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1. INTRODUCTION

Let B, denote the multiplicative semigrcup of matrices of order n over the Boolean
algebra {0, 1}. There is a one to one correspondence between the set B, and the set I',
of digraphs with vertices 1,...,n given as follows: 4 = [a,-j] € B, corresponds
to I'(4) € I',, where there is an arc from vertex i to vertex j in I'(4) if and only if a;; =
=1 (i,j =1,..., n). Recall that the matrix A4 is reducible provided that there exists
a permutation matrix P such that

A, O
PAP' = ! ]
[A21 A,

The matrix A is irreducible provided it is not reducible. It is well known that the
irreducibility of A is equivalent to the strong connectivity of the digraph I'(A): for
each ordered pair of vertices i and j there is a walk in I'(4) from i to j. We denote the
set of irreducible matrices in B, by I,. A matrix 4 € B, (and its digraph I'(4)) is
primitive provided for some positive integer k, A* = J,, the all 1’s matrix in B,.
The exponent e(A) of A is the smallest integer k for which 4* = J,. The set of primi-
tive matrices in B, is denoted by P,. It follows that 4 € P, if and only if there is an
integer k such that there is a walk in I'(4) of length k from vertex i to vertex j for
i,j =1,...,n. The largest exponent of a primitive matrix in B, is known to be

(1) e, =n*—2n+2.

A matrix 4 in B, has been called a Hall matrix [Sch] provided that there exists
a permutation matrix Q such that Q < A (entrywise order with 0 < 1). It follows
from Hall’s theorem (see e.g. [Mir]) that A is a Hall matrix if and only if 4 has no r
by s zero submatrix for any positive integers r and s with » + s > n. The set of all
Hall matrices in B, is denoted by H,. Since J, € H,, it follows that if A is primitive,
then there exists a positive integer k such that 4* € H,. Schwarz[Sch] raised the
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question of determining the smallest integer p such that A7 € H, for all primitive
matrices A of order n. Let

H, = {AeB,: A€ H, for some k},

the set of all matrices in B, some power of which is a Hall matrix. Then P, < H,. For
n > 1 there are matrices which belong to H, but not to P,, for example a permutation
matrix with zero trace. For A € H, we define the Hall exponent of A to be the smallest
integer p such that 4” is a Hall matrix, and denote the Hall exponent of 4 by h(A4).
We also define

(2 h, := max {h(A): Ae H,n1,},

the largest Hall exponent of an irreducible matrix in H,. The reasons for restricting
consideration to irreducible matrices will be made clear in the next section. Let

3) 0 0 1 0 0 0 0
0010000
0001110

A=[0 0000 0 1].
0000001
0000001
(111111 0l

Then it is easy to verify that A€ P;, A¢ H,, A>€ H;, A* ¢ H;, and A" e H, (i 2 4).
This suggests the introduction of the strict Hall exponent h*(A) which is defined
as follows. First let

Hy = {AeB,: 4"€ H, for all k sufficiently large} .

Then h*(A4) equals the smallest integer p such that 4*e H, for all integers k = p.
We also define

4) hy := max {h;(A): Ae H; n1,},

the largest strict Hall exponent of an irreducible matrix in HY. For the matrix A
in (3) we have h(4) = 2 and h*(4) = 4. If A € H}; then we have

(5) h(4) < h*(4) < e(4) < n* —2n + 2.
We note that the matrix
(6) 0010

0010

0 0 01

1100

satisfies A* € H, if and only if k = 0 (mod 4). Thus 4 € H, but 4 ¢ H}. _
There is a similarity of the above ideas with those discussed in [BruLiu]. A matrix 4
in B, is partly decomposable provided that A has an r by s zero submatrix for some
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positive integers r and s with r + s = n. Cleary a reducible matrix is partly de-
composable but the converse does not hold. A matrix in B, which is not partly
decomposable is called fully indecomposable, and we denote the set of fully in-
decomposable matrices in B, by F,. It is well known[Lew] that F, < P,n H,,
but H, & P, and H, & F, (n 2 2). Thus if some power of a matrix is fully in-
decomposable, then the matrix is primitive; however if some power of a matrix is
a Hall matrix, then the matrix need not be primitive (e.g. the matrix in (6)). These
two observations lead to differences in the investigations reported here for Hall
exponents and those reported in [BruLiu] for fully indecomposable exponents.
For a primitive matrix A the fully indecomposable exponent f(A) and strict fully
indecomposable exponent f*(A) are defined by replacing H, with F, in the definitions
of h(A) and h*(A), respectively. As shown in [BruLiu] we may have f(4) < f*(A).
Since F, < H,, we have h(4) < f(A) and h*(4) < f*(A) for A primitive.

