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AFFINE DIFFERENTIAL GEOMETRY OF SURFACES

Arors Svec, Brno

(Received May 2, 1988)

The differential geometry of surfaces in the equiaffine 3-dimensional space has
been thoroughly studied. On the other hand, the more general case of the full affine
group has got little attention; see [3], [4] and the contributions of S. Gigena and
U. Simon in [1]. In what follows, I create a systematic theory of this general case.

HYPERBOLIC CASE

1. Let A3 be the 3-dimensional affine space, D = R? a domain and m: D — 43
a surface. Instead of D, we may consider a 2-dimensional differentiable manifold;
nevertheless, our considerations will be of local nature. We suppose that all manifolds
and mappings are of class C®.

With each point of our surface, let us associate a frame {m; v, v,, v} such that
ey, e, are situated in the tangent plane of the surface. Our frames satisfy

(1.1) dm = o'v;, dv; = @lv;; i,j,...=1,2,3,

with the integrability conditions

(12) do' = o’ A 0}, dof = ol A of;

of course, we have

(1.3) w?=0.

The differential consequence of (1.3) being

(1.4) o' Ao} +0®Aw)=0,

Cartan’s lemma jmplies the existence of functions af, a3, a3: D —» R such that

(1.5) o} = djo! + dh0?, o) = a0 + dw?.

On D, we may choose local coordinates (u, v) such that

(1.6) o'=fdu, o*=gdv; f=f(u,v)*+0, g=guv)*+0;
ol = fi(u, v)du + gi(u v)dv.

Let po = (1o, v) € D be a fixed point and y: (—h h) — D a curve such that ‘y(O) -
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= po; let y be given by u = u(f) v = v(t). Then

d '

(1.7) —d'—:l = fu'vy + gv'v,,
d2m 12,02 ’ I I 2,02
T () o1 + (+) v, + (a'f2u'? + 2a5 fgu'v' + asg*v'?) v,

with «' = du[dt o' = dv[dt. A vector Te T,(D) is called asymptotic (with respect
to the given surface m: D — 43) if we have d*m/dt* e dm(T,,(D)) for each curve y
with the tangent vector T at p,. From (1.7,). We see that the vector T = u, 0/0u +
+ vy 0[0v € T,y D) is asymptotic if and only if
(1.8) aifuy + 2a5fgugvy + asg*vy =0 at p,.
Of course, dm(T,,(D)) is the tangent plane of our surface m at the point my = m(p,);
let us denote it by T,,(m). A tangent vector v € T,,(m) is called asymptotic if there
is an asymptotic vector T'€ T, (D) such that dm(T) = v. Finally, the surface m: D —
— A3 is called hyperbolic if there are exactly two linearly independent asymptotic
vectors at each point m(p). p € D.

Let m be a hyperbolic surface, and let us choose our frames in such a way that
ey, e, are asymptotic. Because of

(1.9) dm(T) = dm (uo 6% + v, %) = Uofv; + Vogv, ,

the vectors f ~* 8/du, g~ 9/dv € T,(D) must be asymptotic, and (1.8) implies
(1.10) ay=a3=0, a)+0.

Thus we have dv, = wliv, + 0v, + w?ajvs, dv, = W, + w30, + w'ayvs. Hence
we see that we are in the position to choose our frames in such a way that

(1.11) 0 =0, 0 =o'.
The integrability conditions of (1.11) are
(1.12) 0} A @' + Hol + 03 — o) A w? =0,
ol + 03 — o) A0 + 0 A 0? =0,
and there are functions ay, ..., a4: D - R such that
(1.13) 0] = a,0' + a,0%, Hoi + 0 — ©3) = a,0' + a;0?,
) = a;0' + a,0°.

Let {m; #;, ¥,, 03} be another field of frames associated with our surface, let it satisfy
the analogous equations
(1.14) dm = &'s;, di, = &lp;

and (T3) + (1.11) + (1.13). Then we have
(L15)  Bu=owy, ¥, =Py, B3 = v, + Yo, + 9035 afy #0.
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From (1.1) and (1.14) we easily see that

(1.16) o' =alo', @ =p"l0?;
(1.17) y =af

and

(1.18) ay = o’ lay, 4 =o'Pa,,

(1.19) d,=o0a,— B, d =Pa;—alp.
Thus it is possible to choose the frames in such a way that a, = a3 = 0, i.e.,
(1.20) 0] = a0, 0] =0+ 0;, 0)=a0";
the admissible changes of the frames are then
(1.21) By =av,, D,=Pv,, 03=aPfvy; af £0.
The differential consequences of (1.20) are
(1.22) {da; + a,(@} — 201)} A 0" + @] A @* =0,
0} A+ oiAe=0,
w3 A o' + {day + ay(w; — 203)} A @* =0,

and we get the existence of functions by, ..., bs: D — R such that

(1.23) da; + a,(03 — 20}) = byo' + bo*, 0} = b,0' + byw?,

w3 = byo! + byw?, da, + ay(w] — 203) = byw' + bsw?.
Elementary calculations yield the relations between by, ..., bs and by, ..., bs; we get
(1.24) by = a®f7 by, b, =0a®b,, by=oapby, b, = p?b,,

bs = a7 18%bs.

The exterior differentiation of (1.23) gives the equalities

(1.25) {db, + by(w} — 30])} A @' + (db, — 2b,0]) A @ =
= 3a,(b; — aja,) ' A @?,
(dby — 2b,01) A @' + (dbs — b3w3) A ©* = —a,b,0' A ?,
(dby — byw3) A @' + (dby — 2b,03) A @* = a,b,0' A w?,
(dby — 2b,w3) A @' + {dbs + bs(w] — 303)} A ©? =
= 3a,(a,a, — bs) 0' A &?

and the existence of functions b;;: D — R such that

(1.26) db; + by(@) — 30}) = by ;0" + by,0?,
db, — 2b,w} = by;0' + by0?,
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db; — byw3 = by,@0" + bs,0%,
db, — 2b,w% = by0' + by,0?,
dbs + bs(w] — 3w3) = bs;0" + bs,0%;
(1-27) byy — by, = 3a1(b3 - ‘1104) » byy — b3y =ayb,,
byy — by = asby, bsy — by, = 3“4(‘11“4 — by).
Because of (1.24), the functions b; are the so-called relative invariants, i.e., b; = 0

has a geometrical meaning.

Definition. The surfaces with by # 0 are called non-maximal. (The geometrical
meaning of this condition will be presented in the next section.)

Let us consider a non-maximal surface m: D — A43%; we may choose its moving
frames in such a way, see (1.245), that

(1.28) by=¢eR, ¢ +0.

The equation (1.263) reduces then to —&'w3 = bs;o' + by, which may be
written, see (1.20,), as

(1.29) o} + 0 = 0} = c,o! + 0.
According to (1.24;), the admissible changes of the frames are given by (1.21) with
(1.30) af =1.
Because of (1.16), we get
(1.31) ds?:= 0'e? = @'@®* = d5?.
Thus our surface m induces, on D, a hyperbolic metric. Its Gauss curvature may
be calculated as follows: there is exactly one 1-form w such that
(1.32) do' =o' A 0, do®> =00 A 0?;
the Gauss curvature x is then given by
(1.33) do = Ixo' A 0*.
Let us calculate % in our case. It is easy to see that the 1-form
(1.34) 0 =0 - o' = —0; + c,0°
satisfies (1.32). The differential consequence of (1.29) being
(1.35) (dey — @) A @' + (deg + o) A 0 =0,
we get the existence of functi;)ns ¢;j: D — R such that
(1.36) de;, — 10 = ¢,0' + 1,07, dc, + 0 = cj,0! + ¢yt .
From (1.1), (1.14), (1.21) and (1.30),

(1.37) @ =0}, & =o!+alda,
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and we get
(1.38) . & =oacy, & = Pey,

(1.39) &=+ a !da
and
(1~40) ¢y = “2011 » Cia=2¢€13, Cyp = [32022 .

