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1. INTRODUCTION

A topological space X is said to be strongly Fréchet [ 15] (=countably bi-sequential,
in the sense of E. Michael [8]) if for any decreasing sequence {4,: n € N} of subsets
of X such that x € 4, it follows that there exists a point x, in 4, such that {x,: ne N}
converges to x. If we put A, = A for every n e N, then the resulting space is said
to be Fréchet. In general Fréchet spaces behave very badly with respect to product
operations. In fact P. Simon [14] showed that the product of two compact Fréchet
spaces need not be Fréchet. Nevertheless it is known that there exist some subclasses
of Fréchet spaces which behave nicely with respect to product operations; bi-sequen-
tial spaces [8], W-spaces [5] and <as-FU)-spaces [1,2, 10, 11] form such nice
subclasses. The purpose of this paper is to present such nice classes. Before we mention
the purpose in detail we would like to note an example obtained by G. Gruenhage
[6]: Assuming a Martin’s axiom there exists a space X such that X" is strongly
Fréchet for every n e N, but X is not Fréchet. In this paper we shall study the fol-
lowing problems:

Problem 1.1. Let [| X; be Fréchet for each ne N. Under what additional con-

1 _

i

ditions for X;, is [] X; Fréchet?
i=1
Problem 1.2. Let X and Y be regular countably compact Fréchet spaces. Under
what additional conditions for X, is X x Y Fréchet?

Since W-spaces and bi-sequential spaces are {a5-FU )-spaces, so fas as the author
knows, the class {(a3-FU) is the widest class which satisfies the problems 1.1 and 1.2
at the same time ([2], [10]). But recently the author showed that there exists a non-
{a3-FU)-space X which gives an answer to the problem 1.2 ([12]). Therefore it is
expected to find out new classes which contain <{a3-FU)-spaces and the above
example X, and which give answers to problems 1.1 and 1.2 at the same time.

We shall introduce new classes {a;-FU) = (a’-St) = {al-St) = {a?-St) < ...

. = (d-St) = ... = {a®-St) and show that problems 1.1 and 1.2 are true for the
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class (o*-St), ke N. We also show that the class {a®-St) satisfies the problem 1.2.
We construct, under the continuum hypothesis (CH), an {a"-St)-space which is not
an {a™-St)-space for m < n. In fact the example obtained in [12] is an {a'-St)-space
which is not an {a3-FU )-space.

In this paper all spaces are assumed to be Hausdorff topological spaces.

2. DEFINITIONS AND PRODUCTS OF {(a*), (a®)-SPACES

Let X be a space. In this paper a sequence in X means a map f: M — X, where M
is a countable set. If M is infinite, then the sequence is said to be infinite. As usual
we also denote the sequence f as {x,: n € M}. But we strictly distinguish the sequence f
from the image of f. If M is infinite, then the sequence {x,: n € M} is infinite but the
set {x,: n € M} may be finite. We denote by |A| the cardinality of aset A. For a col-
lection & = {4,: «€ Q} of subsets of a set X and a map g:X — Y, we put
9() = {9(4,): 0 Q}.

A collection & of convergent sequencesin X is said to be a sheaf in X if all members
of o converge to the same point of X, which is said to be the vertex of the sheaf 7.
In this paper all sheaves are assumed to be countable. We consider the following
properties of X which were introduced by A. V. Arhangel’skii [1, 2]:

Let o7 = {A,: ne Njbeasheafin X with vertex x € X. Then there exists a sequence
B converging to x such that:

(a3) |{n e N: A, ~ Bis an infinite subsequence of 4, and B}| = w, where o is the
first infinite cardinal number.

(2g) [{neN: 4,0 B + 0}| = .

We say B satisfies («;) with respect to .« if B satisfies the property (o;) for i = 3, 4.
The class of spaces satisfying the property (al) for every sheaf o/ and vertex xe X
is denoted by <a;). We denote by {a;-FU) the intersection of the class <{«;) and the
class of Fréchet spaces. For a class ¢ of spaces an element of % is said to be a €¢-space.
A. V. Arhangel’skii showed that the class {a,-FU) is precisely the class of strongly
Fréchet spaces, and showed that every bi-sequential space is an {a3-FU)-space.
For further properties and applications of {a;y-spaces (i = 1,2, 3, 4), see [1], [2],
[4], [10], [11] and [12]. We introduce new properties (") and («) as follows.

Let o = {A,: ne N} be a sheaf in X with vertex x € X. A sheaf # with the same
vertex x is said to be a cross-sheaf of o if |[{ne N: 4,0 B # 0}| = o for each Be #
and U2 < U. A sheaf o/’ = {&],: me M} is said to be a subsheaf of o/ if M
is an infinite subset of N and for each m e M, A4,, is an infinite subsequence of 4,,.
A sheaf o7 is said to be O-nice if it is convergent, o is said to be (k + 1)-nice if each
cross-sheaf of o has a k-nice subsheaf.

(«*) For each sheaf o in X, there exists a k-nice subsheaf of /.

We denote by (o) ({a®) the class of all spaces satisfying («*) ((«") for an neN,
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respectively) for every sheaf &/ and vertex x € X. Clearly (a®) = {a3). If 0 £ k =
< n £ o, then every {&)-space is an {a")-space.

Now we study products of {«*)-spaces.

Lemma 2.1. Let € be a sheaf in Z = X x Y with vertex z. If each subsheaf of
nx(€) and ny(€) has a k-nice subsheaf, then there exists a subsheaf €' of € such
that ny(€’) and ny(€') are k-nice subsheaves of ny(%) and my(%), respectively, where
nyx and Ty are the projections from Z to X and Y, respectively.

Proof. By the assumption, there exist L = N and an infinite subsequence C, of C,
for every ne Lsuch that {ny(C}): ne L} is a k-nice subsheaf of nx(%). Put " =
= {C;: ne L}. Since 1,(%") has a k-nice subsheaf, there exists M < Land an infinite
subsequence C;, of C, for every n € M such that {rn,(C;): n € M} is a k-nice subsheaf
of {ny(C,):'ne L}. ¢ = {C,: ne M} is a desired subsheaf of . The proof is com-
pleted.