In this note we first characterize the classes H, and H). Then we obtain bounds
for the Hall and strict Hall exponents which are better than those for the exponent
in case the matrix is primitive. These bounds are also better than those obtained
from the fully indecomposable and strict fully indecomposable exponents again
in case the matrix is primitive.

2. CHARACTERIZATIONS OF H* AND H,

Let A be a matrix in B,. Then it is well known that there is a permutation matrix P
such that

Ay, O ... O
Apl Apl App
where p = 1 and the diagonal blocks A;;, 4,,, ..., 4,, are irreducible matrices of

order at least 1. The diagonal blocks are called the irreducible components of A.
The form (7) is often called the Frobenius normal form of A{Gan]. We call a diagonal
block trivial provided it is the zero matrix of order 1. Note that if 4 has a trivial
component, then 4 ¢ H,. It follows easily that 4 € H, if and only if each irreducible
component is a Hall matrix. The irreducible components of 4 correspond to the
strong components of the digraph I'(4). A trivial component corresponds to a strong
component with one vertex and no arcs (the only possible arc is a loop, an arc con-
necting a vertex to itself ) The matrix 4 has a trivial component if and only if the
digraph I'(4) has a vertex belonging to no cycle (a closed walk with no repeated
vertex).

Theorem 1. Let A € B,. Then A€ H, if and only if A has no trivial irreducible
component.
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Proof. If A has a trivial irreducible component, then by taking powers of the
Frobenius normal form of A, we see that the Frobenius normal form of each power
of A also has a trivial irreducible component. It follows that A* ¢ H, for any positive
integer k. Now suppose that A has no trivial irreducible components. Then for each
vertex i of I'(4) there is a cycle of some length m; to which i belongs (i = 1, ..., n).
If p is the least common multiple of my, ..., m,, then the matrix A? has only 1’s on
its main diagonal, and hence 4’ € H, and Ae H,. []

It follows from (the proof) of Theorem 1 that 4 € H, if and only if each irreducible
component of A is in the corresponding class of the appropriate size. A similar
statement holds for H. We now consider the class H.. It suffices to determine when
an irreducible matrix is in HY. Let A be an irreducible matrix of order n. If the
index of imprimitivity of A is h, then it is well known [ Gan] that there exists a per-
mutation matrix Q such that

0O B, O ... O
0 0 B, ... 0
(8) QAQ' =|. . . ... .
0 0 0 ... B,
B, 0 0 ... 0

The matrices B; in (8) are rectangular matrices of sizes k; by k; 4y with k;, , = k.

Thus the diagonal blocks in (8) are square zero matrices of order k; (i = 1, ..., h).
The integers ky, ..., k, are uniquely determined by A4 and we call them the imprimitivi-
ty parameters of A. The number h is characterized as the number of eigenvalues of 4
(treated as a real matrix) of maximum modulus, and also as the greatest common
divisor of the lengths of the cycles of I'(4).

Theorem 2. Let A be an irreducible matrix in B,. Then A e H) if and only if the
imprimitivity parameters of A are all equal.

