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1. INTRODUCTION

Consider the neutral differential equation

(1) L[x(t) + p(t) x[t — ©]] + q(t) f(x[t — ¢]) =0, n iseven,
where

Lox(i) = x(t), Lx(t) = —— (Licy %), k=1,2,...n,

W)
ap=a,=1, a;e C[[ty, ©),(0,0)], i =1,2,...,n — 1, p,q e C[[ty, ©),R], fe
€ C[R, R] and 7 and ¢ are nonnegative constants.
We will assume that

@) [®as)ds = 00, k=1,2,..,n—1;
(3) @g)}>0 for x+0.
x

The domain of L,, D(L,) is defined to be the set of all functions x: [t4, ©0) - R
such that L; x(t), 0 < j < n exist and are continuous on [fo, o). Our attention is
restricted to those solutions X e D(L,) of Eq. (1) which satisfy sup {|x(f)|: t 2 T} > 0
for any T 2 t,. A solution of Eq. (1) is called oscillatory if it has aribtrarily large
zeros; otherwise, it is called nonoscillatory. Equation (1) is said to be oscillatory
if all of its solutions are oscillatory.

Recently, Grammatikopoulos et. al. [4] and Ladas and Spicas [6] obtained some
interesting criteria for the oscillation of the neutral differential equations of the
form

‘%’l} [x(t) + p() x[t — <]] + (1) x[t = 6] = 0.

These results extended some of the known results for the nonneutral differential
equation

é—i:—n x(t) + g(t) x[t — o] = 0.
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The purpose of this paper is to establish some new criteria for the oscillation of
Eq. (1). These criteria extend and improve those in [4] and [6]. Our results are new
even when p(t) = 0.

Neutral delay differential equations have applications in electric networks con-
taining lossless transmission lines. Such networks arise for example, in high speed
computers where the lossless transmission lines are used to interconnect switching
circuits (see [8] and [9]). Second order neutral delay differential equations appear
in the study of vibraring masses attached to an elastic bar. We are not aware of any
situation where equations of the type (1) arise for n > 2 even when ayt) =1,
i=1,2,...,n—1

We assume here that solutions of Eq. (1) are defined for all t > t,.

2. MAIN RESULTS

For any functions p; € C[[ty, ©),R], i = 1,2,..., n, we define
I, =1, Ii(t, S5 Pi> ---,Pl) = ﬁ pi(u)Ii—l(u7 S5 Pi-15--+> P1)d“ .
It is easy to verify thatfor 1 £ i<n —1

Ii(t’ S; P15 +ees pi) = (—1)i1i(s3 t; Dis-es pl)
and

Ity 85 pys-eos pi) = (o) Ii—y(t; 45 Py, ooy Pimy) dur .
The following two lemmas will be needed in the proof of our results.
Lemma 1. If x € D(L,), then for t,s € [ty,0)and 0 S i <k < n

k-1

(i) L; x(t) =lej_1(t,s;a,-+1,...,aj) L; x(s) +
j=i
+ s o ia(t us @y ooy @) ag(u) L x(u) du
k-1
(i) L, x(1) =_ZL(~ VLI, (s ty ajs o aiy) Ly x(s) +
=

+ (=0 i Lmimy(u, 85 @y -, G54 q) @) Ly x(u) du .
This lemma is a generalization of Taylor’s formula with remainder encountered
in calculus. The proof is immediate.

Lemma 2. Suppose condition (2) holds. If x € D(L,) is of constant sign and not
identically zero for all large t, then there exist a t, = t, and an integer ,0 < | < n
with n + 1 even for x(t) L, x(t) nonnegative or n + 1 odd for x(t) L, x(t) nonpositive
and such that for every t > t,

1> 0 implies x(t)L,x(1)>0, (k=0,1,...,1)
and
I<sn—1 implies (—1)"*x(t)Lyx(t)>0, (k=1L1+1,..,n).
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This lemma generalizes a well known lemma of Kiguradze and can be proved

similarly.
It will be convenient to make use of the following notation in the remainder of this

paper. Forany T = t, = 0 and all t = T we let
o[t, T] = [pLioy(t,s3 ay, s ai-y) as) L y— (8, 85 @uoygs s @r4q) ds

for
12l£n—-1.

