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NEW APPLICATIONS OF PTAK’S EXTENSION THEOREM
TO WEAK COMPACTNESS

PeDRO J. PAUL, Sevilla

(Received June 23, 1987)

Our purpose is to show how Ptak’s double sequence method in weak compactness,
developed in [4,5] (see also [2, §24.6]), and his Extension Theorem [5, Thm.
(2,2)] can be used to give some new Eberlein- and Krein-type Theorems, extending
also some of Valdivia’s results [6, Thms. 3 and 11].

The notation and the terminology will be standard.

Definition. Let (E, E') be a dual pair. We say that two sets A < E and M < E’
interchange double limits, and we write A ~ M, if for every sequence x, from A
and every sequence u,, from M the existence of both the double limits lim lim {x,, u,,»
and lim lim {x,, u,,> ensures that they are equal. roonm

m n
The proof of the following Krein-type theorem is only sketched in [5, Thm.(3,2)];
since it is somehow delicate and the result will be used in the sequel, we include a full
detailed proof for the sake of completeness.

Theorem 1. Let X be a Banach space (with unit ball U) and A a bounded set
in X. Let M be a norm-generating subset of X' (i.e. M < U° and there exists
r > 0 such that py(x) = erH for all x in X). Then A°® is weakly compact if (and
only ifyA ~ M.

Proof. Let J be the natural injection from X into the Banach space CB(M) of
continuous and bounded functions on M given by (J(x),u) := {x,u). Since
r|x| £ V()| := pu(x) = ||x|, J is one-to-one, continuous and open. Then we
may consider the adjoint J' from CB(M)' onto X'. Define B(x, u) := {x,u) on
A x M; by using Ptak’s Extension Theorem [5, Thm. (2,2)], B can be extended to
a separately continuous bilinear form B on CB(4) x CB(M)' (considering on both
spaces the weak-star topology). For £ in CB(4)' we define a lincar form on X’ in the
following way: )

P(R):ve X - (P(%),v):= B(X, J " '(v) e K
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We must check that B(%, #) does not depend on the choice of # in J'~'(v). Indeed:
since M is total in CB(M)’ (w*), for # in CB(M)’ there exists a net u, from lin (M)
such that 4 = w* — lim u,, then for all x in A we have:

(*) B(x, @) = lim B(x, u,) = lim {(x, u,y = lim {J(x), u,» =
= lim <x, J'(u,)> = {x, J(#)) .

Now, if J'(4,) = J'(#,) then B(-, #;) = B(-, 4,) in A and, since A is total in
CB(A) (w*), therefore in CB(A)'. Now we shall see that, acting on X', P(%) can be
identified with an element of X. Indeed: B(%, +) is continuous on CB(T) (w*),
hence B(%, #) = {f, @iy for some f in CB(M). Suppose that f is not in J(X); since
J(X) s closed in CB(M) (because J is open), by Hahn-Banach theorem there exists
in CB(M)' such that {J(x), #l,» = 0 for all x in X and {f, @,y = 1. But if we take
a net x, in lin (4) such that £ = w* — lim x,, then

1 = <f’ 120> = B()AC’ aO} = hm B(xzz’ 120) = (by(*)) =
= lim {x,, J'(fip)) = lim {J(x,), #,> = 0

a contradiction. Thus f = J(x) for some x in X and, in this case, for all v in X’
we have:

CP(R), 0> = B(&, J''() = <f, I~ (o)) = <J(x), I~ (o)) = <x, 0 .

In this way, we can define the linear map P: CB(4) — X by setting (P(8),v) =
= B(%, J'~*(v)) for vin X". P is weak*-to-weak continuous since J'~(v) is in CB(M)'
and B is separately continuous. On the other hand, for x in 4 and every v in X' we
have:

{P(x),v) = B(x, J'"!(v)) = (by (»)) = <{x,0)

hence P acts on A, and being linear also on acx(A) (the absolutely convex hull of 4),
as the identity. Finally, since A is contained in the unit ball of CB(4) which is
weakly-star compact and absolutely convex, acx(4) is contained in a weakly compact
set, namely, the image under P of the unit ball of CB(A4)'. This implies that A°° is
weakly compact. The ““only if” part is immediate. QED

In what follows, (E, E’) stands for a dual pair. .# will be a family of weakly rela-
tively countably compact sets of E’, whose union is o(E’, E)-total in E’. t will denote
the topology on E of uniform convergence on .#. We recall that T can be strictly
finer than the Mackey topology (e.g. if E and E’ are both the space ¢ of finitely
non-zero sequences and e, is the sequence of unit vectors, then M = {e,} is o(¢, ¢)-
relatively compact but acx(M) is not o(¢, ¢)-relatively compact since it contains
the finite sections of any vector in the unit ball of #* and these sections converge to
the vector in the o(¢*, ¢)-topology).

The following is an extension of Krein Theorem [2, § 24.5.(4) and 6.(1)].
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Theorem 2. Assume that E(’L’) is quasi-complete. Then for a t-bounded set A < E
the following are equivalent:

(1) A is o(E, E')-relatively compact,

(2) A~ M forall M in 4,

(3) A°° ~ M°° for all M in M,

(4) A°° is o(E, E')-compact.