Proof. Without loss of generality we assume that 4 has the form in (8) First
assume that k = k; = ... = k,. Then the matrices X, = B,B,... B,, X, = B, ...
...ByBy, ..., X, = BBy ... B,_ are all primitive matrices of order k [DulMen].
Hence there exists a positive integer e such that X? is a matrix of all I’s for allp = e
(i=1,...,h). Let g be an integer with g = ek and let ¢ = fh + a where f = e
and 0 < G < h. Then the matrix A? contains h blocks, Y;, ..., Y}, all of order k,
in a cyclic pattern where Y; = X7A;... A;10-y (the subscripts in some cases need
to be interpreted modulo h). The matrix X? has no zeros, and the matrices 4, ..., 4,
have no zero column because A is irreducible. It follows that the matrices Y; have
no zeros and hence that A%¢ H, for all ¢ = eh. Hence A € H)'.

Now suppose that the imprimitivity parameters of A are not all equal. Without
loss of generality assume that k; < k,. For each positive integer f the matrix A7™*!
has the same cyclic block form as A4, with the blocks B, replaced by X/B; with the X;
as defined above. It follows that 4™ has a zero submatrix of size n — k; by k; for
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each positive integer f. Since n — k, + k, > n, A" ¢ H, for all f and thus A ¢ H).
O

In the next two sections we investigate the Hall exponents.

3. BOUNDS FOR THE HALL EXPONENTS

As already remarkcd, if A€ P, then h(A) < f(A) and h*(A) < f*(A4). The fol-
lowing example shows that we do not in general have h*(4) < f(A). Let

1 0

o
o
[}
o
o
o
S

_—0 O O O OO o0
O = = = = O OO
O = = = = O O O

_—0 O 0 O O = = =
-_-—_0 O O 0O =00

-0 0 0O OO0 oo
el oo o XNl
_a—_0 OO0 O~ OO
_—_-0 00 O~ OO
_—0 OO0 O = OO

(=)
o

Then one can verify that A ¢ Hyo (so that A ¢ F,,), A*>€ Fy, (so that Ae P,
and A% € Hy,), A>¢ Hy, (so that A* ¢ F ), and A€ F,, (so that 4*e H,,) for
k = 4. Hence

h*(A) = f*(4) = 4 > 2 = f(4) = h(4).
We do however have the following.

Lemma 1. If A € P, 0 H,, then f(A) = f*(A) and h(4) = h*(A) = 1.

Proof. Since A € H,, there is a permutation matrix Q such that Q < A. Hence
QF < A* for all k = 1. Because Q* is a permutation matrix, 4* e H, for all k > 1,
and hence h(4) = h*(4) = 1. Now suppose that 4” is fully indecomposable. Then
for k = p, A* = APA*"P > APQ*"P. Since Q%P is a permutation matrix, it follows
that 47Q*~”, and hence A" is fully indecomposable for all k = p. Hence f(A) = f*(4).

a

The matrix A in (9) shows that we may have h*(4) = f*(4) when f*(4) > 1
and h(A4) = f(A4) when f(4) > 1. However we derive bounds for h*(4) and h(A)
which improve those for f*(A) and f(4), respectively, given in [BruLiu] provided
these bounds are greater than one. )

Let A = [a;;] € B, and let k be a positive integer. For X < {1, ..., n} let Ry(X)
be the set of vertices of the digraph F(A) which can be reached by a walk of length k
which begins with a vertex in X. It follows from Hall’s theorem [Mir] that 4*¢ H,
if and only if |Rk(X)| 2 |X| for all nonempty X < {1,...,n}. A vertex i of I'(4)
is called a loop-vertex provided that a;; = 1, that is, provided that there is an arc
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from i to i (a loop) in I'(A). The following lemma is contained in [BruLiu; Lemma
2.1].

Lemma 2. If AeP, and Z = {i, ..., i} is a set of s = 1 loop-vertices of I'(A),
then for each positive integer t, [R(Z)| Z min {s + t,n}. [

Theorem 3. Let A€l, and let s be an integer with 1 < s <n — 1. If A has s
I’s on its main diagonal, then h*(4) < n — s.

Proof. Except for minor changes the proof is the same as that of Theorem 2.2
in [BruLiu]. O

For 1 £ s < n — 1, the matrix

0010 00

0010 ... 00

0001 ... 00
(10) A, =

0 00O ... 11

1100 ... 01

withn + 1 + s I’s exactly s of which are on the main diagonal (in the lower positions)
satisfies h(4) = h*(4) = n — s.

