)  B*(a, b; w, @) =

= inf max {B}"(a, ¢; w,, ®,), B3¢, b; wy, 0;)} < o,
ceda,b)

respectively. ")

7) The numbers B®4(a, b;-wy, ®;) and BS4(a, b; vy, w,) are defined for a < b by (14.7) and
(14.8). Further, we formally set BY(a, a; 0y, @;) = 0 = B5"1(b, b; g, ®y).
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14.2. Remark. Condition (14.9) is equivalent to the following one (see [3]):
(14.9") B"%a, b; wg, w,) = sup ([ wy()dr)'4.
a<§’<dd<b
- min {(§ 0] 7?(t) d0)""", ([§ 0} 77 () d)1?"} < 0 .

14.3. Theorem. Let Q + @ be an unbounded domain in R¥, Q < RV \ {0}. Suppose
1< p<wand

(1410)  B"P(4a, 005 vo(t) N7, 5,(1) V') < 0 .
Then there exists a constant C > 0 such that
(1411)  [ulonn < CIVE]p 0, Ve WER(@: 00,0, %)
Proof can be done by using spherical coordinates and Lemma 14.1 (for g = p).

In order to derive the analogue of Theorem 14.3 for the space W!'™?(2; vo, vy)
we make use of the following theorem:

14.4. Theorem. Suppose QeD1,1 < p < o0, ¥y, T, € #((sa, 0)). Let there
exist a constant k > 0 and a number t, € (a, ©) such that
(14.12) To(t) 2 k 05(f) t™7 forall t=t,.
Then the set

(14.13) Cas(Q) = {g e C*(Q); supp g = Q is bounded)
is dense in the space W'P(Q; v, vy).

Proof. Let ue W"?(Q; vy, v;). Fix &€ > 0. Then there exists a function
(14.14) u, € C*(Q) n W'(Q; vy, vy)

such that

(14.15)  fu = s 100000 = 82

(for the proof see [2], Section 2). Let f be a function satisfying
@) feC*(R),

(ii) f()=1 for t<5/4,

(iii) f(t)=0 for t=7/4,

(iv) 0<f(f)<1 for teR.

Fix R > ng (n, from the condition D1). For A > 0 we put

(14.16) Fy(x) =f(l£'—h—_§>’ xeRN.
8 By |Vullp,0.0, We mean the expression

N “au p 1/p
(2 ) '
i=1 P,R2,v1

e
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The function F, has the following properties:

(a) 0<F(x)<1, xeRY,
(b) Fy(x) =1 for x€Qriswav o, *)
(c) supp F, = B(0, R + 2h),
(d) F,e C*(RY),
(e) there exists a constant ¢, > 0 such that
OFi(x) <c¢ .-, xeRY.
0x; h

Let us now set
u, y(x) = ux) F(x), xeQ.
Then (14.14), (d), {c) and (b) yield
(14.18) u,, € C%(Q),
(14.19) supp u,, < B(0,R + 2h),
(14.20) supp (u, — u,,) QR*H
These properties together with (a) and (14.12) imply (for A > max {R, t, — R})
(14.21)  (fo [ue = e vo dx)""” = (Joron |1e,|” vy dx)'/7,

i P 1/p
. (4, — to4)| 01 dx) <
X :

J
P 1/p p 1/p
vy dx) + (J‘ |a|? . vy dx)
QR+h
du,

P 1/p 1/p
vy dx) + ¢, <J~ ]usl” h™P v, dx) <
axj QR+h\ QR +2h
p 1/p 5 1/
91(]x]) dx) + 3¢, (j u(x)|”. Mdr) p§_
QR+H

W

(14.22)

P
s}

8 ou,

IA

0
— (L = F
(')x-( "

J

IA
P

J QR +h Oxj

QR+h

Ju,

—£(x
e
ou,

(J‘QR +n |0X;

J
(K = 2"7" max {1, 3¢,[k'?}) .

From these estimates and (14.14) we obtain that there exists & > 0 such that

(14.23) e — wenlls.p0mom < €2

The estimates (14.15) and (14.23) imply

I\

IIA
—
k]

Jor+h

IIA
>~

p 1/p
vldx+J. luc|”vodx) , j=1,2,..,N
QR +h

”u bt us,h”l,p,ﬂ,vo,vl <e.