Lemma 2.2. Let € be a sheaf in Z = X x Y with vertex z = (x, y) and ¢’ be
a subsheaf of € such that ny(€') and ny(%') are k-nice subsheaves of ny(%)and n (%),
respectively. Then €' has a k-nice subsheaf. )

Proof. We show the assertion by induction on k. For k = 0, put
¢ ={C,meM}, C,={(xy y): neN}

Without loss of generality we can assume x) # x and y,' # y for every (m, n)e
€M x N. Put

D, = C, — nz'({xi:i,j

IIA

m—1Dun ({piij<m-— 1}).
Then C,, — D, is a finite set. Put
P = {D,:meM}.

We show Z is a 0-nice subsheaf of ¢, i.e. U Z a is convergent sequence.
Let U x V be an open neighborhood of (x, y) in X x Y. Put
S={(xry)eU2:xy¢U},
T={(xy,yn)eUZ: y ¢ V}.
We show S U Tis a finite set. Assume S is infinite. Then, since 7x(S) is finite, there
exist my, m;€ M, ng, n,€ N (i € N) such that (x)°, yri)e D,, for i e N. But this is
impossible since D,, N mg '(xj°) = @ for n; > nq. Similarly T is finite.

Assume the assertion has been proved for k ( 20). We show the case k + 1.

Let # be a cross-sheaf of ¢’. Then 7x(#) and ny(#) are cross-sheaves of my(%")
and my(%"), respectively. Since nx(%") and 7y(%¢’) are (k + 1)-nice subsheaves of (%)
and 7y(%), respectively, ny(#) and 7y(%) have k-nice subsheaves. By Lemma 2.1
and by the inductive assumption, % has a k-nice subsheaf. This shows the assertion
is true for the k + 1. The proof is completed. ®
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By Lemma 2.1 and 2.2 we have the following theorem.

Theorem 2.3. Let X and Y be {o«*)-spaces (<oc“’>-3paces). Then Z =X X Y is an
{o*y-space, ({(«“y-space, respectively).
Lemma 2.4. Let o/ be a sheaf in X = [|X; with vertex x € X. If each subsheaf
i=1
of () has a k-nice subsheaf for every ne N, then there exists a subsheaf <’
of o such that m,(s£') is a k-nice subsheaf of n,() for every ne N, where m,: X —

- HX,. is the projection for every ne N.

i=1

Proof. We first construct a subsheaf «, of m,(+#) and it’s k-nice subsheaf oA,
such that m(2/},) is a k-nice subsheaf of 7, for m = n, where 7, HX - HX is

the projection. Put &/, = {n,(4,): ne N} and My, = N. Let &/} = {A,,. neM,}
be a k-nice subsheaf of 7, such that A, is an infinite subsequence of m,(4,) for every
n e M. Inductively we construct «/; and o/ as follows: Put

oA ={(ri_)" (4" )nrfd,)neM;_} for j=2.
Then o/, is a subsheaf of n (/). Let &/ = {A4]: ie M} be a k-nice subsheaf of o,
where M; = M;_, and A} is an infinite subsequence of (ni_,)™* (45~ ") n 7,(4,)
for n e M;. Note that M; is infinite by the definition of a subsheaf. Choose n; e M;
such that n; < n;,, for each je N.

Now we define
= {n,, (4] )0 A, jeN}.

Then o/’ is a subsheaf of &/ and n,(«’) is a subsheaf of ;. Clearly a subsheaf of
a k-nice sheaf is k-nice. Therefore m,(=/') is k-nice for every n e N. The proof is
completed.

L]
Lemma 2.5. Let o = {A,: ne N} be a sheaf in X = [| X, with vertex x such
i=1

that each subsheaf of n,,(d) has a k-nice subsheaf for every ne N. Then & has
a k-nice subsheaf.

Proof. We prove the assertion by induction on k. Let k = 0. By Lemma 2.4,
choose a subsheaf &/’ of & such that r,(/’) is 0-nice for every n e N. To avoid the
complexity of the notations we put &/’ = . Put

A, = {xp:m eN} ‘

A=A, — U n_l({nm(xj) i,j < m, m,(x}) * m(x)})-
Then o' = {A’ n eN} is a subsheaf of 7. We show &/’ is O-nice. Let V = H U; x
X H X; be an open neighborhood of x in X. Since Un, (&f) is a convergent se-

i=n+1
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quence, Un,(«') — [] U, is a finite set. Put
i=1

(i xi2)) = Ut = T1U,

t=max {n, iy, .., ips jis-eerim) -
Then
Aoy (m({x, . xinl) =0 for s>t
and
|[4s oy H(m({x5 .o xim))| < @ for s <t

because m,(A) is a sequence converging to m,(x) and m,(x¥) # m,(x) for every r =
=1,2,...,m. These show (X — V) (U=’) is a finite set. The proof of the case
k = 0 is completed.

Assume the assertion has been proved for the case k = 0. We show the case
k+ 1.

Let &/ be a sheaf with vertex x such that 7,(&) is (k + 1)-nice for every ne N.
Then, by Lemma 2.4, there exists a subsheaf &/’ of &/ such that =,(«/') is a (k + 1)-
nice subsheaf of x,(o/) for every n e N. We show &' is (k + 1)-nice.

Let % be a cross-sheaf of «/’. Then n,(#) is a cross-sheaf of m,(=#"). Since 7,(2/")
is (k + 1)-nice, n,(%) has a k-nice subsheaf. By Lemma 2.4, # has a subsheaf %’
such that nn(%’) is k-nice for every n € N. Therefore, by the inductive assumption %’
has a k-nice subsheaf. This shows «/" is (k + 1)-nice. The proof is completed.