Corollary 1. The maximum (strict) Hall exponent of an irreducible matrix
of order n with nonzero trace equals n — 1. []

The preceding theorem can be regarded as a generalization of the following result
of Schwarz[Sch].

Corollary 2. If A is an irreducible matrix in B, with at least n — 1 1’s on its main
diagonal, then Ae H,. [

Corollary 3. Let A€l,. Suppose that the digraph I'(A) has a cycle of length r

and that there are s vertices which belong to at least one cycle of length r. Then
r if s=n—1 or n
<
h(A)={r(n—s) if 1<s<n-2.

Proof. The matrix A" is irreducible and has s = 1 1’s on its main diagonal. If
s = n — 1 or n, then by the Corollary 2, A" € H, and hence h(A) <rIf1<s<
< n — 2, then by Theorem 3 A""~*) e H, and so h(4) < r(n — s). O

We now use Corollary 3 to obtain a bound for h,.

Theorem 4. h, < [(n* — 1)/4] forn = 3.

Proof. Let n = 3 and let A be an irreducible matrix in B,. Then by Theorem 1,
Ae H, Since A is irreducible, the digraph I', is strongly connected and hence every

vertex belongs to a cycle. Let r be the length of some cycle of I'(4). If r = n, then
A€ H, and hence h(4) = 1. We now assume that r < n — 1. If every cycle of I'(4)
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has length r, then the main diagonal of A" contains only 1’s and it follows that
hA) < r <n—1=<|(n* - 1)/4]. We now assume that I'(4) has a cycle of length
different from r. We apply Corollary 3 with s = r. If s = n — 1 or n, then again
h(A) < r < [(n* — 1)/4]. Now suppose that 1 < r < n — 2. Then h(4) < r(n — r).
Now r(n — r) is maximum when r = n2 (n even) and r = (n — 1)[2, (n + 1)/2
(n odd). Since I'(A4) has cycles of two different lengths, h(A) is less than the maximum
of r(n — r)if n is even. The theorem now follows easily. []

n-5 h-6

Figure 1. The digraph I'(4,)

According to Corollary 1, the maximum Hall exponent of primitive matrices of
order n with nonzero trace is n — 1. If the trace is 0, then the Hall exponent can be
larger. The largest Hall exponent that we have been able to achieve is 2(n — 4)
for n = 8. The digraph I (A,,) of a matrix 4, whose exponent is 2(n - 4) is drawn
in Figure 1. The matrix Ag is the matrix

(11) 0 1 000 0 0 0]
00100000
00011100
10000000
1000000 O].
00000011
1000000 O
100000 0 0

Let X be the set {n — 4, n —3, n —1, n} of four vertices of I'(4,). We then have
1, 1sisn-=5)

3, (i=n—4,n-23)

2, m—2=<5is2n-9)

4, (i=2n-23).

Hence h(A,) = 2n — 8 and it is easy to verify that h(4,) = 2n — 8. We conjecture
that h, = 2(n — 4) for n = 8.

|Ri(X)| =
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4. THE STRICT HALL EXPONENT

We now consider in more detail the strict Hall exponent of matrices in H) N I,,.
By Theorem 2 this class consists of those irreducible Boolean matrices A of order n
whose imprimitivity parameters are all equal. Thus 4 can be taken in the form (8)
where By, ..., B, are square matrices of order k and h is the index of imprimitivity
of A. We shall confine our attention to the case i = 1,that is to primitive matrices A.
The reason is that it seems difficult to obtain estimates for h*(4) if h > 1, since
h*(A4) depends on the way the B, interrelate. For example, let A be the irreducible
matrix of order 8 with & = 2 in the form (8) where

[1 0 0 O]
1 000
B‘_IOOO
Lllll
and
11 1 1]
1111
32‘1110
1110
Then BB, = J, and
1111
1111
BZBl‘l()oo
1 000

Hence BB, is a Hall matrix, but neither B,B; nor 4% are Hall matrices. We begin
with an example in which the strict Hall exponent is large. Let n and k be integers
with n = 5and 2 £ k £ n — 3. The matrix of order n