Finally, from (1.34) and (1.36),
(1.41) do = (a,a4 + ¢;, — &) 0' A @7

the functions a,ay, ¢;,: D — R are, see (1.18) + (1.30) and (1.40,), invariants of our
surface. Let us summarize:

Proposition 1. Let m: D — A3 be a hyperbolic non-maximal surface. We may
choose its frames in such a way that we have (1.1) with (1.3), (1.11), (1.20), (1.29),
(1.28), (1.23), (1.26) and (1.36), the form w being given by (1.34) and satisfying
(1.32). The possible changes of the frames are given by (1.21) + (1.30); we get (1.18),
(1.24), (1.38) and (1.40). The hyperbolic metric (1.31) is invariant, and its Gauss
curvature is given by

(1.42) 2% = a.a, + ¢y — €

(theorema egregium).

2. Consider a general hyperbolic surface m: D — 43. The functions a;, b; are
relative invariants, see (1.18) and (1.24), and using them, we may construct absolute
invariants of our surface. In this section I am going to explain the geometrical signi-
fication of the conditions a; = 0 and b; = 0, and to define the fundamental in-
variants of our surface. I am going to restrict myself to the case in which all the
relative invariants a;, b; are different from zero; the investigation of special cases
is quite similar and it is left to the reader.

Let V3 = V3(R) be the vector space of our affine space 4%, and let P?> = P*(R)
be the improper plane (i.e., the plane at infinity) of A*. The plane P? consists of the
points v = {gv; O £ ve V>, 0 % geR}; we write simply v = (v). Let v, we P?,
v + w; by {v, w} we denote the straight line through » and w. Further, let the an-
harmonic ratio of the points » = (v), w = (w), * = (av + bw), v = (cv + dw);
a, ..., d e R; be define by

(2.1) (0, w; x,9) = a"'bed™* for ad +0;

for ad = 0 it is not defined.

Taking into consideration our hyperbolic surface m: D — 43, we get the associated

mapping p: D — P? x P? with p(p) = (v4(p), v2(p)); pe D; vy(p) = (v4(p)) and
v,(p) = (v,(p)) are the improper points of the asymptotic tangents at m(p). From
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(1.11), (1.20) and (1.23), we get
(22) do, = olv, + a,0'%, + 0?,, dv, = a,0%v, + ©Iv, + @lv;,
dvy = (bs0! + by@?) v, + (b0 + byw?) v, + (0] + @3)v;.
Let 14, t, be the tangent vector fields on D such that dm(t,-) = v, l.e.,
(2.3) o'(ty) = (1) =1, o'(t;) = 0*(t;) =0.
The vector field t,; o = 1, 2, generates a layer %, of curves on D; &, and %, form
a net A of curves on D.

From (2.2) we see that a; % 0 (at a point pe D) if and only if the mapping
p — vy(p) is a local diffeomorphism; similarly for a, + 0. This explains the geometri-
cal meaning of the conditions a; = 0 and a4 = 0.

Given a mapping »: D — P? and a tangent vector field ¢t on D, let pe D. For
v = (v) = (ov) we see that £,(0v) = t,00 + et,0, i.e., (t,(ov)) € {(v), (,(v))}. Denote
by ,0 the straight line {(v), (¢,0)} in the case (v) % (,(v)); in the case (t,v) = (v)
orin the case t,p = O e V3, let t,p = v.

We see that t,v, and ¢,v, are straight lines and

(2.4) D3 = 1,0, N 1,0,

is an invariant of our surface; it is the improper point of the affine normal of our
surface.

Suppose a,a, =+ 0 on D; in this case the mappings v,, v,: D — P? map the net A"
into two nets ¥"; and ¥, on P2, It is easy to see that ¥~, is the Laplace transform
of ¥", and vice versa; indeed,

(2.5) (t,01) = (w0i(t;) vy + ayv,) € {vy, 05},
(t202) = (asvy + @3(t;) v,) € {0y, 5} .
From (2.2),
(2.6) 103 = bsvy + byvy + @3(t;) v3, 103 = bavy + bav, + w3(1,) 3,
and the points '
2.7) Py := 1,050 {vy,0,} = (bsv; + byvy),

By := 1030 {Dls 0y} = (b4vl + byvy)

are invariants of our surface; we have

(2.8) I, := (nu v,; Py, ‘Bz) = bzb4b;2 .
I claim that the points
(2.9) R,y i= (b, — ayvs), R, = (byv, — auv3)

describe the Laplace transforms of the nets ¥"{ and ¥ ,, respectively.
Indeed, we have

(2.10) t,0; = wi(ty) vy + v3, tyv, = 3(ty) v, + vs,
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and the Laplace transform of v, (or v,) different from v, (or vy) is situated on the
straight line {vy, 3} (or {v,, 3}, respectively). Further, using (1.23) and (1.26)
we obtain

(2.11) ty(bvy — ayvs) = (3bywi(t;) + by — asby) v, — (3aywi(ty) + by) vy,
t(bav; — agv3) = (3b,405(1y) + bay — asbs) v, — (3a,03(t2) + bs) vy,
ie., R, = {vy, 03}, 1,R, = {,, 03}, and the assertion is proved.
On D, consider the tangent vector fields
(2.12) th 1= baty — bst,. th:= —bst, + byt,

with the following geometrical interpretation: we have 13 = {0,, 03}, t; 3=
= {vy, v3}. Indeed, we have

(2.13) toy = (byby — b3) vy + @3(t)) v3, thoy = (bybs — b3) vy + @3(t3) v .
Now,

(2.19) t10; = wi(t1) vy + abgv, — bavy, tho, = azb,v, + w3(ty) v, — bavs .
and the points

(2.15) S, = (ashvy — byvs) = 10, N {vy, 13},

S, 1= (aybav, — bsvy) = 10, O {0y, 03}
are further invariants associated with our surface. Further,
(2.16) I, := (vy,03; Ry, S)) = (v, 033 R,, S,) = aja,bst.
Let
(2.17) S :={S,0,} n{S,, 0y} = (ash,vy + a,byw, — bsv;)
and
(2.18) € := {v;, G} N {vy,0,} = (ash,v; + a;byv;);
&' is an invariant, and we have
(2.19) Iy := (04,05, By, &) = asbj(absby) ™",
Iy:= (”1, v, &, ‘Bz) = ‘7117‘%(‘141’2173)_l H
of course,
(2.20) Iy =1,.

The possible changes of the frames associated with our surface being given by
(1.21), we see from (1.18) + (1.24,_,) that each absolute invariant which may be
constructed from ay, a,, by, by, b, may be constructed. from I,, I and I (or I3).
Thus it remains to construct absolute invariants containing b, and bs.

The dual projective plane P** to our plane P? consists of all planes € = {ov A w;
0+oceR;v,we V3 vand w linearly independent}. Writing

(221)  E*:=v, Av,, E:=vyAv,, E'i=0, Avs,
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it is easy to see that
(2.22) dE?® = (0} + 0}) E® — 0'E? — o’E",

dE? = —(b,0"' + b;0?) E* + (20} + »3) E? — a,0'E',
dE' = —(by0' + b,w?) E* — a,0’E? + (0] + 2w3) E'.
Thus
(2.3) 1L,E* = 03(t,) E* — E', 1,6 = {€, €'} ;

HE® = oi(t,) E* — E*, 1,6 = (G €?}.
The induced mapping D — P?*, p > G3(p), maps the net 4" into a net &> of P?*,
and the Laplace transforms of € are situated on the lines {€*, €'} and {@3, €7}.
But these Laplace transforms are exactly ' and €2, respectively; indeed,
(2.29) HE' = —b3E® + (wi(t) + 203(t,)) E*, €' = {€', €*};

LE* = —b3E® + (2wi(t,) + w3(t,)) E*, 1,6 = {€2, €%} .
Let us study the induced map v,: P2 —» P?*, v,(p) - €(p). To this end, take a fixed

point p, € D and local coordinates (u, v) around p, = (o, v,) such that the net A
is given by the curves u = const. and v = const. This means that we may write

Il

(2.25) o' =fdu, 0®=gdv, ol=r;du+r,dv, o3 =s,du+ s,dv;
f=f(u,v),...,s5 =s5(u,0); fg 0.