Proof. (1) implies (2) is exactly as in [2, § 24.6.(1)]. (2) implies (3) (this does not
depend on the quasi-completeness hypothesis): Let py(x): = sup {l(x, u)l tueM;
be the polar seminorm associated to M. Consider the nullspace N: = {x : pp(x) = 0}.
The quotient E/N is normed space under the norm ||£]| := pp(x) where % is the coset
of x in E[N. Let X be the completion of E/N(| ). Then 4 is a bounded subset of the
Banach space X, M is a norm-generating subset of X' & N* (whose unit ball is M°°)
and, since (%, u)x x-) = <X, UD(g g, We have that A ~ M. By using Theorem 1,
we obtain: (4)°° (bipolar in X) is o(X, X')-compact, then (4}°° ~ M°° (again by
Theorem 1) and, since the coset of A°° is contained in (4)°°, it follows that 4°° ~ M°°.
(3) implies (4): ‘Again, exactly as in [2, §24.6.(1)] we have that if z is a o(E'*, E')-
closure point of 4°° in E'* (the algebraic dual of E’) then, under (3), z must be weakly
continuous on M°° for every M in .#. By the completion theorem [2, § 21.9.(2)] we
have that z is in the completion F(%) of E(). If F’ denotes the dual of F(%), we have
that B, the closure of A°® in F(o(F, F')) is o(F, F')-compact. Now we have that:

B =A% = 40" = g0 c E

(first equality: A°° is convex; second equality: E(t) is quasi-complete). Thus 4°° = B
is, indeed, o(E, F')-compact and, since E' = F’, therefore o(E, E')-compact. (4)
implies (1) is immediate. QED

Definition. A o(E, E')-bounded subset 4 of E is said to be weakly (relatively)
g-partially compact if the following holds: Whenever z is a ¢(E'*, E')-adherent
point of 4 in E'* then for each weakly relatively compact sequence u, from E’ there
exists x, in 4 (in E) with
(%) {z = X, tyy =0 n=1,2,...

Remark. By replacing such a given sequence u, for the sequence v, v,, v5. ... 1=
D= Uy, Ug, Uy, Us, Ug, Uy, Uy, U, Uy, Uy, ... ONE Can see that (*) is equivalent to the
(formally) weaker condition lim {z — X, 4,y = 0. This also applies to the concept

of weak (r) partial compactness introduced by Day (in which z is assumed to be
a o(E'*, E')-adherent point of a countable subset of A, but the sequences u, are taken
from absolutely convex, o(E’, E)-compact sets, see |2, § 24.3]). Bearing this in mind,
we have [2, § 24.3.(2), (3), (4)] that if 4 is weakly (r.) countably-, pseudo- or convex-
compact then A is weakly (relatively) g-partially compact. This is also the case of
the sets studied by Valdivia [6]. A stronger condition is true, indeed:
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Proposition. Let A be a subset of E such that every 6(E, E')-continuous real-valued
function on E is bounded on A. Then for every sequence u,jrom E' and every z,
o(E'*, E')-adherent point of A in E'*, there exists x, in E such that (**) holds.

Proof. The functions f,(x) 1= |[{x — z,u,»| n = 1,2, ... ate weakly continuous
@
on E, therefore f(x) := Y f,(x)[2"(1 + f,(x)) is also weakly continuous (Weierstrass
n=1

M-test). Since we may choose x such that fy(x), ..., f,.(x) are small enough for every
fixed m. it is clear that inf {f(x): x € 4} = 0. If there exists x, in E such that f(x,) =
= 0, we are done. If f(x) > 0 for all x in E, then g(x) := 1/f(x) would be a weakly
continuous real valued function on E, but unbounded on A: a contradiction. QED

Our Eberlein-type theorem for weak relative g-partial compactness is the following:

Theorem 3. Let E(t) be quasi-complete and A a t-bounded weakly relatively
g-partially compact subset of E, then A is weakly relatively compact.

Proof. According to Theorem 2, we have to prove that A ~ M for every M e /.
Assume that x, from A and u,, are sequences such that {x,, #,» =, &, —, o and
{Xps Uy =, B = B. Since A is o(E, E')-bounded, the sequence x, has a o(E'*, E')-
adherent point z in E'* and B,, = <z, u,,» for all m. Since M is J(E', E)-relatively
countably compact, u,,is o(E’, E)-relatively compact and o, = {x,, u,) for all » and
some u, o(E’, E)-adherent point of u,, in E’. Now take the point x, in E correspon-
ding to (xx) for the sequence uq, uy, u,, ... then we have

la - ﬁl é IO: - <X,,, ll0>l + l(-\‘n -z, u0>l + [<X0, Uy — um>| + I<XO> Um> - ﬁl

and these summands can be made arbitrarily small for suitable m and n. QED

Corollary 1. A Banach space E is reflexive if and only if every O(E’*, E')-closure
point of its unit ball is 6(E', E)-continuous when resiricted to separable subspaces
of E'.

Our Theorem extends results previously given by Ptak [3], Dieudonné [1] and,
by using the Proposition above, Valdivia [6, Thm. 3]. Also note that the Theorem
remains valid if we assume Day’s weak relative partial compactness, since we use only
that z is o(E'*, E')-adherent to x,. In this way we also extend [2, § 24.3.(6)]. The
purpose of keeping the condition (#x) for every adherent z is to give, finally, an exten-
sion of [6, Thm. 11].

Corollary 2. Let E(t) be quasi-complete and A a convex weakly relatively g-
partially compact subset of E, then A is weakly relatively compact.

Proof. We have to prove that A4 is t-bounded. We shall make use of an idea of
[6, Thm. 8]: If M e.Z, let G be the subspace of E’ of elements bounded on M.
Let A* be the a(E’*, E’)—closure of A in E'*, If A* is not contained in G we can
find z in A* and u, from M such that {z, u,) —, o0, take the point x, in E satisfying
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(**) to obtain a contradiction with the fact that M is o(E’, E)-bounded. Thus A* is
contained in G and, since A* is o(G, E')-compact and convex and M° (the polar
in G) is a barrel, M° absorbs A* and this implies that sup {py(x): xe A} < + ov. QED
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