0 1 ... 00 7

o 0

00 1o |1 1

00 ... 01 |0 ..
(12) A=t 0o ... 000 ... 0

1 v

: ) 0

| 1 i

is primitive (it is the matrix corresponding to the digraph in [BruLiu; Fig 1]) Its
strict Hall exponent is (k — 1) (n — k) (see [BruLiu]) Setting k = [(n + 1)[2] we
obtain ' '

(13) W(A) = (l(n + V2] = H((» + D2] = 1) (1 2 5).
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We now consider upper bounds for the strict Hall exponent of a primitive matrix,
and use some of the ideas that have turned out to be useful in the investigation of the
exponents of primitive matrices (see e.g. [LewVit] and [Sha]).

Let I' be a primitive digraph with vertices 1, ..., n. Let A = A(I') be the number
of distinct lengths of the elementary cycles of I' and let L= L(I') = {ry,...,r;}
be the set of these distinct lengths. We choose the notation so that r; > ... > r,.
Since I' is primitive, we have GCD{ry, ..., r;} = 1. For each vertex j, d;(j) denotes
the length of a shortest walk in I' which begins at j and meets at least one cycle of each
of the lengths in L. For X a nonempty set of vertices of I', we let d(X) =
= min {d(j): j € X}. Finally we recall that the Frobenius number ¢(L) =
= ¢(ry,...,r;)is the smallest integer m such that every integer p = m is a nonnegative
integer linear combination of ry, ..., r,. Because ry, ..., r, are relatively prime, the
Frobenius number is a finite integer; it is well known that for A = 2 we have
P(ry. ry) = (ry — 1) (ry — 1).

We use the above notation throughout this section.
Lemma 3. Let A€ P, and let I' = I'(A). Then
h*(4) < {maxy dy(X) + (L) + |X]| = 1},
where the maximum is taken over all nonempty subsets X of vertices of I.
Proof. Let X be a nonempty set of vertices. Let u be a vertex such that d (u) =
= dy(X). There is a vertex v such that for any integer I > d;(X) + ¢(L) there is
a walk of length I from u to v. Since I' is in particular strongly connected, every

vertex of I' can be reached from v by a walk of length at most n — 1. It follows that
for

(14) t2dyX) + ¢(L) + |X| — 1

we have [R,(X)| = |X|. Thus 4* € H, for all ¢ satisfying (14) and hence h*(A) satisfies
the inequality in the lemma. [J

We remark that the previous lemma holds if L is replaced by any subset of it
consisting of relatively prime integers.

Theorem 5. Let A be a primitive matrix of order n and let I' = I'(A). Then
h*(A) < An — ilri + @(L).

Proof. Let X be a nonempty subset of the vertices of I'. It is easy to see that
dX)s(n—(X|-D-r)+Mm=—r)+ ...+ (m-r)=
=An—ir,~——|X|+1. |

Applying Lemma 3 vlv:complete the proof. [

This theorem also holds if L is replaced by any subset of it consisting of relatively
prime integers.
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Corollary 4. Let A € P, and let I' = I'(A). If " has two cycles of relatively prime
lengths, then h*(4) < n* — 2n + 3.

Proof. Let r; and r, be relatively prime integers which are lengths of cycles of I'.
By Theorem 5 (see also the remark following its proof), h*(4) < 2n — (ry + r,) +
+ (ry — 1)(ry — 1). Since r, < n — 1 and r; < n, the result follows. []

We say that a cycle y of a digraph I is an (a, b)-multiple-cycle provided that the
vertex set of y contains the vertex set of another cycle whose length a is relatively
prime to the length b of y.

Corollary 5. Let A€ P, and let I' = I'(A). If I' contains an (a, b)-multiple-cycle
then h*(A) < n —a + (a — 1)(b — 1).

Proof. It follows that for all nonempty subsets X of the vertex set of I', dj(X) <
<n-—a-— ]Xl — 1. The lemma now follows from Lemma 3 (and the remark
following its proof). [

We note that if the digraph I" has a loop-vertex, then the hypothesis of Corollary 5
is satisfied with @ = 1 for some b. Hence in this case h*(4) < n — 1 (see also
Theorem 3).