Recall the following definition: Let P" = P%R) be a projective space, I =
=(—h,h) =R, and w,;,w,: I - P" two curves. Let w; = (w,), w, = (w,),
wy, woi I — V™1 V™1 being the vector space generating P". We say that the curves
w; and w, have the contact of order r at 0 € R if there is a function g¢: I = R such
that

S, S| B
(2.26) T (2 R T
ds de
Consider a projectivity K: P2 —» P2* given by
(2.27) Kvl = 0!13E3 ’ sz = azzEz s KU3 = d31E1 ’

ie., for v = (agv; + av; + azv;) we have Kv = (a,0,3E + a,0,,E* + aj05,E?).
The points v; and €’ being geometrically invariant, the set of all projectivities (2.27)
has a geometrical significance. Let us determine the so-called tangent projectivities
of our map v,: P » P?* By this we mean the following: take p, € D and a curve
y: I - D with y(0) = po; further, take the curves Kv,(y(t)) and €*(y(t)); they should
have the contact of the first order at 0 € R for each choice of y. Let the curve y be
given by u = u(t), v = v(t); po = (u(0), v(0)). From (2.2), (2.22) and (2.25) we get

0 ?
(2.28) 7’:‘1 =1y + a,fo,, % =1y, + gvs;
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%, = 5,0 + fo;, 6_02 = 4905 + S0 ;
ou ov
v,
— = byfvy + byfv, + (ry + 54) 03,
ou
g
PN = bygvy + bygv, + (r2 + 55) v3;
OE? 3 . OE° 3 1
(2.29) — =(ry + 5 E* — fE?, — =(r, +s,) E* — gE';
du v
OE? 3 2 1
— = —b,fE® + (2ry + s;) E*> — a,fE*,
du
2
Q"E—= —b3gE3+ (2"2 + 52) Ez;
ov
1
% _ —bsfE® + (ry + 25,) E,
ou
OE!
e —bygE® — a,gE* + (r, + 2s,) E'.
v

(2.30) %=(7‘1§E+7’2?)U1+01f—u”2+gd—3”3a
t

dv du dv du dv
2.31 K—Lt=(ri— +r,— )a3E® + ayf — ap,E* + g — 05,E",
( ) at (1dt zdt) 13 lfdt 22 » ) a 31
dE3 du dv du dv
2.32 — =(ry +s)— + (ry +s,) —FE*— f—E* — g—E'.
(232) dt {( ! 1) dt (r2 2) dt} fdt gdt
Because of (2.26) we should have
do dE® do
2.33 Ko, =0E%, K =52 1 %E3 at 1=0.
(2.33) ! dt dr  dt
From (2.27,) we get ¢(0) = a3, and (2.32,) reads
du dv du dv
2.34 ry— + 13— o 3E® + ayf — 0B + g — o3, E! =
( ) (1dt zdt) 13 lfdt 22 th 31
du dv du dv do
=o;34(ry +8;) — + (r2 + 55) —HE* —a;3f—E* — a,;, — E' + —E3
i+ o) 5+ 04 o) ThE s S -,

at t=0.

dt
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This equation being satisfied for each choice of du(0)/ds and dv(0)/df, we have

®y,a; = —043, 033 = —dy3, and the tangent projectivity of our map v, is given by
(2.35) Kv, = —a,E*, Kv, = E*, Kv; = a,E!,
we then have
dv, dE? du dv
2.36 — = —a;,— +a;|s;,—+s,—|E*.
(2.36) dt ' dt ‘(‘dr 2dt>

Consider now the special curve §: I — D given by u = uy + t, v = v, i.€., one of
the curves of the net 4" passing through p, = (uo, v5) € D. Then (always at t = 0)

3
(2.37) Kv, = —a,E?, K% = —a, %i— + a;sE*.

Write down the equation

2 23
(238) K ?a—”;- - g, 2L

3
” " + 2a,s,; ‘;—i- + QE® + QE' + Q,E?,

Inserting (2.25) into (1.23,), we easily see that

da,

(2.39) + ay(s; — 2ry) = byf;

u
using this, we get
(2.40) QE' + Q,E? = fX(2a’E" + b,E?).

In P**, consider the curves Kv,(uo + t, o) and €(uy + t, vy); by virtue of (2.37)
and (2.26,-,), their projections from each point of the linel = {€?, (2a}E* + b,E?)}
have the contact of order 2 at t = 0. Each plane of the line I goes through the point

(2.41) T, = (byv, — 2aiv,).

Considering the point v, instead of vy, taking the map v,: P* —» P**, ,(p) — €*(p),
and making the other necessary changes, we get the geometrical description of the
point

(2.42) T, = (bsv, — 2ajvy).
Finally,
(2.43) Iy := (05,0, B, T,) = —3b,brar b3 !,
Is:= (92, vy Po, 12) = -%bsbd‘;zb;l s
which completes the fundamental set of invariants of the fourth order of our surface.

Let p, = (0, 0) € D, and consider the curves y, and y, in P? given by v; = 0,(0, v)
and v, = v,(u, 0), respectively. We have
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2
248)  0,(0,0) = vy(po) + 2P, L0R0) 2 ey _
ov 2 o’

1(/0
= vy + (rvg + gvs)v + 5{(;2 + 24 b4g2> v, + byg?v, +
+ (2r, + ;) gv3} v + 0(v%),

2(Po)

v5(u, 0) = v5(po) + ——=u + O(U?) = v, + (s,v, + fvs)u + o(u?);

all the expressions are to be considered at p,. Let v; € v; and x € x € P?; the local
coordinates of the point # are introduced by
(2.45) x = x'v; + x%v, + x*v3;

the curves y; and y, are thus given by
1 1 /or, 2 2\ 2 3
(2.46) xt=1 +r20+5 5+r2+b4g)v + 0(v3).

x? = 1byg*® + 0(v), x* = gv + 3(2r, + s,) gv* + O(v*);
x' =0, x*=1+su+ 0u?), x*=fu+ 0u?)),

respectively. It is easy to see that there is exactly one conic section in P% having the
contact of order 2 with y at v,(p,) and the contact of order 1 with y, at ,(Po);
this conic section is given by

(2.47) by(x*)? — 2x'x* =0,

and it is called the Lie conic. It follows that the Lie conic has the contact of order 2
with y, at v,(po)-
From (1.16) (1.18) and (1.24) we see that the forms

(2.48) ¢ = aja,0'0?, Y= bw'e?, Y, :=by(w')?, Y= byw?)?

are invariant; let us explain their geometrical interpretation. Let three curves
Yay: (—h, h) = D be given such that y.;(0) = p, = (uo, o) € D; let the curve y;,
be u = u(i)(t), v = v(,)(t). Then

049) ol o) = vieo) + L2824 o) =
= {1 + (r, du‘(;;(o) +r, dv(;;(0)> t+ O(tz)} v +
o (o 280 1 0()) 0, + (92100 1 o),
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s (0 va0) = vs(po) + 2P 1 1 0() =
= <a4g ———du‘;;(o)‘t + 0(:2)) oy +
+ {1 + (s1 du:;(o) + s, dv‘;;(())>t + 0(:2)} v, +
( 14U, O(tz))

sl vof0) = os(po) + L2224 o7 -

{(b fd"“)(o) + bag ‘ﬂ;;(—o))t + 0(:2)} v, +
{(b fdu‘3)(0) + bsg g—v%(o))t + O(tz)} v, +