Theorem 1. Let conditions (2) and (3) hold, and

4) g() =0 and 0= p(t)<1 for t=t,.

If, for each 1€ {1,3,...,n — 1}

) liminf ', ofs — o, T] a(s) [1 = p(s — 0)] ds >+
t— o ve

for all large T, t > T + o, then Eq. (1) is oscillatory.
Proof. Let x(¢) be a nonoscillatory solution of Eq. (1) say x(¢) > 0 for t = t,.
There exists t; = t, such that x[t — 7] > 0 and x[t — o] > 0 for all t > t,. Set
z(t) = x(t) + p(t) x[t — <] .

Then
z(t) >0 forall t2=t,,

and
L,z(t)<0 for t=t.

The hypotheses of Lemma 2 are satisfied for ¢ = ¢; and hence there exist t, = ¢,
and le{1,3,...,n — 1} such that
(6) Liz(1) >0 (k=0,1,..,1), t2t,

and
(-1)"*Lez(t) >0 (k=1L1+1,..,n), t2t,.

Clearly
#(t)>0 and L,_,z(t)>0 for t2>t,.

In view of condition (3), Eq. (1) becomes

Lz(t) + yq()x[t — 6] <0; t2=1t,,
(7) L, z(t) + v q(t) {z[t — o] — p(t —o)x[t—t1—d]} £0.

Since z(t) > x(t), we obtain

L,z(t) + 7 4(t) {z[t — o] = p(t — 0) [t — 7 — 6]} 0.
Now, using the fact that z(t) is increasing on [t,, o0), we have
(8) Lz(t) + yq(){1 = p(t — 0)} z[t — 0] SO0 for t2=1t,.
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By Lemma 1 (ii) we get
n—2
Ll Z(S) = Zl(— I)i_,Ij—-l(t’ S5 aj’ LR al+1) L_, Z(t) +
=

+ (=) o (u, 85 s e Greq) an-1(u) L,_1z(u) du
for t, =s=t.
Using (6) and the fact that L,_, z(¢) is decreasing on [f2, o) we obtain
9) Liz(s) 2 I,—;—1(t, 8 @yoygs ooy @4q1) Lymy 2(t) for t, st
Next, we use Lemma 1 (i), and obtain
z(t) =;Z:If(t’ t2; ay, ..., a;) L; z(t,) +
+ L1t ssag, ., aimq)afs) Lyz(s)ds, t=t,.

By (6) we get
(10) 2(t) 2 [1,Li-4(t, 85 a4, ..., a;-1) afs) Ly z(s)ds, for t=>1t,.
By combining (9) and (10) we obtain

2(t) 2 [, Lo o(t 85 ags o0 0121) @Y(S) Lym 1= 1(15 S5 @u=15 .y 14q) ds Ly 2(2)
or
2(t) 2 oft, t,] L= z(t) for t2>1t,.

There exists a t; = t, so that ¢t > ¢, + o for allt = t;. Then
zZ[t —o]l zwft—0,t,| Ly z[t — 0] for t>t,,
and (8) becomes
(11) L,z(t) + yq(t) o[t = o, t,] [1 = p(t — 0)] L,—, z[t — 6] £ O
for t=1t;. , .
Now, set y(t) = L,—, z(t). Thus (11) takes the form
(12) yt) +vq(t) ot — o, t,][1 — p(t — o)) y[t — 6] <0, t=t;.

In view of (5) and Theorem 1 in [7], Ing. (12) has no eventually positive solutions.
This contradicts the fact that z(¢f) > 0 for ¢ > t,, and the proof si complete.
The following examples are illustrative.

Example 1. The neutral differential equation

(Ey) .
<t (t (tl (x(t) + 4x[t - Zn]).).).) + 5(—3%“1:—;72 x[t — n] e " =0 for t>m

has a nonoscillatory solution x(f) = t. All conditions of Theorem 1 are satisfied
except condition (5).
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Example 2. Consider the neutral differential equation
(B2)  (e7'(x(t) + 4x[t — 2n])) + (2(1 + de™ ™) e"*)e "x[t — n[4] = 0
for t = 2m.