Theorem 2.6. Let X ; be an (a*>-space for every i € N. Then [1X;isan {a*)-space.

i=1 n

Proof. Let ./ be a sheaf in X with vertex x. By Theorem 2.3, [] X, is an <{a*)-
i=1

space for every n e N. Therefore each subsheaf of m,(.#) has a k-nice subsheaf. By
Lemma 2.4 and 2.5, we can choose a k-nice subsheaf o7’ of .. The proof is completed.

In § 3 we shall show that the countable product of {a”)-spaces need not be an
{a”y-space under (CH).

3. {o*-Sry-SPACES AND FINITE PRODUCTS

According to E. Michael [8], the product X x C is Fréchet if and only if X
is strongly Fréchet, where C = {0} U {1/n: n € N} with the usual topology. Hence
if we expect the Fréchetness of products, it is natural to require that each factor
space is strongly Fréchet. We denote by (a*-St) ((a®-St)), the class of all strongly
Fréchet spaces with the property (o) ((«), respectively).

Lemma 3.1. Let X be a strongly Fréchet space and Y be a regular countably
compact Fréchet space. Let C, = {(x"m, y::,): me N}, neN, be convergent sequences
in Z = X x Y satisfying the following conditions:

(1) Each C, converges to a point (x, y") for ne N. 3
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(2) {y": neN} is a sequence in Y converging to a point y, where y" + y for every
neN.

Put A, = {x}: me N}. Then

(3) o = {A,: ne N} is a k-nice sheaf with vertex x.
Then there exists a sequence {(x,7, y;i) € C,: j € N} converging to the point (x, y).

Proof. We prove the assertion by 1nduct10n on k. Let k = 0. Then & is a O-nice
sheaf, therefore |J.«/ is a sequence converging to x. Put A = U{C,: n € N}. Then
A = (U« v {x}) x Yand (x, y)e A. Since a regular countably compact Fréchet
space is strongly Fréchet [13], (U U {x}) x Y is Fréchet by Michael’s theorem
(see introduction of this section). Therefore there exists a sequence B in A con-
verging to (x, y). If B~ C, is an infinite set for some n € N, then B converges to the
point (x, y"); this contradicts y" # y. Therefore B n C, is a finite set for every n e N.
Choose n; < n, < ... such that Bn C,, + 0 and choose (x;/,y)eBn C,,
Then {(xy/, y»/): j € N} converges to the point (x, y). The proof for the case k = O
is completed.

m;j> ymj

Assume the assertion has been proved for k (=0). We show the case k + 1.
Put
#={BcU{C,:neN}: |BnC,| <o forevery neN, nyB)

converges to the point x and ny(B) converges to a point ygz € Y}.
We show
() yecl{ys: Be %}.
Let V be an open neighborhood of y in Yand W be an open set such that y eW <
< W < V. Since {y": ne N} converges to y, there exist ng, n,, € N such that

iz n, m2n} W,

Since {x7: i = n,,} converges to x for each m € N, by using the strongly Fréchetness
of X, there exist xi/ € A4,,, mo < m; < mj,,n, < i; such that {x}/: je N} con-
verges to the point x. Since Y is countably compact Fréchet, there exist a convergent
subsequence {Viio: re N} of {y¥:je N} and its limit point y(W)e W = V. Put

= {(x790, y750): re N}. Then clearly Be # and yz = y(W)e W = V. The proof
of () is completed.

Since Y is Fréchet, there exists B, € # such that {yp: n eN} converges to the
point y. Without loss of generality we can assume yp =+ y. Put B, = B, —
— U{C;: i £ n}. Then B, is an infinite subsequence of B,. Clearly {ny(B,): n e N}
is a cross-sheaf of {ny(C,): ne N}. Since {ny(C,): ne N} is (k + 1)-nice, {ny(B,):
n e N} has a k-nice subsheaf. Therefore we can choose an infinite subset M of N and
an infinite subsequence B;, of By, for each m € M such that {ny(B;,): m € M} is a k-nice
subsheaf of {rny(B,): n € N}. By the inductive assumption for k, there exists a sequence
A ={(xp, ¥y )€ By, : i e N} converging to the point x. By the definition of B}, 4N C,

is a finite set for every n € N. Hence, by taking a subsequence of A, we can assume
each (x,,, , Vi) is contained in different C,. The proof is completed.

. 267



Since each (a3-FU)-space is an {a®-St)-space, the following theorem gives
a generalization of Theorem 5.16 of [2].

Theorem 3.2. Let X be an {a®-St)-space and Y be a regular countably compact
Fréchet space. Then Z = X x Y is Fréchet.

Proof. Let A = Z, z = (x, y)e A. If zecl(4n {x} x Y), then the arguments
are completed trivially. Therefore without loss of generality we can assume 4 N {x} X
x Y = 0. Let 47, be a neighborhood base of y in Y. Let Ve 77,. We first show that
there exist a convergent sequence A(V)in 4 n (X x V) and its limit point (x, y(V))
such that y(V) e V. Clearly x € cl (ny(A n X x V)), so by using the Fréchetness of X,
we can choose x, € my(4 N X x V)such that lim x, = x. Choose (x,, ¥,) € 5 '(x,) 0

N A nX x V. Then, since Y is countably compact Fréchet, there exist a convergent
subsequence {y, :keN} of {y,,neN} and its limit point y(V). Put A(V) =
= {(Xpp Ym): k€ N}. Clearly A(V) converges to (x, y(V)) and y(V)e V. By using
the regularity of Y, it is easy to see y e cl {y(V): Ve ¥'}. Now the Fréchetness of Y
implies that there exists {V,: ne N} such that lim y(V,) = y. Let C, = A(V,) be
n—>o
a convergent sequence constructed for V, in the above arguments. Put
C,={(xi, i): keN}, A,={x;:keN},
o ={A,:neN}, yV,)=".

Note that &/ has a k-nice subsheaf in X with vertex x for some k. By Lemma 3.1,
there exists a sequence in A converging the point (x, y). The proof is completed.

It is easy to see that an (a;-FU)-space is an {a,-FU)-space (hence strongly
Fréchet space) by the definition. But as is shown by the following example, Fréchet
space with the property («*) need not be strongly Fréchet.