+ {1 T+t s1) d__“‘::(o) {4 (r 4+ 52) d____"<3>(°) - 0(:2)} 0,

For a point w e P2, denote by n;w the projection of the point w from v {(po) mto the
line {v,(po), 0(Po)}, j + i # k # j. Then it is easy to see that

(2.50) 212(t) 1= (01(Po), 22(Po); w30, (u1)(1), voy(1)), M3 2(U(2)(1), v2(1))) =

d“(l)(o) dv;)(0)
dt

e13(1) := (04(po), "3(1’0)' 201 (1)(1), vy (1)), MaPa(uea(1), via)(1)) =
= g 32a(0) (b fd“(a)(o) beg d”(;;(o)) £ 1+ 0(),

= aja,f—~ * + 0(r),

dt
223(?) 1= (02(Po), 23(Po); T10x(ua)(1)s ve2)(1))s 7103(u(a(1), v3)(1)) =

- y2tld) (bzf 20l0) 4 pyg d”<§’t(°)) 2 + ().
t

Let us write
(2.51) ty i= dy; d ) - du;(0) 9
dt|;=0 dt ou

4 d0f0) 0
dt  ov

T,(D) ;

Po

po
we get

d%0,,(0
(2.52) —%}(—) = 2a,a,0'(1(1)) ©*(t(2)) ,
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d’e 13(0) —
dr?
szzs(O)
dr?

20%(t(r)) {b3 0'(1(3)) + ba @*(13))}

= 2 0'(tz)) {b2 ©'(t(3)) + b3 0*(1(3)} -

Let us study the osculating quadrics of our surface. Let y: (—h, k) — D be a curve,
7(0) = po; let y be given by u = u(t), v = v(t); po = (u(0), v(0)). Because of

om om

(2.53) — =fo,, — =gv
u dv

we get

(258 mlu(t), oft) = m(po)+{ ou(pe) + 9 2y (po>}r+

L) (0

+ 2fg du_(O) 9@ v3(po) +

du(O)

dt dt
e ()t (3 ) (5
d?u(0)

+ f— i Ul( o) + 9 dd( )Uz(Po)} 1+ 0(13)§

we have used the identity df/dv + fr, = 0 following from dw' = ' A w}. For
apoint X € A3 let us introduce the local coordinates by

(2.55) X = m(po) + X' v1(po) + X? v5(po) + X v3(po) ;
for the curve (2.54) we have

(2.56) X! d';(to)t +3 {(Z{; fr ,) ((%(:)—)y + a49° (@)2 +
+ fddu(O)} + o),
et (0] ) (21
+ ddvt(o)} 2+ 0%,

d_tl@)(lli@tz

X3 =
fo dt dt

+ 0(r®).
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The general quadric being given by

(2.57) A;X'X + 4X'+A4=0,

it is easy to see that the most general osculating quadric, i.e., the quadric having the
contact of order 2 with (2.54) for each curve y, is given by

(2.58) A33(X3)? + 24,,(X'X? — X?) + 24,,X' X3 + 24,,X°X° = 0.
Introducing, in the projective extension A3 U P2 of 43, the homogeneous coordinates
by

(2.59) X' =xx", X*=x*x", X®=x3x°,

we get it in the form

(2.60) As3(x*)? + 245(x"'x? — x°%?) 4+ 24,3x'%% + 24,3x%x> = 0.

1ts intersection with the improper plane P? is given by (2.60) and x° = 0, i.e.,
(2.61) Asy(x3)? + 245,x'x% + 24,;3x" %3 + 24,3x*x* = 0.

By definition, the Lie quadric is the osculating quadric intersecting P? in the Lie
conic (2.47); its equation is

(2.62) by(X?)* — 2X'X? +2X* =0.

We easily see that it is a paraboloid for by = 0; for by = 0, its center is m — b3 'v;.
Using the spacialization (1.28), we get the geometrical description of the normal
vector vs.

Let us suppose (1.28), and let us recall (1.38) and (1.40). One of the Laplace
transforms of R, (or R,) defined in (2.9) is the point v, (or v,), the other one is
situated on the line {R,, U,} (or {R,, U,}, respectively) with

(2.63) Uy = (cqvy + ayvy), Uy = (a40, + c305);
indeed,
(2.64) ta(byv, — ayvs) = 3 wi(ty) (byvy — ayvs) — €'(cyv, + ayv,),

t1(bav, — agvs) = 3 w3(ty) (bav, — agvs) — €(agwy + c,07).
Thus we get the geometric characterization of the invariants
(2.65) I := (g, 055 By, Wy) = byey(e'ay)™ !,
I := (05,05 By, Uy) = bycy(€la,) ™t .
It is easy to calculate
(2.66) (e vy + ayv,) =

=2 0i(ts) (10, + ayv;) + (c1z + a184) vy + byvy + 103
let

(2.67) B = 6,0, N {v;, 05} = ((ca¢1, + aya4c; — aghy) vy + c1C,03).
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Now,
(2.68) Ig:= (0,05 R, B) = —Ig (¢ ey, + 1, — LITY),

which gives the geometrical description of the invariant cy,.
3. In this section we present one example of a hyperbolic surface.

Definition. Let m: D — A> be a surface. It is called transitive if, for each p, q € D,
there is an affine mapping &/, ,: 4> > A* and neighborhoods U,, U, = D of the
points p and g, respectively, such that o/, ;o m| v, = m] Uy

Proposition 2. Let m: D — A3 be a transitive hyperbolic non-maximal surface
with I, &1, I, £ 0 and I, = v,, I, = v,. Then there is, in A3, a fixed frame
{0; vy, v5, v3} generating the coordinates of a point Pe A* by P = 0 + xv; +
+ yv, + zvs and such that m(D) is a part of the surface

(3.1) (x*+y)z=1.

Proof. Because of the suppositions and (2.8), (2.16), (2.41) and (2.42) we have
(3.2) by + 0, aja,+0, byb, + b3;
(3.3) by =0, bs=0.

It follows from (1.18) that we may choose the frames of our surface in such a way
that
(3.4 a; =a,=1;

then « = B = 1, and the functions b; are invariants. Our surface being transitive,
all its invariants must be constant.

First of all, let us determine all transitive hyperbolic surfaces (thus we do not take
into account the equations (3.3)). From (1.23), (3.4) and b; € R we get

(3.5 o] = —3(2b, + by) o' — 3(2b, + bs) 0,
w; = —4(b; + 2b,) @' — 3(b, + 2b5) 0?,

b,o' + b;w?, ) = byo' + byw?.

I

o3
Inserting these relations into (1.25), we obtain
(3.6) 2byby — by(b, + bs) =9(b; — 1),

3bs(by + by) — 2by(2b, + bs) = —3by,

2by(by + 2b,) — 3bs(b, + bs) = 3b,,

bs(by + by) — 2b,b, = 9(1 — b3).
Thus each transitive hyperbolic surface is given by the completely integrable system
(3.7) dm = o'v; + @%v,; dv; = 0lv; + ©'v, + 0,

dv, = 0%, + W3, + @'vy, dvy = 0, + W30, + (@] + w})vs,

where o}, w?, ®3, o} are given by (3.5) and the invariants b; € R satisfy (3.6).
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Now, suppose (3.3). The equations (3.6) reduce to
(3.8) 2bsby = 9(by — 1), 3byb, — 4b2 = —3b,, 4b3 — 3byby = 3b,.
From (3.8,) we obtain '
(3.9) by = 2byby + 1,
and inserting this into (3.8, 3), we have
(3.10) b,b3 — 6b3 = —9b,, 6b2 — b3by = 9b, .