%) Similarly as in Notation 11.5 for s > 0 we set Q, = {ze@; |z < s}, @°=intRV\ Q)
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By (14.18) and (14.19) we have u, , € Cg(®) and the theorem is proved.
We shall write Q e D1¥ if the following conditions are fulfilled:

(i) QeD1,

(ii) xeQ, t>1=>txe.

14.5. Theorem. Suppose | < p < o0, Qe D1¥, &, 5, € W ((xa, ®0)) and let the
condition (14.12) be fulfilled. Let
(14.24) BY?(4a, 00; bo(t) N1, 5,(1) V) < o0
Then there exists a constant C > 0 such that
(14.25) lul,000 < C|Vulpo. Yue W' (Q; 04, 0,).

Proof can be done by using Theorem 14.4, Lemma 14.1 (with p = g) and the
spherical coordinates.

14.6. Remark. Suppose 1 < p < 0.

i) Let @ = R"\{xeRY; |x| < r}, r 2 0. Then it is possible to prove that the
conditions (14.10) and (14.11) are equivalent.

i) Let @ = R"\{xeR"; |x| £ r}, r 20, or @ = R". Then one can show that
the conditions (14.24) and (14.25) are equivalent.

Using Theorems 14.3, 14.5 and Remark 14.6 we can give some examples.

14.7. Example. Suppose | < p < oo,

bo(t) =17, (1) = 1%, te(sa, o).

(1) Let @ = int (R"\ ), 0e Qe 4°! (thus xa > 0.)
Then:
(i) the inequality (14.11) holds if

B+p—-N, y<B—p
or
p=p—N, y< —=N;

(i) the inequality (14.25) holds if
B>p—-N, y=B-p.

(IT) Let Q = RY\{0} (thus 4a = 0). Then
(i) the inequality (14.11) holds if and only if

B+p—-—N, y=p—-p;

(ii) the inequality (14.25) holds if and only if
B>p-N, y=B-p.

14.8. Example. Suppose Qe D1, | < p < oo,

o(t) = €, by(t) = €', te(ya, o).
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(I) Let ya > 0. Then
(i) the inequality (14.11) holds if
y<B. [».8] +[0.0];
(ii) the inequality (14.25) holds if Q € D1* and

B>0, y=8
or

p=0, y<0, 1<p<N
or
p=0, y<0, p=1.
(IT) Let 4a = 0. Then
(i) the inequality (14.11) holds if 0¢ Q and
y<0, y=4, p>N

or

B>0, y=8
or

=0, y<0, I<p<N
or

=0, <0, p=1;
(i) the inequality (14.25) holds if Qe D1* and

B>0, y=p
or

p=0, y<0, 1 <p<N
or

p=0, y<0, p=1.

14.9. Example. Suppose QeD1, 1 < p < oo,

o(t) = t'log’ t, U,(t) = t*log"t, te(ya,0), a>1.

Then
(i) the inequality (14.11) holds if
B+p—-N,
and
y<B-—p or y=F-—p, 057
or
B=p—-N,
and

y<—-N or y=—=N, n%p—-1, d=n—p or
y=—-N, n=p—1, < —1.
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(ii) the inequality (14.25) holds if Qe D1*,

B>p—-N,
and

y<B—p or y =f—-p, 6=51;
or

B=p-N,
and

y<-N, >p—1, or y=—-N, 6<n—p.

15. IMBEDDING THEOREMS — THE CASE 1 =g¢<p<

In this section we assume that
1£g<p<w
and that the weight functions w, vy, v, are radial:'®)
(15.1) w(x) = w(|x]), vdx) =v(x]), i=01, xeQ.

The following lemma plays the principal role in the proofs of imbedding theorems
with 1 £ g < p < oo.

15.1. Lemma. Let 1 < q<p< oo, Ifr=1/g—1[p, —0 Sa<b=ow,
o, ®; € W((a, b)). Then there exists a positive costant C such that the inequality
(15 (B0l oo )™ < O (P o.() '
holds for all functions
(15.3) ue T (a, b) = {fe AC((a, b)); limf(r) = 0}

t—=at
or

15.4) ueJ,(a,b)={fe AC((a, b)); limf(t) = 0}

t=b~
or
(15.5) ueJ(a, b) = T(a, b)n T a, b)

if and only if

(15.6) AYa, b; 0y, w,) =

— [ oo) 40 (0177 () )77 0} 0 811 < o
(15'7) Alz,'q(a, b; w,, wl) =

= [12 (5 @olt) 40 (12 04~ () @00 0} (x) 0] " < o0
19) If y, = v,, then we write v instead of vy and v,.
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or

(15.8) APYa, b; we, wy) =
= inf max {A}%a, ¢; ®y, w,), A5%c, b; w,, w,)} < o0, 1)
cela,b)
respectively.