Example 3.3. Let S, be the sequential fan, i.e. S, = {00} UN x N, where each
point of N x N is an isolated point, and the collection {{c0} U {(m, n): n > f(m)}: f
is a function from N into N} forms a neighborhood base of the point co. Then as is
well-known S, is a Fréchet space with the property («*), but it is not strongly Fréchet.

Clearly an { a3-FU »-space is { a*-St}, but the converse need not be true under (CH)
In fact we construct an {o**'y-space X,,, which is not an {o*)-space for each
k =0,1,... under (CH).

We denote by SN the Stone-Cech compactification of N. For ‘a subset A of N,
A* = Clgy A. In the arguments below of this section, Int A and Bdy 4 denote
respectively the interior of A in N* and the boundary of A in N* for a set 4 = N*.

We recall the following well-known facts we shall use later.

Fact 1. Two disjoint cozero sets in N* have disjoint closures.
Fact 2. Let Z be a non-empty zero set in N*. Then Int Z + 0.

Lemma 3.4(CH). Let Z be a zero set in N* with non-empty boundary Bdy Z
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in N*. Let H be a non-empty closed subset of Bdy Z and U be a clopen subset of N*
with H < U. Then there exists a regular closed subset E; in N* such that:
(i-1) E, c ZA U,

(ii-1) H = Bdy E,,

(iii-1) H = Bdy (U — E,).

Proof. Without loss of generality we can assume U = N*. We construct F; by
transfinite induction. Note that the cardinality of the set of all zero sets in N* equals
the cardinality of the continuum. Let {Z,: a < w,} be the family of all zero sets in Z
such that Hn Z, #+ 0 for « < w,, where w, is the first uncountable ordinal. Let
{K,:a < w;} be a family of zero sets in Z such that K, = K, for « > f, K, =
= N{Ky: p < a} if o is a limit ordinal and H = N{K,: « < o}.

Let O, and V; be non-empty disjoint clopen subsets of N* contained in Z; n K;.
Inductively we assume that we have defined, for each f < a, non-empty clopen subsets
Oy and V; of N* such that:

(1) U{0,:7 < B} = 05, UV y < B} = W,

(2) (OB - U{Ov: V< B})U (Vﬂ - U{Vv: Y < ﬂ}) < Ky,

(3) 050 Zy 0, Vs Z, 0,

(4) 0,nV; =190 for y,6 < a.

We define 0, and V,. We first define O}, and V; as follows: Put 0, = U{0;: B < a}.
If o is isolated, we put O, = O,(= 0,-,) and V, = V(= V,_,). Assume o is a limit
ordinal. Then the relation

U{(N* = Kj) — 0p: B <o} =(N* = N{Kp: B <a}) — O,
shows that (N* — N{K: f < «}) — O, is a cozero set in N*. Thus it follows that O,
and (N* — N{K;: p < a}) — O, are disjoint cozero sets in N*. By Fact 1 we can
choose disjoint clopen subsets O, and V, which contain O, and (N* — N{Kj:
B < a}) — O,, respectively.
Choose non-empty disjoint clopen subsets S, and T, such that

S,uT,cK,nIntZ — O, v V,.

Let 0, = 0,u S,and ¥, = V; U T,. We have chosen O, and V, (« < w,) satisfying
the conditions (1)—(4).
Put
E; = CU{0,: o < w,}).

Then clearly E, is a regular closed set in N* which satisfies (i-1). We show (ii-1) and
(iii-1). Let U be any clopen subset of N* with U n H # 0. Then U n Z # 0 by Fact
2. Since U n Z is a zero set in N* which has non-empty intersection with H, there
exists o < w; such that Z, =UnNZ. Then 0 + Z,nE; cUNE; and 0 + Z,n
N(N* — E;) cUn(N* — E;) by (3). Therefore H < BdyE, and H <
< Bdy (N* — E,). We show Bdy E, = H. By (2) Bdy E, c K, for every o < @y,
therefore Bdy E; = N{K,: @ < w,} = H. The proof of Lemma 3.4 is completed.

269



We call a regular closed set E; constructed by the above method a 1-nice set
with respect to (Z, H, U). We shall define a k-nice set (k = 1) with respect to (Z, H, U)
by induction on k. The definition depends heavily on the above construction. Assume
a k-nice set E; with respect to (Z', H', U’) has been defined for a zero set Z', a non-
empty closed subset H' = Bdy Z’ and a clopen set U'(> H’).

(k + 1)-construction: Let Z, H, U be the same as the ones in Lemma 3.4. We shall
define a (k + 1)-nice set E, ., with respect to (Z, H, U) as follows: The notation
used below is the same as in the proof of Lemma 3.4. We first define a regular
closed set L, = N* by transifinite induction on a. Put L; = O;. Assume L;, f§ <
< o < w; has been defined satisfying

(5) Ly c Uy for B < a,

(6) L, = L, for y < f <a,

(7) Sy = Ly for B <a,

8) Lyn o, =L, for y < B <a,

(9) CIL, — L, = N* — O, where L, = U{L,:y < B}.

If « is isolated, then put L, = L,_; U S,. Let « be a limit ordinal. Put

(10) H, = CIL, n (N* = O,).

Then

(11) H, = CIL, - L,

We show (11). Since L, = O, by (5), H,n L, = (N* — O,)n L, = 0. This shows
H, = CIL, — L,” We show the converse implication. Let pe Cl L, — L,. It is enough
to show pe N* — O,. If pe O,, then pe O, for some f < o. By (8) 0, — L, =
= 04 — L, therefore O; — L; is an open neighborhood of p which is disjoint from
L,. This is a contradiction. The proof of the equality (11)is completed. By (10) and (11),
H, is a non-empty closed subset of the boundary of a zero set N* — O,; we can
choose a k-nice set L, with respect to (N* — 0,, H,, O,) by the inductive assumption
for k. Put L, = L, u L, U S,. We have defined L, (x < w,) satisfying (5)—(9).
Put : .