Multiplying the first equation by b,, the second by b, and adding, we get b, = by;
(3-10,) reduces then to b3 — 6b3 + 9b, = 0 with the solutions b, = 0 and b, = 3.
In the case b, = 3, we have b, = 3 and b, = 3, see (3.9), i.e., I, = 1, a contradic-
tion. Thus

(3.11) b,=by,=0, by=1,

and the system (3.7) reduces to
(3.12) dm = o'v, + 0’v,; dov; = 0'v, + 0%v;, dv, = 0?0, + 0'vs,
dvy = o'v, + 0%v,.

The system (3.12) being completely integrable, it is sufficient to find one of its
solutions. It is easy to see that we may take )

(3.13) m= 0+ ucosvv, +usinvv, + u 2v;; v3=m—0,

Ju(cos v — /(3) sin v) v; — Ju(sinv + /(3) cos v) v, + u"2v;,
v, = —}u(cos v + /(3) sinv) vy — Ju(sinv — /(3) cos v) v, + u~?v;,

which satisfies (3.12) with

(3.14) o'=—(u'du +$J/(3)dv), ©®= —(u"'du—1(3)dv);

here, u > 0, v e R. Of course, the point m is then situated on the surface (3.1). QED.

Uy

Problem. Determine all transitive hyperbolic surfaces.

ELLIPTIC CASE

4. Similarly, let us study elliptic surfaces m: D — A* having no real asymptotic
vectors. With each point m(p), pe D, let us associated a frame {m; ey, ey, eg}; we have

4.1 dm = t'e;, de; = tle;; i,j,...=1,2,3,
L)

with the integrability conditions

(4.2) dit =t A1}, did=1fnA1].

Similarly to the case of the hyperbolic surfaces, it is possible to show that the frames
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may be chosen in such a way that

(4.3) ©¥=0; =1, =12

with the differential consequences

(4.9 @Rry—)Aatt+(ci+)AE=0, .
(tT+m)att+Q23-1)Aa?=0.

Once again, it may be proved that the frames may be chosen such that there are
functions A,, A;: D — R and the equations (4.4) are satisfied if we take

(4.5) 21 — 13 = — Ayt + A,7?, 13 4 1 = Ayt 4+ Ay7P,
2t — 13 = Ayt — 4,70 '

Introducing the auxiliary form

(4.6) ¢ =33 - 13),
we may write
(4.7) 1) = 13 — Ast! + A1), 13 = Y13 + Ayt — 4,77,

11 = (At + A3 + o, 15 = HAyt' + A7) — 9.
The differentiation of (4.5) yields the equalities
(4.8) —(d4; — 34373 + 34,0 — 3t3) A Tt +
+ (d4, — 34,13 — 3430 + ) A 2 =0,
(d4, — 34,73 — 34,0 + 13) A ' +
+ (dd; — 34573 + 34,0 + 13) A T2 =0,
(dA; — 34573 + 34,0 + 13) A 7' —
— (dd4; — 34,73 — 3430 — 313) A T2 =0,
and the existence of functions By, ..., Bs: D — R such that
(4.9) —dAs + 34573 — 34,0 + 313 = By;t! + By7?,
d4, — 34,75 — 3430 + 15 = B,7' + By7?,
dd; — 14573 + 34,0 + 3 = Byt' + B,1?,
—dA, + 14,73 + 3450 + 373 = B,t! + Bst?,
ie.,
(4.10) 13 = ¥(B; + Bs)t' + ¥(B, + B,) 1%,
T3 = %(Bz + B,) T+ %(Bs + Bs) i,
dA4, — 34,73 — 34,0 = }(3B, — B,) ' + }(3B; — B;) 2,
d4; — %A:ﬂg + 34,0 = %(333 - 31) 4+ &(334 - Bz) 2.
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If we write
(4.11) DB, := dB, — B;1} — 4B,¢, DB, :=dB, — B,73 + (B, — 3B3) ¢,
DB, :=dB;, — By13 + 2(B, — By) ¢,
DB, := dB, — B,13 + (3B; — Bs) ¢, DBs := dBs — Bs13 + 4B,0,
the prolongation of (4.10) is
(4.12) (DB; + DB;) A t' + (DB, + DBy) A 1% =
= {45(B, + By) + 345(B; — Bs)} 1! A 1%,
(DB, + DB,) A ' + (DB; + DB;) A * =
= {345(B; — Bs) — Ay(B; + By)} ' A %,
(3DB, — DB4) A ' + (3DB; — DB;) A % =
= —3A45(B, + 2B; + Bs — 443 — 443) 1" A 1%,
(3DB; — DBy) A ' + (3DB, — DB,) A % =
= 3A4,(B; + 2B; + Bs — 443 — 443) " A 2.
Let us complexify our affine space 4° and its improper plane P2, With each point
m(p) of our surface let us associate the frame
(4.13) vy i=ey — ey, vyi=e; +iey, v3:=2e;;

for these frames we get the equations

(4.14) dm = w'v; + 0?v, ; dv, = ojv; + wlv, + 0oy,
dv, = wiv, + 0iv, + 0'vy, dvy = 0o, + O3, + O3,
with
(4.15) ol =113 +ip, 02=0), 0}=13, w)=r1;+it3, ©;=;,
(4.16) 0} = —(4; +id,) o', o; = @3 .

Comparing them with (1.20) and (1.23), we have

(4.17) a, = —(A4, +i4,), a, = a,;

(4.18) by = 4(B, — 6B; + Bs) + i(B, — B,),
b, = }(B; — Bs) — }i(B, + B,),
by = }(B; + 2B + Bs), b, =b,, bs=Db,.

The invariants (2.8), (2.16), (2.19) and (2.43) are then

(4.19) Iy = b,b,b3%, I, = a,a,bs', I = a,b3(a;bsb,)™",
Iy=1I;, I, = —%b1b2(afb3)_l , Is =14,

and we get the reagl-valued invariants

(4.20) Jl :211, J2:=Iz, J3:=13+I,3, J4:=[4+Is, J5:=i(14"‘15).

I
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The invariant forms (2.48, ;) are

(4.21) o = 34} + A {(<)? + (%)%},
¥ = By + 2B; + Bs) {(7')* + ()%} ;

from (2.48; 4) we get the real-valued invariant forms

(4.22) Y =y, + ¥4 = (B, — Bs){(z')* — (z?)?} + ¥(B, + B,) 1'%,
Y i=i(Y, — ¥a) = (B, + B,) {(z')* — (z?)*} — ¥(B, — Bs) 72,

In the improper plane P2 we introduce the local coordinates by

(4.23) xefle, + E%, + Ee;.

Comparing them with (2.45) and (4.13), we have

(4.24) xt = (& + %), x? =& —iE%), x* =18,

and the equation of the Lie conic (2.47) is

(4.25) (€' + (&%)* — ¥(B, + 2B; + B5)(£%)* = 0.

Let us suppose that the Lie conic is regular at each point (such a surface will

be called non-maximal); we are then in the position to choose the frames in such
a way that

(4.26) B, + 2By + Bs = -8, &= +1;

¢ = 1in the case of an imaginary Lie conic, ¢ = —1 in the real case. Define By: D —
- R by

(4.27) B, = B, — By — 4¢, Bs= —(B, + B; + 4¢).

Then the equations (4.12, ,) reduce to

(4.28) {dB, — Bot3 — 2(B, + By) @ + det3} A ' +
+ {d(B, + Bs) — (B, + By) 13 + 2Boo} A ©?
= {A43(B, + By) + A,Bo} tt A T*,
{d(B; + B,) — (B, + By) 13 + 2Bog} A 7' —
— {dB, — Byt3 — 2(B, + B,) ¢ — 4et3} A 7
= {A3B, — A3(B, + By)} t* A 1%

this yield the existence of functions C;, C,: D — R such that

Il

I

(4.29) 3 = Cytt + Cyi?.