All conditions of Theorem 1 are satisfied and hence every solution of Eqg. (Ez) is
oscillatory. One such solution is x(t) = e'sin t.

Remark. Theorem 1 is new even if p = 0.

Theorem 2. Let conditions (2)—(4) hold. If
(13) 17 46 [1 = pls = 0)] ds = oo,
then Eq. (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1). Assume x(f) > 0 for
t 2 to. As in the proof of Theorem 1, we get (8). Integrating (8) from t, to ¢ we have

L,-y 2(t) £ L,—y z(t;) — y z[t, — o] [i, a(s) [L — p(s — &)] ds
which, as t — oo, leads to a contradiction. The proof is complete.
Example 3. The neutral differential equation
(Ba)  (72(x(r) + Lx[t — =])') + 4(1 + se™)e™e* > x[t — ] =0, t20
has a bounded nonoscillatory solution x(f) = e~*. Only condition (2) of Theorem 2

is violated.

Remark. Ifa; = 1,i = 1,...,n — 1 and f(x) = x, then Theorem 10 in [4] and
Theorem 2 are the same.
For convenience of notation we define

By = —— 190 Lo and 6=2"F50.
plt — o + 1] n

Theorem 3. Let conditions (2) and (3) hold and let there exist constants P1> P2
and q such that

(14) ~1=p, Sp(t)Sp, <0 for t=1,
and
(15) qg(t) 2 g >0 for t=t,.
If
. (Bt = 8\ p(t) - .
(16)  ay_t — i5] ( i ) 2 (=1 i 20, =120,
t2 1,
and
(17) liminf [;_5 B(s)ds > 1fe,

t— oo

then every solution of Eq. (1) is oscillatory.
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Proof. Let x(f) be a nonoscillatory solution of Eq. (1). Assume x(t) > 0 for

t 2 t,. Then there exists a t; = t, so that x[t — 7] > 0 and x[t — ¢] > 0 for
t>t,. Set

z(t) = x(t) + p(t) x[t — 7] .

Then
L,z(f) 20 for t=1,.
We claim that z(¢) is eventually a negative solution of Eq. (1) From Eq. (1) we have

(18) L, o(t) = _q(t)fi(;c"ft‘.:_o"]]) x[t = o] < —ya(t) x[t — o] <
< —ygx[t — o] for t21,,

which implies that L,_, z(f) is strictly decreasing for t = t,, while L; z(), n =

= 0,1,...,n — 2 ate strictly monotone functions of t. Therefore, either
(19) ' limL,_,z(t) = —o0
t— 00
or
(20) limL,_, z(t) = m is finite .
=0

Assume that (19) holds. Then we can easily obtain
(21) limL;z(f)= —o0, i=0,1,....,n—1.
t—> o

Next, assume that (20) is satisfied. Then integrating (18) from t, to t and letting
t — o0, we have

[Cax[s —o]lds S L,_,z(t;) — m

which implies that x € L,[t,, ©). Thus, by (14), z € L[t,, ). Since z(t) is mono-
tonic, it follows that

(22) lim z(t) = 0

t—> o0
and so also m = 0. From (22) we conclude that foreach i = 0,1,...,n — 1
(23) Liz(t)Liy, 2(t) <0 for t=1t,.

Clearly, either (21) or (22) and (23) implies that

Z(t) <0 for t=1t,.
Now,

x(t) < =p(t) z[t — 1] £ —pyx[t — 7] = x[t — 7]

which implies that x(t) is a bounded function.
Since

fft—o+]=plt—o+t]x[t—c]+x[t—0c+1]2
2plt—o+1]x[t—0c] for t2=1¢,.

. 750




Thus
——~—~q~(t)*-z[t—0'+t]§q(t)x[t—a], for t=t,.
p[t— o — 1] _
Using the above inequality in (18) we get
L,z(t) — (—-M~> zZ[t—(6—17)] 20 for t21,

p[t — o + 1]
or

(24) L,z(t) — B"(t)z[t — nd] <0 for t21t,.
By Theorem 2 in [1] it follows that the above inequality has no eventually negative

bounded solution. This contradicts the fact that z(¢) < 0 for ¢ > t, and the proof of
theorem is complete.