E,ry = ClU{L,: « < 0} .
It is easy to prove that E, , , is a regular closed set. We call a regular closed set Ey+ ¢
(k + 1)-nice with respect to (Z, H,U). For the sake of the convenience, we call
a set E, 0-nice with respect to (Z, H,U)if E, = Zn U.

Remark 3.5. Let W be a clopen set with Wn H = 0. Then clearly Wn Ey44
is a (k + 1)-nice set with respect to(Wn Z, Wn H, W U).
The properties of a k-nice set E, are summarized by the following lemma.

Lemma 3.6 (CH). Let Z, H, and U be the same as in Lemma 3.4. Then there
exists a regular closed subset ‘E, in N* such that:

(i-k) Ex = Zn U,

&
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(ii-k) H = Bdy Z ~ Bdy E,,

(iii-k) H = Bdy (U — Ey),

(iv-k) Let J be a zero set in N* such that J 0 E, # 0. Then Int J 0 E; # 0.

(v-k) Let J be a zero set in N* such that J n H # 0. Then there exist non-empty
clopen subsets P; = Z n E; and a clopen subset W of N* such that Wn E, — P is
a (k-1)-nice set with respect to (W — P, Bdy P, W), where P = {P;: i € N}.

(vi-k) Let {P;: i e N} be a collection of non-empty clopen subsets of N* such that
P, < E, for every ne N. Then there exist an infinite subset M < N, non-empty
clopen set Q,, < P,, for every me M and a clopen set Wof N* such that Wn E, — Q
is a i-nice set (0 =i < k — 1) with respect to (W — Q, Bdy Q, W), where Q =
= U{Q,: me M}.

Proof. It is easy to prove (i-k) — (iii-k) by the construction and the arguments
in the case k = 1. Since the boundary of E, is the boundary of some i-nice set (1 <
< i £ k-1) by the inductive construction, it is easy to prove (iv-k) by the construc-
tion. We prove (v-k). Since J n H + 0, by (5) and (7), we can choose a; < a, < ...
such that P,, = J n E,. Put P, = P,, and « = sup {«;: i € N}. Then the relation

(N* —K,) — P =U{(N* =K, ) — U{P,;:i=1,2,....n}: ne N}
shows that (N* — K,) — P is a cozero set in N*. Let W< O, be a clopen set
which contains P and disjoint from (N* — K,) — P. Then
Wn Bdy E, = Wn Bdy L, = Bdy P

and Wn L, = P. By Remark 3.5, Wn E, — P is a (k-1)-nice subset with respect
to (W — P, Bdy P, W). The proof of (v-k) is completed. The proof of (vi-k) can be
done using a similar method as in the proof of (v-k) and the inductive hypothesis
but it is routine. We left it to the reader. The proof of Lemma 3.6 is completed.

Let F be a closed subset of N*. Put X = N U {F} and topologize X as follows:

each point of N is isolated and the family {U U {F}: U < N and F < U*} is a
neighborhood base of the point F in X. The following facts are well known.

Fact 3. Let A = N. Then A converges to the point F in X if and only if A* < F.

Fact 4. ([7, Theorem 1]). X = N u {F} is strongly Fréchet if and only if F is
regular closed in N* and, for each zero set K in N* such that K F + 0,Int K n
NF 0.

Now we construct an {o**'-St)-space X, which is not an («*-St)-space.

Example 3.7 (CH). Let E,,, be a (k + 1)-nice set with respect to (Z, Bdy Z, N*).
Put Fy = (N*—Z)UE,, . Then X, = NU{F,,,} is an {a**!-St)-space which
is not an {a*-St)-space for k =0, 1, ... .

Proof. It is easy to see that the zero set Z can be expressed in the form Z =
= N* — U{T;}: ne N}, where {T,: ne N} is a family of pairwise disjoint infinite
subsets of N and U{T,: ne N} = N.Clearly & = {T,: ne N} is a sheaf in X with
vertex F, ., by Fact 3. We call such a sheaf g a principal sheaf in X, ;.
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Assertion 1. The space X, does not satisfy («°).

Proof. Let 7 = {T,: ne N} be a principal sheaf in X,. Let 7' = {T,: ne M}
be any sub-sheaf of 7. Put T=UZ . Then T* n Bdy Z + 0. Therefore there exists
an infinite subset A of Tsuch that A* = Z and A* n E; = 0 by (iii-1) By Fact 3 Tis
not a convergent sequence.

Assertion 2. The space X, is an {a*-St)-space.

Proof. By fact 4 X, is strongly Fréchet. We show X satisfies ().

Let o = {A,: ne N} be a sheaf with vertex x. If x # F, then the arguments are
completed trivially. So we assume x = F,. By Fact 3, AF = F,. Note that the sets
Ay n(N* — Z) and A; n E, are clopen subsets of N* for each ne N. Indeed, if
Ay n(N* = Z) is not clopen in N*, then Bdy H n Cl(4; n (N* — Z)) + 0, hence
AYnBdyZ # 0. By (iii-1), A} n(Z — E,;) + 0, which contradicts Ay < F;.
Similarly we can show A4, N E, is a clopen subset in N*. Since 4} n (N* — Z) and
A¥ n E, are clopen subsets in N* we can choose B, = 4, and C, = 4, such that
By = Ay n(N* — Z) and C} = Ay N E;.

Case L |{neN: C} + 0}| = .

Put M = {neN: C; # 0}. By (vi-1) in Lemma 3.6 there exist an infinite subset L
of M and an infinite subset W of N such that W* n E; — P is a O-nice set with respect
to (W* — P, Bdy P, W*), where P = |){C,: ne N}. Therefore by the definition
of a O-nice set with respect to (W* — P, Bdy P, W*), W*nE, — P=W*n
Nn(W* — P)= W* — P.Since W*NE, c E;and P < E;, W* c E,.