Define

(4.30) ti= ¢ + HCat! — Ci7?);
then

(4.31) dil = =2 A1, di? =1 AT.
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From (4.29) we have

(4.32) (dCy — Cyt) A T + (dC; + Cy7) A 2 =0,

and consequently,

(4.33) dC, — Cyt = Cyy1' + Cypt?, dCy + Cy1 = Cyatt + Cayat?.
On our surface m: D — A3 let us consider the metric, see (4.21),

(4.34) ds? 1= 3y| = (¢')* + (+)*-

The Gauss curvature x of ds? is given, because of (4.31), by

(4.35) dr = —xt! A 77,

and a direct calculation gives the following

Proposition 3. (Theorema egregium) We have
(4.36) 2w =26+ AL+ A2+ CyyCane
With the use of (4.27) and (4.30), the equations (4.10) take the form
(4.37) = }(B, — 4¢) 7' + ¥(By + By) 7,
13 = }(B, + By) 7' — ¥(Bo + 4e) 2,
(4.38) dA, — 34,5t = 3(3B, — B4 + 24:C, — 645C,) " +
+ H(4B; + B, + 4e + 24,C; + 645C,) 7%,
dA, + 34,7 = H(4By — By + e + 24;Cy + 64,C5) 7' +
+ 3(3B, — B, + 24,5C; — 64,C,) 1% .
Inserting into (4.12), we get
(4.39) {dBy — 2(B, + By)t} ~ ¢* + {d(B2 + B,) + 2Bt} A T
= {A3(B, + By) + A;Bo + 4eC,) A T2,
(d(B, + By) + 2Byt) A 7' — {dBo — 2(Bz + Ba) th AT
= {A3B, — Ay(By + By) — 46C )t A TP
(4.40) {(3dB, — dB, + 2(B, — 8B; — 8e)t} A Tl +
+ {4dB, + dB, + 2(3B, — 5B) 7} A 1 =
= {645(2e + A] + A3) + 2(Bo — 2B3 — 2¢) C; — 4B,C,} A 12,
{4dB, — dB, + 2(5B, — 3By) T} AT +
+ {3dB, — dB, + 2(B, + 8B; + 8e) 1} ATt = |
= {—64,(2¢ + A} + A43) + 4B,Cy + 2(Bo + 2Bs + 26) Co} t' A 70
From (4.33), 4
(4.41) (dCyy — 2Cyp) A 7t + {dCpa + (Cip — Ca2) 7} AT = xC,tt A T2,
{dCyy + (Cyy — Caz)Tp AT+ (dCyy + 2C1p7) A T2 = —xCytt A TP

2

Il
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and
(4.42) dCy; — 2C,1 = Cyqyt' + Cyqp7%,
dC,, + (Cu - C22)T = Cy57 + Cyj07%,
dCy; + 2C537 = Cypyt' + Cyppt?
with
(4-43) Ciz1 — Ciy2 =2Cy, Cypp — Cyyy = %Cy .
5. Let us study several objects associated with an elliptic surface m: D — A3,
Let the frames be chosen in such a way that (4.3), (4.7) and (4.10) are valid. Given

an arbitrary point p, € D, there is its coordinate neighborhood U = D such that
we may write, on U,

(5.1) tt=fdu, t*=gdv, ¢ =g, du+g,dv, 13 =0,du + g,dv;
f=f(u,v),....00 =05(u,v); fg+0.
Then
om om
5.2 — =fe,, — =(ge,,
( ) ou fes ov 96
de
Ej = 3oy — Asf) e; + HALf + 20,) €5 + fes,
dey _ | N
E)" = 2(”2 + A,9) ey + HAsg + 205) ez,
aez

o = %(Azf - 291) e + ‘}(0'1 + Asf) €z,

de

—6:2 = %(Asg - 292) e + %(02 - Azg) e, + ge;.
Inserting into
(5.3) di' =t Al 42 A1, At =1 Al + 2 A TS,
we get

i) dg
(5-4) 'Z = —d0,f — 019, — = —10,9+ e.f -

v ou

Let y: (—h, h) - D be a curve with y(0) = po; let y be given by u = u(t), v = o(1).
We have

(5.5) m(u(t), o(t)) = m + (fu'e; + gv'e;) t +
+ 1Ii{l(zfZ +o.f + A3f2> e; + 3(42f? + 20:f) ey +f2e3} uw?+
21 (2\ Ou

+ {(Azfg - 2@19) e; + (Aafg + Zng) ez} u'v' +
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1/.0
+ {%(ASQZ — 2ggz) ey + 5(25“2 + 0,9 — A292>ez + gze3} o2+
v

+ fu'e; + gv"ez] * + 0(%),

where all expressions on the right-hand side are to be calculated at ¢t = 0 and
u' = du(0)/ds, ..., v" = d*v(0)/ds?. Introducing the local coordinates X* with respect
to the frame {m; ey, e,, e3} at the point m(p,) by

(5.6) X =m+ X'e; + X%, + X3e;,
we may write m(u(t), v(t)) as

1 ’ 1 af 2 2 1.1
(5.7) X =fut+‘—1 25;+a1f+A3f w? + 2(A,fg — 20.9) u'v" +

+ (439% — 20,9) v'* + 2fu”} 2+ 0%,

1
X2 = gv't + Z{(Azfz T 20.f) u? + 2Asfg + 20.f) w0’ +

d
+ <26_g + 0,9 — A2Q2> 2+ ng"} ? + 0(),
v

X* = 3(f2u? + g*v*) 1 + O().
Consider a quadric given by
(5-8) A XX+ AX ' +A4=0.

We get an osculating quadric of our surface m: D — A* as follows: we insert (5.7)

"

into (5.8); then the terms at ¢°, ¢*, > must be equal to zero for each choice of v/, ..., v".
We easily find that the most general osculating quadric is given by

(5.9) (XY)2 + (X2)? + A33(X3)? + 2(A13X" + A,3X2 — 1) X3 = 0.

In the projective extension A% U P? of A3, consider the homogeneous coordinates
X' = &'[E% then the intersection of (5.9) with P? is

(5.10) (E1)2 + (E3)? + (A338> + 24,3E" + 24,381 & = 0.

Let the Lie quadric be defined as the osculating quadric intersecting P? in the Lie
conic (4.25); the equation of the Lie quadric is

(5.11) (X')? + (X2)* — ¥(B, + 2B; + By)(X*)? — 2X* = 0.

It is easy to see that the Lie quadric is a paraboloid if and only if B; + 2B3; + Bs = 0.

Let us suppose, for a moment, that our surface is non-maximal. Then we may
choose the frames in such a way that we have (4.26). It is easy to see that the center S
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of the Lie quadric (5.11) is
(5.12) S=m+ ge;;

this gives the geometrical construction of the normal vector e;.

Let us now return to a general elliptic surface. Denote by N the normal bundle of m
(formed by the affine normal straight lines) and by T'its tangent planes bundle. For
a vector v € V3 and a point m(p) we may write

5.13 v=0v +o¥; TeT,, NeN,;
14 p 14 p 14 p
let us introduce the projections
(5.14) pry: V3> N,, pry: V3> T, by prj(v) =), pra(v) =0} .

Proposition 4. Let m: D — A3 be an elliptic surface with the associated frames
satisfying (4.3), (4.7) and (4.10). Then the N-valued quadratic form
(5.15) do? := {(t")* + (t%)*} es
on D is invariant. Let pe D, t, e T,(D) and let y:(—h, h) > D be a curve such
that y(0) = p, dy(d/dt|o) = t,; we have

(516 pr (‘M ) = () + (@) eslp)

"\ dr?
Proof. Because of (5.5),

(5.17) d*m _ {1 (2 oF | o.f — A3f2> u'? + (A,fg — 20.9) w'v' +

t=

de? 2\ ou

+ 4(A39% — 20,9) v"? +fu”} e +

+ {%(Azfz £ 20 )W + (Asfg + 2020) w't’ +

1/,0 . :
+ 5(2 a_g 029 — Azgz) v+ gvu} ey + (f2u'? + gzer) es
v
with

o 0 du(0) dv(0)
5.18 t,=u'—+ v —eT (D), u =—", ¢V =22,
(5-18) PTG T 5 D) a > " T T
the curve y being given by u = u(t), v = v(r). From (5, ,) we obtain
(5.19) o'(t,) =uf, o¥t,)=1f.
QED.