Theorem 4. Let condition (14) in Theorem 3 be replaced by
(14) PrSp()Spa<0 for t2t,.
Then every bounded solution of Eq. (1) is oscillatory.

Proof. Let x(t) be a bounded nonoscillatory solution of Eq. (1) say x(t) > 0
for t = t,. As in the proof of Theorem 3 we have z(t) < 0 for t = t;. The rest of
the proof is similar to that of Theorem 3 and hence is omitted.

Theorem 5. Let condition (16) in Theorem 3 (resp. Theorem 4) be replaced by

(25) : a,_i[t — i8] 2 B(t) for i=1,2,..,n.
Then the conclusion of Theorem 3 (resp. Theorem 4) holds.

Proof. The proof of Theorem 5 is similar to that of Theorem 3 (resp. Theorem 4)
except that we use Theorem 3 in [1] instead of Theorem 2 in [1]. The details are
omitted.

Remark. Theorems 3—5 include as special cases Theorems 8 and 11 in [4].
They also extend our Theorems 2 and 3 in [1] to more general equations of the
form of Eq. (1). We also mertion that conditions (16) and (25) are discarded if a; = 1,
i=1,...,n—1.

The following examples are illustrative.

Example 4. The neutral differential equation

(EJ) G[x(t)- o[t - 1]]').+e_21[t1+t1-2:|x[t—2] _0, 1>0,

€

has a nonoscillatory solution x(f) = e~*. All conditions of Theorem 5 are satisfied
except condition (17).

Example 5. Consider the neutral differential equation
(Bs)  Ly[x(t) — 3x[t = 1]] + ix[t = (n + 1)] =0, neven, t>n,
where L, x(t) = x(t), L, x(t) = (1/£) (Ly—y x(1))", k = 1,2,...,n, a9 = a, = 1.
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Herea(t) =t,i = 1,2,...,n — 1, f(t) = 1and & = 1. All conditions of Theorem
3 (or 5) are satisfied and hence all solutions of Eq. (E;) are oscillatory.

We note that none of the results in [ 1]-[6] can be used to investigate the oscillatory
character of Eq. (E;).

The following theorem includes Theorem 12 in [4] as a special case.

Theorem 6. Let conditions (2) and (3) hold, and

(26) —12p(t)<0 and q(t)20 for t=t,.

If
(27) §*a(s)ds = o,
then every unbounded solution of Eq. (1) is oscillatory.

Proof. Let x(t) be an unbounded nonoscillatory solution of Eq. (1) say x(t) > 0
for t > t,. There exists a t; 2 t, so that x[t — ¢] > O and x[t — ] > Ofort = ¢,.

Set ‘
z(t) = x(t) + p(t) x[t — =] .
We have
(28) L, z(t) £ —yq(t)x[t — 0] £0 for t2>1,,
and so L; z(t) for i =0,1,...,n — 1, are monotone functions. We claim that

z(t) = 0 for t > t,. Otherwise z(t) < 0 for t = t, and hence
x(1) < —p(t)x[t — 1] S x[t — 1] for t2=1t,
which is impossible since x(t) is unbounded. Thus x(t) = 0 for t = t, and by Lemma

2, there exists a t, = t, so that L,_, z(t) = 0 and 2(f) = 0 for t 2 t,.
Integrating (28) from t, to ¢ we have

L,_y z(t) £ L,y z(t;) — 7 {i, a(s) x[s — o] ds
SL_yz(t;) —vz[t, — 0] fi,a(s)ds > —0 as t— 0,

IIA

a contradiction. This completes the proof.
For illustration we consider the following example.

Example 6. The neutral differential equation
(Ee)

(t(t G (x(t) — Ix[t — 2])))) + —Z(te%i:)—tz x[t — n] e =0 for t >,

has an unbounded nonoscillatory solution x(t) = ¢. Only condition (27) of Theorem
5 is violated. However, all unbounded solutions of the equation

(E,) (t (t (% (x(t) — Ix[t — 21:]).).).). + e—:im x[t — m] esns =1 = g

are oscillatory by Theorem 6. It is easy to check that Theorems 3—5 fail to apply
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