Let o' = {4, W: meM]}. Since A4, N W contains 4, N C, except finitely
many elements of N for each m e M, it follows that o/’ is a subsheaf of 7. Let
2 = {D;: i€ N} be a cross-sheaf of «#’. Then D; = Wfor any i € N. The implication
W* < E; < F{ shows W converges to F; in X; by Fact 1. Since UZ < W, 9 is
0-nice. This implies &/’ is 1-nice.

Case IL |[{neN: C} + 0}| < o.
In this case |{n e N: By % 0}| = w. We prove this case dividing it into two cases.

Case II-i. There exist infinitely many B,,j(=}= (Z)) and their infinite subsets B, S
such that Bdy Z n CIU{B; : je N} = 0.

Choose a subset C of N such that
ClU{B):jeN} =« C* = N* — Z.
Put &' = {B, nU:jeN}.
If Efj + 0, then 4, N C contains 4, N E,,j except for finitely many elements of N.
Therefore <’ is a subsheaf of «/. Let 2 = {D;: je N} be a cross-sheaf of &#’. Then

D; = C for any je N. The implication C* ¢ N* — Z < F shows C converges to
F, by Fact 3. Hence 2 is 0-nice. Therefore o/’ is 1-nice.
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Case II-ii. For each infinite subset B,,, and its infinite subset B,,j, Bdy Zn
N CIU{B;:neN} # 0.
We first show (N* — Z) — U{By: ne N}isacozerosetin N*. Let 7 = {T;:ie N}
be a principal sheaf in X;. Since N* — Z = U{T;*: ie N}, it is enough to show
U{B: ne N} is a cozero set in N*. In fact, put M; = {ne N: T n B} + 0},
then by our assumption, M, is a finite set. Therefore T} — U{B,: neN} is a cozero
set in N*.
Since (N* — Z) — U{B;: ne N} and U{B;: n € N} are disjoint cozero sets in N*,
it follows by Fact 1 that these have disjoint closures. Let C be a subset of N such that

U{B¥: neN} c C* < (N* — Z) — U{B}: neN}.

Put &/’ = {B, n U: B, is an infinitc subset of N}. Then &’ is a subsheaf of &/. Let
9 = {D,: ne N} be a cross-sheaf of &’. Then D; = C* and Bj, n D} = 0 for each
me N. These show D¥ n (N* — Z) = 0 for each n e N. Therefore D} < E,. Since
U{D,’f: ne N} and N* — Z are disjoint cozero sets in N*, they have disjoint closures
in N*, Choose a subset D of N such that

U{D}:neN} c D* c E, .

Then D converges to F,. Therefore & is 0-nice which implies &/’ is 1-nice.
To prove that X, is not an {a*)-space, it is enough to show the following as-
sertion.

Assertion 3. Assume a principal sheaf of X ; does not have any i-nice subsheaf for
i < k. We show that a principal sheaf I = {T,: ne N} in X;., doesn’t have
a (k + 1)-nice subsheaf.

Proof. Let 7' = {T,: m € M} be an arbitrary subsheaf of 7. Then Z’' = N* —
— U(T,*: ne N} is a zero set in N* such that Z' n Bdy Z + 0. By (v—k+1) in
Lemma 3.6, we can choose non-empty clopen sets P; = Z n E; . and a clopen set W
in N* such that Wn E,,, — P is a k-nice set with respect to (W — P, Bdy P, W),
where P = U{P;: ie N}. Let & = {S;: i e N} be a disjoint family of subsets of N
such that S} = P,, and W = (U&)* Then & is a principal sheaf of a subspace
Y=UZ U {Fisi} =ULU{PAF) = UL U{(N* — P)U(Wn E;,, — P)}.
We can consider Y as X,. Therefore the principal sheaf & of Y does not have a k-nice
subsheaf by the inductive assumption. Since & is a cross-sheaf of J' and I’ is
an arbitrary subsheaf of 7, 7 does not have a (k+ 1)—nice subsheaf. The proof of
Assertion 3 is completed.

The proof that X,,, is an {a**!-St)-space can be done by similar arguments
of Assertion 2 using (vi-k+1), but it is routine. We left it to the reader.

Example 3.8. Let X, be an {a*)-space constructed in the above example 3.7. Then
HX is an (a*)-space (hence {a®)-space) for every ke N by Theorem 2.3, but

i=1

X = H X, is not an {a®)-space.

i=1
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Proof. Let 7, = {T}: n e N} be a principal sheaf in X;. Put T} = {x¥(m): m e N}

and
T(n) = {(xa(m), x2(m), ..., x3(m), Fps1, Frsz,...): meN} .

Then T(n) is a convergent sequence in X with limit point (Fy, F,,...). Put o =
= {T(n): ne N}. Then « is a sheaf in X with vertex (Fy, F, ...). We show that &/
does’t have a k-nice subsheaf for every ke N. Let &’ be a k-nice subsheaf of .
Then (') is k-nice for every ne N, where m,: X — X, is the projection. Since
(") is a subsheaf of the principal sheaf 7, it is not n-nice, therefore it is not k-nice
for n = k. This is a contradiction. The proof is completed.

4. INVERSE LIMITS AND INFINITE PRODUCTS

The following lemma is well known but we give its proof for the sake of com-
pleteness.

Lemma 4.1. A Fréchet space is strongly Fréchet if and only if it contains no
subspace which is homeomorphic to S,, (see Example 3.2).

Proof. Assume X is Fréchet but not strongly Fréchet (hence X is not an {o4-FU -
space). Let & = {4,: n€ N} be a sheaf with vertex x which does not satisfy (o).
Without loss of generality we assume A, N A, = 0 for n £ m. Then it is easy to
show {x} U U{4,: ne N} is homeomorphic to S,,. The proof is completed.

Let {X,,: m;} be an inverse limiting system of a sequence of spaces X,, with the
onto projections 7y X,, = X, (m 2 n). Let X = lim {X,,: 7y} be the inverse limit
of this system and.r,: X — X,, the projections.