Proposition 5. Let m: D — A be an elliptic surface. Then the N-valued cubic
form

(5.20) 20!, ) 1= —3{A45(0") = 34(0")? @ — 34;0"(0?)> + Ay (0?)*} es
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on D is invariant, and we have
d3m(y(t d2m(y(t
(5.21) pry <———( (1) 0) 3prl { (pr’;’(,)——&—té)—)
t=

ds
for the notation, see Proposition 4.
Proof. We complete (5.2) by

)} = 10" (t,). @%(1,);

t=

de '

(5.22) —ué = }(B, + B;)fe; + (B, + B,)fe, + 04e3,
Oey
Y = (B, + B,) gey + X(Bs + Bs) ge, + 0ze5.

From (5.17), we get (in the obvious, nevertheless simplified notation)

(5.23) r"da—m ~ faf+3 fif-4 w? + 3(A4,f%g — 20, fg) v +
. p a2 W\Y 5 gy 3f? 279 — 20179
+ 3(A43f9” + 20:.f9) u'v'* + (6ga—g + 30,97 — Azg3> v+
v

+ 6f2ur "4 6g2 ’ II} ,

d d’m d , ,
(524) pI'N {a—i (pI'N Tj}?)} = prN {5 [( Zu 2 + gzv 2) e3]} =

{(Zf v, of 2) — 20.fgu'*v’ + 20,fgu'v’?

+ (2!]%‘1 + 0'292> v+ 2f2u'u" + 2g%0' ”} 35
v
and the proof is (almost) complete. QED.

Now, let m: D — A* be a non-maximal surface, i.e., we suppose that the associated
frames satisfy in addition (4.26), (4.27) and (4.29); e; is the normal vector. Then

633

(5.29) _;_ = };(Bo - 4e)fel + %(Bz + B4)fez + Cifes,
0
_afvi = }{(B, + B,) ge; — H(Bo + 4¢) ge, + Cages.

Proposition 6. Let m: D — A® be a non-maximal elliptic surface. Then the
1-form

(5.30) %(z*, %) 1= Cyt' + Cyt
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on D is invariant, and we have (in the notation of Proposition 4),
3 o () )< ). 2 e
=0

Proof follows immediately from (5.29). QED.

Proposition 7. Let m: D — A® be a non-maximal elliptic surface. Then the
quadratic form

(5.32) B(t',12) 1= By(t')? + 2B, + B,) t'1* — By(1?)?

on D is invariant. Let ds® be the metric (4.34) induced on D, and let {, ) be the
associated scalar product. Then

(5.33) <d_'%7t@_) I (deg(y(t))

? p
Proof. We have

) L 4m0()
0 di

i )= 18 ).

(5.34) pr’” % = H{(B, — 4¢) fu' + (B, + B,) gv'} ey +
4 ’ dm ’ ’
+ 3{(B, + By) fu' — (B, + 4¢) gv'} e, E=fue1+gve2,

and the proof now consists in direct verification of (5.33). QED.

Let us investigate the following problem: on a domain D = R?, let forms
(5.35) ds? = (z1)* + (?)%,

P = Ay(t') — 34,(1")* 1% — 3457 (12)% + A,(1?)%; A3+ A *0,

and further, ¢ = +1 be given. Is there a non-maximal elliptic surface m: D — 43
(at least locally, i.e., a surface m: D’ — 43 with D’ < D) such that (7.1,) is its affine
metric and y = —}®e;? For the definition of y, see (5.20).

Thus the 1-forms t*, 72 as well as the functions 4,, A;: D —» R are given. From

(4.31), we may determine the 1-form 7 and the Gauss curvature ». The left-hand
sides of (4.38) are known; we may rewrite (4.38) as

(5.36) dd, — 3451 = pytt + p,7?, dAy + 34,7 = pytt + pyi?
with p;: D — R known. Comparing (4.38) and (5.36), we get
(5.37) By, = 3py + 3ps + 245C,, By = ip. + 3ps + 24,C,,
By = ip, + 1ps — ¢ — 4,C, — 4;5Cy,
By = 2p, — 2ps + 24,C, — 245C, .
The exterior differentiation of (5.36) yields
(5.38) {dpy — (p2 + 3p3) 1} At + {dp2 + (py — 3pa) T} A T2 =

= 3A4xt! A 1%,
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{dps + (3p1 — pa)t} ATt + {dps + (ps +3p2) T} AT =
= —3d,xt! A 7%
Cartan’s lemma implies the existence of (known) functions p;;: D > R such that
(5.39) dpy = (P2 + 3p3) © = puut' + po7’,
dpy + (p1 = 3pa) T = Pt + pt’,
dps + (3p1 — pa) T = p317' + par7’,
dps + (p3 + 3p2) T = paT + part®;
(5.40) D21 — P12 = 3A3%, D3z — D4y = 34,%.
From (5.37) we find, using (4.33),
(5.41) dB, — 2(32 + B4) T =
= 2(p21 — P31 — P3Cy + piCy — 45Cyy + 4,Cpp) T +
+ 2(pa2 — P32 — PaCy + P2Cs + A;C2 — A3C12) T,
d(B, + By) + 2B, =
= 2(pys + Pay + P1Cy + P3Cy + A;C1y + A3Cro) T +
+ 2p1z + Paz + P2Cy + PaCy + A;C1a + A3C20) T 5
Ay(By + By) + A;B, + 4¢C, =
= 2{(p2 — p3) 4> + (p1 + pa) A3 + (43 + 43 +20) Co},
A3By — Ay(B, + By) — 4C, =
=2{(p; — p3) A5 — (p1 + pa) A, — (43 + A3 + 2¢) Cy}
Inserting these into (4.39) we get
(5.42) Ay(Cyy — Cpp) + 245C15 + (py + Pa) Co +
+(ps—py— A} — A5 - 20)C, =
=q1:= D32 — D1y — Pax — Paz + (P2 — P3) Ao + (p1 + ps) 435
A3(C11 - C22) — 24,Cy, +
+(ps —py + A3+ A3 +26)C; — (py + Pa) Ca =
=q3:= P31 — P31 + P12 + Paz — (P21 + pa) Az + (p2 — p3) 4s
91, 9> being again known functions. Further,
(5:43) 3dB, — dB, + 2(B, — 8B; — 8¢)7 =
=2(2p1; — piCy + 3p;C; — A,Cy + 345C10) T +
+ 2(2p12 — p,Cy + 3p,C, — A,Cy, + 3A3C22) 72,
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4dB; + dB, + 2(332 —5B,)t =

= 2(2py; — 3p3C; — p1Cy — A,Cy5 — 345Cy) " +
+ 2(2p2; — 3p4Cy — p2C; — A,Cy5 — 345Cy5) 7%,
4dB; — dB, + 2(532 - 334) T =

= 2(21’31 - p3Cy — 3p,C, — A5Cy — 3A2C12) th +
+ 2(2p3; — p4Cy — 3p,C; — 34,Cy; — A3Cy5) 72,
3dB, — dB, + 2(B, + 8B3 + 8¢) 1 =

= 2(2pas + 3p1Cy — p3Cy + 34,Cyy — A3Cyy) Tt +
+ 2(2P42 + 3p,Cy — psC, + 34,Cy5 — A3C22) 2

inserting from these equalities into (4.40), we get identities. Using (5.42) and (4.36),
we are in the position to evaluate
(5.44) Cij=ry;Cy +r;Co+r; i,j=1,2;
with known functions r;;, 7j;, 7;: D — R. Inserting into (4.41) we get two linear
equations for C,, C,; thus C;, C, are known. As integrability conditions we have
(4.32).