For the proof see [6] and [7].

15.2. Remark. (i) If C > 0 is the least constant such that the inequality (15.2)
holds on the class 7 (a, b) (i = 1, 2) or I (a, b) then

'\ 1/4°
(15.9) q'" (p—q) APY(a, b; wo, wy) £ C = ¢"(p")'"" A2Y(a, b; wo, w,)
r
(i=1,2) (see[6])
or
' \1/4"
2—1/pq1/q <p_rq) A”'q(a, b; g, wl) <C<x2 l/rqIM(p')l/q' A”"’(a, b; w,, wl) , 12)

respectively (see [7]).

(ii) Assume in addition that w,, @, € #'((a, b)). Then checking the proofs of
necessity of conditions (15.6)—(15.8) we can see that these conditions are necessary
for the inequality (15.2) to hold on the (smaller) classes 7 ¥(a, b), 7 3(a, b), T*(a, b),
respectively, where ’

T 1(a, b) = {ue C*(a, b); a¢suppu},
. T3(a,b) = {ue C™(a, b); bé¢suppuj,
T*(a, b) = T{(a, b) n T3(a, b) = C3((a, b)) .

15.3. Lemma. Let R > 0. Then there exists a partition of unity ®* = {®F, 5}
with the following properties:

(i) @f, @3 e C2(RY);

(ii) supp @§ <= B(0, R + 4);

(iii) supp 5 = RY~cl(B(0, R));

(iv) 0 < @f, 5 <1 on RY;

(v) o§(x) + @5(x) = 1, xe RY;

(vi) there exists a constant k > 0 (independent of R) such that

R
‘Z&(x) <K for j=1,2, i=1,2,..,N, xeR".

i

Proof is standard and is left to the reader.

1) The numbers 424(a, b; 0y, ;) and A24(a, b; g, ;) are defined for a < b by (15.6)
and (15.7). Further, we formally set 4%9(a, a; wy, @) = 0= A59b, b; vy, vy).

12y Moreover, C=< q'/4(p)!/2 AP%(a, b; wy, @,) 'if APH(a, b; @y, ) = AP a, b; g, ©;)
for some i € {1, 2}.
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15.4. Theorem. Suppose Q€ G1, 1 < g < p < o, W, 5 € #'g((xa, ©©)). Let there
exist R € {4a, o) such that
(15.10)  ADA(R, oo; W(t) 71, (1) V7! < w0 .
Then
(15.11) W' (Q; v, v) CQ I(Q; w) .
Proof. Using [2] we obtain
(15.12)  W'H(Q;0,0) = ¥ Iliraww

where ¥ = {u e C*(Q);
suffices to prove that

(15.13)  tim sup {[ul,mumi w7 |

n— o

|ul|y p.0.00 < o0}. Hence, by Remark 3.2 from [4], it

ully powe <1} =0,

where we set G, = Q,+5.
Now we fix neN, n > max {R, a}, and take the partition of unity {®7, @3}
from Lemma 15.3. Let u€ ¥", o], ,.0.00 < 1. Then

15.14 u=u; +u,, where u; =ud], i=12..;
suppu, < B(0, n + 4);
supp u, = R\ cl(B(0, n)) .
Further we have
(15.15)  [u]f.0iG.w = Jrmaeonss) [u(x)]* wix) dx =
= fampones) [42(3)| W(x) dx = fampiom [42(x)]" w(x) dx =
~ o 2 luslt, O)1 () " ar @,
where @ = x/|x]| is a point on the unit sphere S; = {x € RY; |x| = 1}. By the defini-

tion of u, we have u,(+, ©) € C*((n, o)), u,(n, @) = 0 (for fixed ©) and so Lemma
15.1 and Remark 15.2 imply