The following theorem has been proved by the author and Y. Tanaka. We present
it here wich the kind permission of Y. Tanaka. ‘

Theorem 4.2. Let X = lim {X,,; n} and let X,, be strongly Fréchet for every
ne N. Then the following conditions are equivalent.

(i) X is a Fréchet space.

(ii) X is a strongly Fréchet space.

Proof. Obviously (ii) — (i). We shall show (i) — (ii). Assume X is Fréchet but not
strongly Fréchet. Then by Lemma 4.1 X contains a copy of S, = {0} UN x N.
Put T, = {n} x N. In the arguments below we assume S, is a subspace of X. Put

&, = {B: Bis open in X, and 7,(0) € B},

B, = {S,nn,'(B): Be &,),

= U{%,: neN}.
Then clearly %, = %, , for each n e N and £’ is a neighborhood base of {0} in S,,.

Assertion. For each n e N, there exists an open neighborhood W, of o in S,, such
that

(x) For any B'e #,, |{ie N: B n T, = W, * 0}| = . We shall prove the above
assertion in two steps. o
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Case I. For each n € N, there exists a finite set M, = N such that
|7(Tj) — U{m(T:): ie M,}| < @ foreach jeN.
In this case there exist i, € M,, an infinite subset N, of N and an infinite subsequence
T, of T, for each k € N, such that
n(T;) < (T;,) foreach keN,.

Case I-i. m,(T},) is a finite set.

Since m,(Ty) is a convergent sequence with limit point 7,(c0), there exists an infinite
subset Ty < T; with m,(c0) = n,(Ty) for ke N,. Choose x£, e Ty. Then m,(xk,) =
= m,(c0). Put

W, = {0} v U{{xk:m > n}: keN,}u{T;:ieN — N,}.
We show W, satisfies (). Let B’ € &,. Then B' = S, n n; '(B) for some B e 4,
We show B'n T, — W, + 0 for ke N,. The relation m,(c0)€ B implies Ty < B,
hence xi € B'. However x%, ¢ W, This shows B'n T, — W, + 0. The proof of
Case I-i is completed.
Case I-ii. m,(T},) is an infinite set.
Put
m(Ti,) — {m(0)} = {y: keN} and lim y, = m,(c0).
k=
Put
W, = {0} U{T, — mn; '({y;:j S k}): keN,} U {Ti: keN — N,} .
We show W, satisfies (). Let B'€ 4,, B' = S, n n, '(B) for some Be %,. Then
m ()€ B and lim y, = 7,(c0) imply that there exists ko € N such that y, € B for
k=
k = ko. For k = ko and keN,, S,nn,;'(y,) = B’ but n; '(y) 0 Ty = 0. This
shows B’ n T;, — W, = 0. The proof of Assertion is completed in this case.

Case II. There exists n € N such that: for each finite subset M of N, there exists

Jj € N such that
|7(T;) — U{n(T}): ieM}| = o

By induction on n it is easy to choose an infinite subset N, of N and an infinite
subset T, of T;, for each k € N, such that
(2) | Ti: Ty = m,(T;) is one-to-one,
©)) (Ty) " m(T) =9 for k,meN, and k=*m.

Since X, is strongly Fréchet (hence {a,-FU), there exists a convergent sequence K
in X,, which satisfies () with respect to {m,(Ty): k € N,}. Put K = {m,(x}} ): i € N}.
By taking a subsequence of K we can assume n; # n; if i & j. Put L= {n;: ie N}
and put

W, = {oo} v U{{xpi:m > m}:ieN} v U{T;: jeN — L},
it is a neighborhood of oo in S,,. We show W, satisfies ().
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Let B'e€ %,, B' =S, nn, '(B) for some Be 4, Since {m,(xy): m = n;} con-
verges to m,(0), B contains {m,(x)}): m = n;} except for finitely many elements.
Therefore B contains {x}.: m = n} except for finitely many elements. On the other
hand W, {x)\:ie N} = 0. These show that B’ — W, = 0. The proof of the
Assertion is completed.

Let {W,: ne N} be a sequence of open neighborhoods of <o in S,, the existence of
which is guranteed by the Assertion. We can assume W, o> W, ., for each n e N. Put

I,=T,nW,
W = {w}u {T,: neN}.

Then Wis a neighborhood of oo in S,. We shall show B" — W = 0 for each B’ € #'.
This is a contradiction because %' is a neighborhood base of o in S,. Note that
W—W,cU{T:i=12,..,n}.

Therefore
B — Wo B — (W, - U{T:i=1,2,..n}).
By Assertion, there exists Ty, k > n such that
BnT,—W, 0.
This shows
B-WoBnT,—(W,u{Tsi=12,...,n)nT,>
SBnNnT, —W,nT, 0.

The proof is completed.

Corollary 4.3. Let |X | = 2 for infinitely many neN. Then the following (i) and (ii)
are equivalent.

(i) TIX;is Fréchet.

i=1

(i) TIX; is strongly Fréchet.
i=1
Proof. The implication (ii) — (i) is trivial. We show (i) — (ii). It is enough to

show that HX is strongly Fréchet for each n e N.Infact H X, is a non-discrete

i=n+1 ©

Fréchet space. Choose an infinite set {x;: i e N} and a point xo in [] X, such that

i=n+1

lim x; = xo. Then HX ({x0} U {x;: i € N}) is Fréchet. By E. Michael’s theorem

(see §3, mtroductlon), H X; is strongly Fréchet. The proof is completed.
i=1

Lemma 4.4. Let X = lim {X,,: 7} and each X, be an {a*-St)-space. Let A = X
and xe A — A. Then there exists a k-nice sheaf s, in X, with vertex m,(x)
satisfying:

(i) U, < n,(4),

(i) ny(,,) is a subsheaf of o, for m > n.
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Proof. Since 7,(x)e Clm,(A), the Fréchetness of X, implies that there exists an
infinite sequence 4, < m,(4) converging to r,(x). Without loss of generality, we can
choose the sequence satisfying:

(%) n¥(A4,) = mi(x) or otherwise 7}(A4,) is an infinite set which does not contain
n(x) for each i < n.