Hence we see that we can (in principle) determine a non-maximal elliptic surface
by its metric and cubic forms; nevertheless, this method is not very effective.

GLOBAL THEOREMS

6. Before presenting global theorems, let us introduce the following

Definition. Let m: D — A® be a non-maximal elliptic surface. Then m e CI(%) if,
on D,

(6.1) C,=C,=0;
m e CI(#) if, on D,
(62) By=B,+ B, =0. _

The geometrical meaning of these conditions is given in Propositions 6 and 7
respectively. The following proposition is trivial because of (4.39):

Proposition 8. Let m € CI(%); then m e CI(%).
In what follows, m is supposed to be non-maximal and elliptic.

Theorem 1. Let D be compact and orientable, m: D - A3 a surface with ¢ = 1.
Let ¥(m) denote its surface area with respect to its metric (4.34). Then

(6.3) &F(m) = [prdv — 1[p (4] + A3)dv, dv:=1' A 7%,
Proof. Consider the 1-form Q:= %13 = —C,t! + C,;7%, * being the Hodge
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operator with respect to ds®. Then, using (4.36),
(6.4) dQ =(Cyy + Cpy)dv = (2 — 2 — 4] — A})dv,
and (6.3) follows from the Stokes theorem. QED.

Theorem 2. Let D be compact and orientable, m: D — A* a surface with ¢ = 1.
Let x < 1 on D. Then m(D) is an ellipsoid.

Proof. From [,dQ = 0 we have

(6.5) 2fp(¢—1)dv = [p (43 + A4})dv.
The supposition ¥ < 1 on D implies

(6.6) %=1

and

(6.7) A, =A;=0.

This and (4.38) imply
(6.8) 3B, — B, =0, 4B+ By +4=0, 3B, — B, =0,
4By — B, +4 =0,
i.e., by virtue of (4.27),
(6.9) By=0, B,=-3, B,=0, By=—1, B,=0, Bs=—3.

Thus m e CI(#) and, according to Proposition 8, m € CI(%), and we have (6.1).
Because of (4.30) and (4.7), (4.10), our surface is given by the system

(6.10) dm = t'e; + t%e,; de; = te, + tle;, de, = —te; + Tley,

de; = —t'e; — 12e,.
Because of (4.31), this system is completely integrable. It is therefore sufficient to
find one solution of (6.10), any other one being an affine transformation of the

former. Let {O; E, E,, E;} be a fixed frame in 4°. Then, with o€ <0,2n), fe
€0, 2n),

(6.11) m

e, = cosaE; — sin aE,,

O + sinasin BE, + cos asinfE, + cos fE;,

I

e, = sinacos fE, + cosacos fE, —sin fE;, v3=0 —m
satisfy (6.10) with
(6.12) ! =sinfda, t*=dB, t= —cospfdux.

Introducing the affine coordinates by m = O + XE; + YE, + ZE;, we see that
the point m is situated on the ,,sphere” X? + Y> + Z? = 1. QED.

Theorem 3. Let D = R? be a bounded domain, 0D its boundary, m: D — A3
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a surface with e = 1. and let x < —1 on D Further, let € = 0 on dD. Then m(D)
is a part of a hyperboloid.
Proof. We get, compare (6.4),

(6.13) 0=[pQ2=[pQ=[p(2x+2— 4] - A})dv,

which implies (6.7). From (4.38) we have

(6.14) 3B, -B,=0, 4B+ B,—4=0, 4B;— B, —4 =0,
3B, — B, =0,

1.e.,

(6.15) B,=0; B,=3, B,=0, By=1, B,=0, Bz=3.

Once again, we have (6.1) using Proposition 8, and our surface is given by a com-
pletely integrable system

(6.16) dm = tle; + 1%, ; de; = te, + tley, de, = —te, + tle;,
de; = tle; + t2e,.

Similarly to the proof of the preceding theorem, consider

(6.17) m = O + sin a sinh BE; + cos a sinh BE, + cosh BE;,
e, =cosaE, —sinaE,, e, = sinacosh fE; + cos o cosh BE, +
+ sinh BE;, e3=m — O

with o € €0, 27>, B € R. Then the equations (6.16) are satisfied if we take

(6.18) 7! =sinh fda, 12 =dpf, 7= —coshfBdax,

and our surface is the hyperboloid Z? — X? — Y? = 1. QED.

Theorem 4. Let D be compact, m: D - A* a surface. Let m € CI(%#) and » > 0
on D. Then m(D) is an ellipsoid.
Proof. The equations (4.38) and (4.40) reduce to

(6.19) dA4, — 345t = B,t' + (B; + ¢) 1,
dA; + 34,1t = (B; + &) ' — B,1?;
(6.20) {dB, — 4(B; + €)1} A ' + (dBs + 4B,7) A T2 = 3xA;T! A 1%,
(dBy + 4B,7) A ' — {dB, — 4(B3 + &)t} A 12 = —3xd,t' A 7.
From (6.20) we get the existence of functions B;;: D — R such that
(6.21) dB, — 4(B; + &)1 = B, t' + B,,t*, dB3 + 4B,7 = By;t! + By,1%;

B3y — By, = 3xA;, B,; + B3, = 3xA,.
Further, '

(6.22) 3d(4] + A3) = {A,B, + A3(Bs + &)} ' + {A,(Bs + &) — 43B,} 1%,
and the Laplacian Af of a function f: D — R being defined by d * df = Af.do, we get
(623) 3A(A3 + A3) = 2{B} + (B; + ¢)?} + 3x(43 + 43).
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From the maximum principle we get (6.7) and B, = 0, B; = —e&. Proposition 3
yields ¥ = ¢, i.e., ¢ = 1 because of » > 0. Thus we may repeat the second part of
the proof of Theorem 2. QED.

Theorem 5. Let m: D — A® be a surface with m € CI(6). Then either m e Cl(ga)
or the points with vanishing form % from (5.32) are isolated.
Proof. Let m € CI(%). Then (4.39) reduce to

(6.24) {dB, — 2(B, + B,) 1} A t' + {d(B, + B,) + 2Bt} A T
= {A45(B, + B,) + A,By} t* A 7%,
{d(B, + B,) + 2Byt} A t' — {dB, — 2(B, + By) 7} A 7*
= {A3B, — Ay(B, + By)} ' A 7?

Let D' = D be a coordinate neighborhood in D with coordmates (u v) chosen in
such a way that

(6.25) !t =fdu, t*=gdov; f=f(u,v)#0, g =g(u,v)*0.
Because of (4.31),

I

Il

(6.26) T=—g ! gdu +f_l?-gdu,
ov ou
and (6.24) read

(621)  gMBatBd)_ 0By <3f _2 % )(BZ+B4)+<A2fg+2"1)Bo,
u ov u ov

pAB 2 g T = (g —22) (324 3~ (e +202) By
ov au ou

This system for the functions B, + B4, B, being clearly elliptic, it either has the
vanishing solution or the zeros of its solution are isolated. QED.

Theorem 6. Let D be diffeomorphic to the sphere S*(1), let m: D — A be a surface
with m € CI(%). Then m e CI(4).

Proof. If B} + (B, + By)* # 0 on D, the equation #(w', »?) = 0 determines
a net of curves on D. But this is impossible because of D = S%(1). Thus B, =
= B, + B, = 0 at least at one point p, € D. The rest of the proof follows from the
unicity of the solution of the elliptic system (6.27) on the sphere. QED.
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