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PARTITIONABILITY OF TREES

BOHDAN ZELINKA, Liberec

(Received October 29, 1986)

At the Third Czechoslovak Symposium on Graph Theory [1] in Prague in 1982,
C. St. J. A. Nash-Williams proposed a problem to characterize k-partitionable
finite graphs. Here we transfer the problem concerning graphs in general to a problem
concerning trees only.

Let k be a positive integer. A finite graph G is called k-partitionable, if G has
connected subgraphs Gy, ..., G, such that |V(G,)| = ... = |V(G,)| = k, and each
vertex of G belongs to exactly one G;. The set {Gy, ..., G,} will be called a k-partition
of G.

In his comments to the problem the author noted that for k = 2 a graph has this
property if and only if it has a linear factor. Obviously a necessary (not sufficient)
condition for the k-partitionability of a graph G is that k divides the number n of
vertices of G; then r = n/k.

Theorem 1. Let G be a finite connected graph, let k be a positive integer. Then
the graph G is k-partitionable if and only if G contains a k-partitionable spanning
tree T.

Proof. Let G be k-partitionable, let {G,, ..., G,} be its k-partition. Each graph G,
for i = 1,...,r is connected and therefore we may choose its spanning tree T;.
Let G, be the graph whose vertex set is {G,, ..., G,} and in which two vertices G;, G;
for i = j are adjacent if and only if in G there exists an edge joining a vertex of G;
with a vertex of G;. As G is connected, so is G,. Hence we may choose a spanning
tree Ty of G,. If two vertices G;, G; are adjacent in T, we choose one edge of G
joining a vertex of G; with a vertex of G;; we do this for all such pairs i, j and denote
the set of edges chosen in this way by E,. Now let T be the graph on the vertex set
V(G) of G whose edge set is the union of E, and of the edge sets of all trees T; for
i =1,...,r. Evidently T'is a spanning tree of G and is k-partitionable; the k-partition
is {Ty,..., T,}.

Now suppose that G contains a k-partitionable spanning tree T. Then there exist
subtrees T, ..., T, of T such that |V(T,)] =k for i = 1,...,r and each vertex of T
(i.e. of G) belongs to exactly one of them. For i = 1, ...,r let G; be the subgraph
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of G induced by the vertex set V(T;) of T;. As G; contains a spanning tree T, it is
connected. Therefore G is k-partitionable. []

Now we will consider trees. We shall use the concept of median of a tree, as it
was introduced in [2] and studied in [3].

Let T be a tree. For any two vertices x, y of T let d(x, y) denote he distance
between x and y in T, i.e. the length of the path connecting x and y in T. For each
vertex x of T let a(x) = (1/n) Y d(x, y), where n is the number of vertices of T.

yev(T)

A vertex at which the functional a(x) attains its minimum is called a median of T.
In [3] it was proved that every finite tree contains either exactly one median, or
exactly two medians; if there are two medians, then they are adjacent.

Theorem 2. Let T be a k-partitionable finite tree with n vertices. Then there
exists a unique k-partition {T,, ..., T,} of T.

Remark. As above, the symbol r denotes n/k.

Proof. We shall proceed by induction according to r. The case r = 1 (i.e. k = n)
is trivial. Now let ro = 2 and suppose that the assertion is true for all r such that
1 £ r < ry. Let T be an (n[r,)-partitionable tree and suppose that there exist two
different k-partitions {T,,..., T,.}, {Ti,...,T,,} of T. Analogously as we have
assigned the graph G, to the k-partition {G, ..., G,} in the proof of Theorem 1,
now we assign the graph T, to the k-partition {Ty, ..., T, }. Evidently T, is a tree and
therefore it contains terminal vertices. Let T; be a terminal vertex of T,. Suppose
that T;¢ {Ty,..., T;}. Then there exist integers j, k from {1,...,r,} such that
V(T,) n V(T}) + 0, V(T;) n V(Ty) + 0. There exists exactly one edge joining a vertex
of T; with a vertex of V(T) — V(T;) and this edge can be contained in at most one
of the trees Tj, T); without loss of generality suppose that it is not contained in Tj.
Then T; must be a subtree of T;; as T; & Tj, it is a proper subtree. But then IV(T )[ <

[V(T)] = k, which is a contradiction. Hence T; is one of the trees Ty, ..., T,
Let T* be the subtree of T'induced by V(T) — V(T;). The tree T* is k-partitionable,
because the set of all T;for 1 £ j < roy,j * iis a k-partition of T*. The number of
vertices of T* is n — k, the number of trees in a k-partition of T* is r, — 1, therefore
by the induction hypothesis the set {T}, ..., T,,} — {T;} is the unique k-partition
of T*. This implies that {T, ..., T, } is the unique k-partition of . []

This also implies that a necessary condition for the k-partitionability of a tree T
with n vertices is that there exist two vertex-disjoint subtrees of T, one having n/k
and the other n — n/k vertices. We shall prove a theorem concerning the existence
of such trees.

Theorem 3. Let T be a finite tree with n vertices, let q be a positive integer, g < n.
Then the following two assertions are equivalent:

(i) There exist vertex-disjoint subtrees Ty, T, of T such that T, has q vertices
and T, has n — q vertices.
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(ii) There exist adjacent vertices vy, v, of T such that a(v,) — a(v,) = 1 — 2q/n.

Proof. (i) = (ii). Let (i) hold. Let v, (or v,) be the vertex of T; (or of T,) adjacent
to a vertex of T, (or of Ty, respectively). Consider the functional a(x). For any
x € V(T,) we have d(vy, x) = d(v,, x) — 1; for any x e V(T,) we have d(v,, x) =
= d(v,, x)/ + 1. Hence a(vy) = a(v,) + (1/n) (|V(T2)| — [V(Ty)|) = (1/n) (n — 29) =
=1 — 2q/n.