Put &' = {n}(4,): ne N}. Then &' is a sheaf with vertex m,(x). As X, is an
{a*-Sty-space, choose a k-nice subsheaf &7, = {4,: me N,} of o/, where 4,, is an
infinite subsequence of n7(A4,,) for me N;.

Assume a k-nice sheaf o/; = {A;: m € N;} in X; has been defined for i < n. We
define a k-nice sheaf 7, in X, ,, as follows:

Put

A" = {(m ) (A o (4,):mz a4+ 1, meN,).

Then &#"*! is a sheaf in X, with vertex m,(x). Choose a k-nice subsheaf o/, =
= {4} ':meN,,,} of "1, where A" ! is an infinite subsequence of (m* 1) ™! (45,) N
N7y, 1(4,,) for every meN,,;. We have defined a (k+1)-nice sheaf &7, with
vertex 7,(x) for every neN satisfying the conditions (i) and (ii). The proof is
completed.

Lemma 4.5. Let X = lim {X,,: 7'} and X,, be a strongly Fréchet space for every
neN. Let xeX and o, be a k-nice sheaf in X, with vertex m,(x) such that m)(/,,)
is a subsheaf of o, for every n < m. Then there exists a convergent sequence K,
in X, with limit point m,(x) satisfying:

(1) K, = U,

(2) m(K,) = K, for n < m.

Proof. We show the assertion by induction on k. For k = 0, the assertion is
trivial since a O-nice sheaf is nothing but a convergent sequence. Assume the as-
sertion has been proved for k (= 0). We show the case k + 1.

Since X, is a strongly Fréchet space, there exists a convergent sequence B, which
satisfies {otqy with respect to «7,. Put

B, = {n}(B,):neN}.
Then %, is a cross-sheaf of a (k + 1)-nice sheaf «/,. Choose a k-nice subsheaf

1 = {Bh: meN,} of #,, where N; = N and B), is an infinite subsequence of
7}(B,,) for m e N,. Assume that a k-nice sheaf #; = {Bj,: m e N,} which is a cross-
sheaf of /; has been defined for i < n such that ni(4%;) is a subsheaf of ;. We
construct %, , as follows: Put

Bosy = ()1 (By) n e y(By):m = n + 1 and meN,} .

Then %,.; is a cross-sheaf of &Z,.,;. Choose a k-nice subsheaf 4%,,; = {B}'":
meN,,} of #,,,;, where N,,;, = N, and Bj"' is an infinite subsequence of
(n2*)~* (By) N 7, ((B,,) for me N, . Since nj(%;) is a k-nice subsheaf of %,

by the inductive assumption for k, there exists K, < U%, = U/, satisfying
75(K,) = Ky for n < m. The proof is completed.
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Lemma 4.6. Let X = lim {X,,, n}}. Let A = X and xe A — A. If there exists
a convergent sequence K, in X, with limit point m,(x) satisfying:

(1) Ky = m,(4),

(2) n(K,) = K, for n < m,
then there exists a sequence {a,: ne N} in A converging to the point x.

Proof. Put K, = {bl: meN} and choose a,en;'(b;)n A. Assume
{a,,a,, ..., a,} has been chosen. Let

per =Koy = U{(m) 7 (B)):m Z i 2, b # mx)} -
Since (n})™* (b}) N K; is a finite set for b} =% m,(x), we have K}, * 0. Choose
bekK,,., and a,, € n,,'l(b) N A. We have chosen a, for every neN. We show
lim a, = x. Let W be any neighborhood of x in X. Then x € n, '(U) = W for some

n— oo

neN, where U is an open neighborhood of 7,(x) in X,. We show {a,: n€ N} is
contained in 7, *(U)except for finitely many elements. For n <m, 7,(a,,) = 7 (m,,(a,,))e
en)(Kn) =K, and K, converges to ,(x). Since U contains K, except for finitely many
elements, we have that U contains {r,(a,): m € N} except for finitely many elements,
say m,(a;) ¢ U for k = 1,2, ...,j. We show 7, '(a;,) n {a,: ne N} is a finite set for
k=1,2,...,j. Put m,(a;) = by. Then m,(a;) + b} for i > k by the definition of K;
and a;. Therefore {a,,: ne N} is contained in 7, 1(U) except for finitely many elements.
The proof is completed.

The following theorem follows from Theorem 4.2, Lemma 4.4, 4.5 and 4.6.
Theorem 4.7. Let X = lim {X,,: n}}. If X, is an {«"*-St)-space for every neN,
then X is an {o*-St)-space.

Corollary 4.8. If HX is an {a*-Sty-space for every ne N, then

X = HX is an {a*-St)-space .

Corollary 4.9. Let X; be a regular countably compact Fréchet space with the
property (o) for every ie N. Then X = HX is countably compact Fréchet.
Proof. According to [9, Theorem 4. 5] X is countably compact. We show H X;

i=1
is {a*-St) for every ne N. Since a regular countably compact Fréchet space is strongly

Fréchet [13, Corollary 5.2], we have X; is an {a*-Sty-space for every ie N. By

Theorem 2.3, HX ; is an {a*-St)-space for each ne N. Therefore X is Fréchet.
i=1 '

The proof is completed.

Problems 4.10. Let 2 be a class of spaces. Let #(P) = {X: X x Y is Fréchet for
any Ye P}. We use the following notations:

-

C = the class of compact Fréchet spaces,

278



CC = the class of countably compact Fréchet spaces,
B = the class of bi-sequential spaces (see [8] for the definition),
St the class of strongly Fréchet spaces.
(1) Is #(C) = F(CC)?
(2) Give inner characterizations of classes F(C), (CC) and F(St).
(3) Is there a ““naive” example of a F(CC)-space which is not bi-sequential?
(4) Is there an example of a F(CC)-space which is not an {a®-FU)-space?
(5) Is B = F(St)? Y
(6) Let X; be an {a®-Sty-space for every i€ N. Then is [[ X; Fréchet?
i=1

|

il
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