Finally we note that the proof of Theorem 2.11 in [BruLiu] can be easily modified

to give the following result.
Theorem 6. Let A e P, and let I = I'(A). If AI') = 2, then h*(4) < |n*[4]. O

The upper bound for h*(4) in Theorem 6 should be compared with the strict Hall
exponent achievable by the matrix in (12) (see (13)). We conjecture that the bound
in Theorem 6 holds in general, but we have been unable to prove it for A(I') > 2.

5. CODA

We conclude with some observations about other exponents that seem worthy of

investigation.
Let A be an irreducible matrix in B,. Then it is well known that
(15) A+ A2+ .. +A4"=1,.

(The proof is simply the observation that in the strongly connected digraph I'(A)
there is a walk from any vertex i to any vertex j of length at most n) Thus we may
define the weak exponents of A as follows:

(weak primitive exponent): e,(A) is the smallest positive integer p such that
A+ A*+ ...+ A%eP,;

(weak fully indecomposable exponent): f,(A) is the smallest positive integer p
such that 4 + A®> + ... + AP€F,;

(weak Hall exponent): h,(A) is the smallest positive integer p such that 4 +
+ A* + ...+ AP € H,.
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The irreducible matrix 4 of order 8 in (1 1) satisfies

ed) =1, f(A)=h,(4) =4.
Note that for this matrix h(4) = 8.

If AeH,, then of course h,(A) = h(4) = 1. If 4 is an irreducible matrix in B,
and I'(4) has a cycle of length n, then 4 € H, and hence h,(A4) = 1. If A is irreducible
and s is the smallest integer such that each vertex of I'(A4) belongs to a cycle of length
at most s. Then I < A + ... + A4° and hence h,(A) < s. The last two observations
can be combined to yield: If 4 is an irreducible matrix and I'(4) has the property
that there is a cycle y of length r such that every vertex of I (A) not on y belongs to
a cycle of length at most s, then P < A + ... + A° for some permutation matrix P
consisting of a (permutation) cycle of length r and s cycles of length 1; hence
h(A) < s.

It is possible to consider a bipartite analogue of the above ideas. A matrix 4 =
= [a;;] € B, has an associated (undirected) bipartite graph BG(A). The 2n vertices
of BG(A) are partitioned into two disjoint sets X = {1,...,n} and Y = {l',...,n}.
The edges of BG(A) join a vertex of X with a vertex of Y, and there is an edge joining i
and j' if and only if a;; = 1. The matrix A® = (44")* A (k = 0) is in B,. In the bipar-
tite graph BG(A™W) there is an edge joining i and j’ if and only if there is a walk of
length 2k + 1 from i to j' in BG(A4). Assume that BG(A) is a connected graph. We
define the bipartite Hall exponent h,(A) of A to be the smallest integer p such that
A® e H,. The weak bipartite Hall exponent h,,(A) is the smallest integer p such
that A + 4D 4+ 4P e H,,. For § + Z < X, let R;,(Z) be the set of all vertices
of Y which can be reached from Z by a walk of length 2k + 1 (k = 0). It follows
from Hall’s theorem that h,(4) equals the smallest integer p such that |R,(Z)| = |2
for all Z, and h,,(A) is the smallest integer p such that |R(,)(Z) U ... U R(,\(2)| = |Z|
for all Z. Clearly, h,,(A) < hy(A). It is not hard to prove the inequality:

hy(A) < [(n — 1)2].

This inequality can be derived as follows: Let Z be a nonempty subset of X.
Since BG(A) is connected, it follows that if R,(Z) = Y, then there exists a vertex
in X — Z which is joined by an edge to some vertex in Rgy(Z), and IR(k+1)(Z)| >
> |Ru(Z)|. Now let |Z| = p and |R(o)(Z)| < p. Then by the preceding observation
there is a first integer k such that [R(,‘)(Z)| = p where p < (n — 1)/2. It seems
worthwhile to investigate these bipartite analogues of exponents

v v
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