(ii) = (i). Let (ii) hold. By deleting the edge v,v, from T we obtain a graph with
two connected components which are both trees. Let T} (or T,) be the one of them
which contains v, (or v,, respectively). Again for any x e V(T}) we have d(vy, x) =
= d(v,, x) — 1 and for any x € V(T5,) we have d(vy, x) = d(v,, x) + 1. This implies
a(vy) = a(v;) + (1/n) (|V(T2)| — [V(Ty)|), therefore a(v,) — a(v,) = (1/n) (|V(T3)| —
— [V(T}))). As a(v,) — a(v,) = 1 — 2q/n, we have

V(Ty)| — [V(Ty)| = n — 24
on the other hand,
|V(T1)| + V()| =n
and this yields IV(TI)] =q,|V(T)|=n—q.

This enables us to recognize whether a given tree T is k-partitionable. We de-
termine a(x) for all x e V(T) and all differences a(x) — a(y) for adjacent vertices
x, y. If some of them equals 1 — 2k, then there exists a subtree T’ of T having
r = nfk vertices and such that the subgraph Ty of T induced by V(T) — V(T’) is
a tree. If such a tree exists, we continue doing the same with the tree T, as before
with T. If it does not exist, we are sure that T'is not k-partitionable. Thus we transfer
the problem of k-partitionability of T'to the problem of k-partitionability of a proper
subtree of T. Continuing this process, after a finite number of steps we either find
out that T is not k-partitionable, or arrive at a subtree of T having k vertices and
thus trivially k-partitionable. In the second case T is k-partitionable.

From Theorem 3 an assertion on medians follows.

Theorem 4. A finite tree T with n vertices is (n|2)-partitionable if and only if it
has two medians.

Proof. Let T be (n/2)-partitionable. Then (i) from Theorem 3 holds for g = n/2
and thus there exist adjacent vertices vy, v, of T such that a(v;) = a(v,). Now let w
be a vertex of T; adjacent to v,. The vertex v, is adjacent to both v, and w; thus
according to [3], a(v,) < max (a(v,), a(w)) and this implies a(w) > a(v,). If w' is
a vertex of T adjacent to w and distinct from vy, then again a(w) < max (a(v,), a(w’)),
which implies a(w’) > a(w). By induction we may prove that a(x) > a(v,) for all
x € V(T;) — {v;} and analogously also a(x) > a(v,) for all x € V(T,) — {v,}. This
means that a(x) > a(v,) = a(v,) for all xe V(T) — {v;, v,} and v,, v, are medians
of T.
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Now suppose that T has two medians v;, v,. Then a(v,) = a(v,) and thus (ii)
from Theorem 3 holds for ¢ = n/2. This implies (i) from Theorem 3 for g = n[2
and T is (n[2)-partitionable. [

Let us again consider the tree whose vertex set is the k-partition of a tree T and
in which two vertices are adjacent if and only if there exists an edge of T joining.
a vertex of one of them with a vertex of the other. Theorem 2 implies that this tree
is uniquely determined by the tree T and the number k; thus it is natural to denote:
it by T]k.

Theorem 5. Let T be a finite tree, let k, m be positive integers. Let T be k-parti-
tionable. Then T is (km)-partitionable if and only if T|k is m-partitionable. In this
case T|(km) = (T]k)[m.

Proof. Suppose that T]k is m-partitionable and consider the graph (T]k)/m. Its
vertices are the subtrees of T/k forming the m-partition of T/k. Any such tree consists
of m vertices; each of these vertices is a subtree of T having k vertices. To any such
subtree of T/ k we assign a subgraph of T which is induced by the union of vertex
sets of all subtrees of T which are vertices of the above mentioned subtree of T]k.
This subgraph is evidently connected, i.e., it is a subtree of T, and has km vertices.
Thus these subtrees form a (km)-partition of T and T is (km)-partitionable. This
consideration also implies T/(km) = (T]k)/m.

Now suppose that T'is (km)-partitionable and consider the graphs T/k and T](km).
We shall proceed by induction on r = nj(km). For r = 1 the assertion is trivial.
Let r, = 2 and suppose that the assertion is true for all r such that 1 < r < r,.
Suppose that for our numbers k, m the equality ro = n(km) holds. Let T’ be the
subtree of T which is a teminal vertex of T|(km). Suppose that there exists a tree T”
from the k-partition of T such that V(T") n V(T") % 0, V(T") — V(T') # 0. Then
the tree T” contains the edge joining a vertex of T with a vertex not in T'. This
implies that there is only one tree with this property. Let |[V(T')n V(T")| = p.
Then 1 £ p < k. Any other tree from the k-partition of T which has a non-empty
intersection with T' must be a subtree of T, because there is only one edge joining
a vertex of T’ with a vertex not in T’. Therefore there are trees having k vertices
with the property that each vertex of V(T") — V(T") belongs to exactly one of them.
But [V(T') — V(T")| = km — p. As 1 £ p < k, the number km — p is not divisible
by k and this is a contradiction. We have the result that any tree which is a terminal
vertex of T|(km) is k-partitionable and its k-partition is a subset of the k-partition
of T. Now let T” be the tree obtained from T by deleting all vertices of T’. This
tree is (km)-partitionable with n — km vertices, thus the value of r for it is r, — 1.
According to the induction hypothesis T”[k is m-partitionable. If we add a new tree
which is T"[k to the m-partition of T"[k, we obtain an m-partition of T/k. Therefore
T|k is m-partitionable. []

Note that if T is k-partitionable and (km)-partitionable, it need not be m-parti-
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tionable. The tree in Fig. 1 is 2-partitionable and 6-partitionable, but not 3-parti-
tionable.
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