(15.16) r |us(t, @) #(1) V1 dt < a1 (I

n

0

%(t, @)
at

14 rlq
o(r) N1 dt)

with
(1517) o, = q"(p’ )" A(n, co; W(t) N1, B(r) V).
From (15.15) and (15.16) by virtue of the Holder inequality we obtain

oo}
(15.08)  Jult oo < 1 j (j
S n

< |Sll(p-q)/p «2(5 (J jw
Si1Jdn

Z|S,|Pm 0P INT(NPK? [ g [u(x)|P v(x) dx + [ o | Vas(x)| v(x) dx)*/? < cf.s22,

ou p a/p
a—z(t,@) ﬁ(t)t”“dt) de <
t

Kl )4 a/p
P (@5 . u) (1, ©)| (1) "' dr d@) <
t
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where ¢f = N9|S,|?~9/? max {N’K”, 1} and |S,| is the (N — 1)-dimensional measure
of the unit sphere S;. By (15.17),(15.6) and (15.10) it easily follows that lim o/, =
=0, so (15.18) implies (15.13) and the theorem is proved. nweo

15.5. Theorem. Suppose Qe G1, 1 < g < p < ©, W, by, 1; € #Wg((xa, ©)) and
(14.12). Let there exist R € {ya, o) such that
(15.19) AZYR, oo w(t) (N By (1) 1N < w0
Then
(15.20) W (Q; v, 0,) QQ L(Q; w) .

Proof can be done in a way similar to that used for proving Theorem 15.4. Only
instead of Lemma 15.3 we use Theorem 14.4. Details are left to the reader.

15.6. Theorem. Let Q be an unbounded domain in R¥, 1 < q < p < o0, W, by, 0y,
e Wy((xa, ©)) and
(15.21) AP (ga, oo; w(t) (N By(1) 1N < o0
Let the function 7 satisfy

(15.22) X is decreasing in an interval (s, ) < (4a, o) ;
(15.23) lim (1) = 0.

t—=®
Then

(15.24) Wy P(2; v, v1) QQ L2 w . 2)

where A(x) = A(|x]), xe Q.
Proof. Using Lemma 15.1 (the condition (15.8)) one can prove

(15.25) X = Wy(Q; vy, v,) Q LH(Q; W)

if the assumptions of Theorem 15.6 are satisfied.
In virtue of Remark 3.2 from [4] it is sufficient to verify that

(15.26) lim  sup [uf, gnw: =0.

n=oo [luflx <1

Take u € X, n > s. Applying (15.22) and (15.25) we get
(15.27) [ee]g.m 2 = Jan [u(x)|* w(x) A(|x]) dx <
< 2(n) [ (9 () dx < ). K.
where K is the norm of the imbedding operator (15.25). Then (15.26) is a consequence
of (15.27) and the assumption (15.23).

15.7. Theorem. Let Q be an unbounded domain in R¥, 1 £ q < p < © and
w, 0, 1€ Wg((xa, 00)). Let the following conditions be fulfilled: :
(i) there exists R € {xG, o) such that

(15.28) AP(R, oo; w(t) N7, (1) V) < o0 ;
(ii) the function 1 satisfies (15.22) and (15.23).
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Then
(15.29) Wo (25 0,0) QQ I w . 2),
where A(x) = A(|x]), xe Q.

Proof. First of all we prove that
(15.30) X = WoP(Q;0,0) Q L(2; w).
By Lemma 3.1 from [4] it suffices to verify

(15.31)  lim sup [uf, 6, < .

nooo fjullxs1
where G, = Q,.5, neN.

Let R be the number from the assumption (i) and let {@F, ®5} be the partition of
unity from Lemma 15.3. Take ue X, |ufx < 1, and neN, n > R. Then (15.15)
holds. By Lemma 15.1 and Remark 15.2 we have
(15.32) |7 |uy(t, @) w(r) (N1 di £ 7 Jus(t, @) W) VT de £

< [2'7q"Y(p')"'* APY(R, o; w(t) V71, w(r) N TH)]e.

: (J:o ’ o(r) V! dt)

Now, similarly as in (15.18) we obtain
l]g.onG, 0 = € APA(R, o05 W(1) £, (1) 1Y)
with ¢ independent of u € X. This implies (15.31) and so (15.30) holds.

By Remark 3.2 from [4] the proof will be complete if we verify (15.26). This can
be done in the same way as in the proof of Theorem 15.6 (cf. (15.27)).

) a/p
21, 0)
Jt

Sufficient conditions for non-existence of imbeddings are given by the following
theorem.

15.8. Theorem. Suppose QeD1, 1 < g <p < o0, b€ #((xa, ©)), W, o,€
€ W (x4, ©)). Let there exist R 2 a such that

(1533)  BP(R. oo; (1) Y71, 6y(1) 1Y) < o0,
(15.34)  APY(R, o5 w(t) V1, (1) 1N T!) = o0

Then the space W(l)"’(Q; Vo, Uy) is not continuously imbedded into the space L(Q; w).
Proof. By (15.34), Lemma 15.1 and Remark 15.2 (i) there exists a sequence of
functions {z,} = CJ((R, «)) such that

(15.35) I% |zt W(r) N1 dt > o0 for n— o,
(15.36) IR |zu0)|P o(r) " "dt =1, neN.

For neN lct us put

Un(x) = {Z"(M)’ i xe R\l (BO, R)).
’ 0, if xeQncl(B(0,R)).
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Then we have
{u,} = CT(RY\cl(B(0, R)),

(15.37)  Jolu(x)[ w(x) dx = [s, [ [z0)]* #(r) 7" dr dO =
=|Si|. [ |z0)|* W(t) "' dt > 0 for n— w0,

(15.38) f IV (9|7 o ,(x)dx_z j

S NIS,| . [ |zu0)P 5:(r) ¥~ dt = N|S,|, neN

£ dx <

(@ = x/|x| is a point on the unit sphere S, = {xe R"; [x| =
Using (15.33) and Theorem 14.3 we arrive at

uwmﬁwgc(z Ot

P )llp
n
t= illp,2,01

x|

and by (15.38) we obtain
[#a]l.2.00 = C(N|S4|)'77, neN.

The last estimates (15.37), (15.38) and the fact u, e CJ(Q) = Wg(Q; vy, v,) imply
that the space W'?(Q; v, v,) is not continuously imbedded into I¥(Q; w).

16. EXAMPLES — THE CASE 1= g<p< ®

From Theorems 15.4—15.8 we obtain

16.1. Example. Suppose | < g < p < 0.
I. Let QeD1, 4a >0, B+ p — N. Then the following three conditions are
equivalent:
(i) Won(@; [x|P72, [x]") QG (s |x[7),
(ii) Won(@: [x|P77, [x[7) G (s |x[*),

(111)-———+E—IX+1<0
P 49 p
II. Let Qe G1, ,a >0, f > p — N, Then the following three conditions are
equivalent:
(i
(if) whn(@; x|, [x]") G 19 [x[),
(m)——ﬁ N N+1<0
P q p

L Let @ = R"\ {0} or @ = RY, B + p — N. Then the space W,""(2; |x|* 77, |x|’)
is continuously imbedded into the space I¥Q; |x|*) for no x e R.
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16.2. Example. Suppose 4a > 1,1 < g < p < . For x € Q we define
w(x) = |x|*log” |x|, vo(x) = |x|[" "7 log’ |x|, vy(x) = |x| log’ |x|.
I. Let Qe D1, f = p — N. Then the following conditions are equivalent:
(i) Wo'P(2; ve, 1) QQ L(2; w),
(il) WoP(Q2; vo, v4) Q L(Q; w),

(iii)

+1<0 or

r_? + LR, <0.
q p 49 p
II. Let Qe G1, B > p — N. Then the following conditions are equivalent:
(i) WHP(Q; 09, 0,) QG LA(2; w),
(it) W25 09, v,) G L(Q; w),

+1=0,

<z vz

Gy N N0 o
q9 P 4 p
« B N N _o v 8 1 1
q p 4 p q P 49 p
16.3. Example. Suppose Qe G1, 1 £ g < p < o, B+ 0. Then the following

five conditions are equivalent:
(i) W(l).p(g; eﬂlxl’ eﬁlxl) QQ U(Q; ealxl)’
(i) Wo(Q, eI*1, 1) QQ IX(Q; &™),
(iii) WoP(Q; €11, &fX1) G I4(Q; &*1),
(iv) Wr(Q; ef1¥1) 1) G 1(Q; ),

(v)g——é<0.
q q

16.4. Remark. The conditions (i}, (iii), (v) from Example 16.3 are equivalent even
under the weaker assumption Q € D1.

17. N-DIMENSIONAL HARDY INEQUALITY ON UNBOUNDED DOMAINS

As a consequence of the imbedding theorems and theorems on equivalent norms
on the spaces Wq?(Q; v, v,) or W?(Q; v, v,) we obtain conditions for the validity
of the N-dimensional Hardy inequality. The corresponding result if formulated in
the following proposition.

17.1. Proposition. Let the expressions |1 ,.a.00.0, and |||*|||1.5.0,0,» where

N 0 p 1/p
Hl“”'hp.ﬂ,vl = (Z J. = (%) vy(x) dx) ,
i=1 Jgo (7x‘-
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be equivalent norms on the space Wq'"(Q; vo, v,) (or W'?(Q; vg, v,)). Then
WoP(2; vy, v,) G L(Q; w)

(or
WhP(Q; vo, v,) Q LA(Q; w))

if and only if there exists a positive constant C such that the N-dimensional Hardy

inequality
1/q N ou p t/p
(17.1) (J ()| w(x) dx) < c(\; J LIy dx)
o i=1 J o |0x;
holds for all ue I(Q) with T(Q) = Wg(Q; vy, v,) (or T(Q) = W' P(Q; vy, vy),
respectively).
Proof is trivial.

We shall write Qe G1¥ if Qe G1 n D1¥*.

Proposition 17.1 and the examples from Sections 13, 14 and 16 imply
17.2. Example. Suppose | < p, g < o, o, f € R. For x € Q we define
W) = [ o) = [ o) =

I. Let eD1 (or Qe G1*), ,a >0, p+p— N (or > p— N). Then the
inequality (17.1) holds with 7(Q) = Wq'"(Q; vy, v,) (or T(Q) = W'H(Q; vy, vy),
respectively) if and only if

(i) l<psgem, N Niyzo, B N _Noi<o
q p 9 P 49 p

or

(i) ]§q<p<oo,g—l—3+ﬁ—ﬁ+l<0.
9 p 4 p

1. Let  =R"\{0}, B+ p— N (or B> p— N). Then the inequality (17.1)
holds with 7(Q) = Wg'P(Q; ve, vy) (or T(Q) = W'(Q; vg, v,), respectively) if and
only if

N
Noizo, 2B N Ny,

p q9 P 4 p

I Let 2 = RY, p — N < B < N(p — 1). Then the inequality (17.1) holds with
T(Q) = WA (Q; v, vy) or T(Q) = WyP(Q; v, v,) if and only if the condition (17.2)
is fulfilled.

(17.2) 1§p§q<oo,ﬁ
q

17.3. Example. Suppose QeD1 (or QeG1*), ,a>1, 1 <p, g< o, B *
+ p— N{(or B> p— N). For x e Q we define

w(x) = |x|*log? |x|, wvo(x) = |x|"?log’ |x|, vy(x) = |x|*log® |x|.
Then the inequality (17.1) holds with Z(Q) = Wg'(Q; 6o, v;) (or T(Q) =
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= W"P(Q; vy, v,), respectively) if and only if

(i) 1§P§‘1<00,E—E+130and E—E+N—E+l<0
q p 9 P 4 p
or E_E+IX_E+]=0’ Z_ééo,
q9 P 4 p q p
or
(ii) 1<g<p< oo, and
* BN _N.ico
q9 pr 4 p
[ 1 1
or 2B N N o, 20 Ty,
P 9 p 9 p 49 p

17.4. Example. Suppose 2eD1,1 < p, g < o0, a, B € R. For x € Q we define
w(x) = e, py(x) = vy(x) = e#I*1.
I. Let one of the following conditions be fulfilled:

(i) «a>0, B+0;
(ii) «a=0, B>0 or <O and p>N.

Then the inequality (17.1) holds with 7(Q) = W"(Q; v, v,) if and only if

(173)  1sgpsa<w, Y- Niyz0, 2 Foy
a p a p

or

(]7.4) ]§q<p<oo’g_é<0.
a »

Il Let QeG1*, B> 0. Then the inequality (17.1) holds with 7(Q) =
= W'P(Q; vy, v,) if and only if (17.3) or (17.4) is fulfilled.

Concluding remark. The survey of results of this paper was presented at the inter-
national conference “Summer School on Function Spaces, Differential Operators
and Nonlinear Analysis” held in Sodankyli (Finland) in 1988 (see [8]).
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