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INTRODUCTION

In this part we start our integration theory of d-tuples of functions with respect
to an operator valued d-polymeasure which is separately countably additive in the
strong operator topology, see part VIII = [13]. More precisely, we give a generaliza-
tion of the main results of part I = [5] (except Theorem I.17, whose generalization
will be included in the forthcoming part X), and of Theorem II.17, i.e., of the
Lebesgue dominated convergence theorem in L,(m).

Since the problem on existence of control d-polymeasures for a vector d-poly-
measure, see the Problem in Section 3 in part VIII, has not yet been solved, we are
forced in general to define all integrable d-tuples of functions by transfinite induction,
see the paragraph before Definition 2 below.

Our approach to integration with respect to polymeasures differs from that of
K. Ylinen [22], I. Kluvdnek [20], M. M. Rao [21], Chang and Rao [3], and of
A. K. Katsaras [19]. In the subsequent parts we will clarify the connections.

We will use the notation and concepts from the previous part VIII. (Previous
parts are treated as chapters when referred to.) In particular, we will use the ab-
breviated symbols (4;) = (Ay, ..., 4g), XP; = P, x ... x Py, and L)X Y) =
LYX,, ..., X Y). .

INTEGRABLE 4-TUPLES OF FUNCTIONS

In what follows we assume that I': X2; - L“(X; Y) is an operator valued d-
polymeasure separately countably additive in the strong operator topology, see
Definition 1 in part VIII = [13]. According to Definition VIIL.5 we say that the
semivariation I': Xa(2,) - [0, + ], see Definition VIIL3, is locally o-finite on
Xo(#;) if for each (A4;)e Xo(#;) there are &-rings 2 4, < o(?) N A, i =
=1,2,...,d, such that o(%;,) = o(?)n A4; for each i =1,...,d and the
semivariation I is finite valued on XP; (4, Similarly we introduce the local o-
finiteness of the semivarion I on X2,. Unfortunately, the author has been unable
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to find an example in which I’ is locally o-finite on X2, but not locally o-finite
on Xo(2)).
The following simple facts are important:

Lemma 1. The following conditions are equivalent:

(i) The semivariation I': Xo(2,) — [0, + o0] is locally o-finite on Xo(2,),

(ii) For each (A;)€ Xa(2,) there are d-rings P; 4, = PN A;, i=1,..,4d,
such that o(P; 4,) = 0(?) " A; for each i =1,...,d, and [ is finite valued
on X2, 4,

(iii) For each (A;) € Xa(2,) there are (A;,)e X2, i=1,....d, n=1,2,...,
such that A;,, » A;foreachi=1,...,d, and f(A,-,,,) < +oo foreachn =1,2,....

Proof. (i) = (ii). Let (4;)e Xo(2;). Take é-rings 2} 4, < o(?;) N A4;, i =
=1,...,d, such that (2} ,,) = o(?;) " A, for each i = 1,...,d and the semi-
variation f‘ is finite valued on X2 ,,. Clearly, the d-rings 9’, Ay = U (9’, (4n N
N P)),i=1,...,d, satisfy the requirements in (ii).

Obviously (11) = (i) and (ii) = (ii).

(iii) = (ii). Let (4;) € Xo(2,). Take (4;,) € X2, n = 1,2, ... according to (ii),

and put 2; 4, =U4;,n 2,
n=1

If not otherwise specified, in what follows we assume that the semivation [ is
locally o-finite on Xa(2)).

Lemma 2. Let f;: T, —» X; (or fi: T;—> [0, + ®0)) be P-measurable for each
i=1,...,d. Then

1) F[(f). (*)]: Xa(2,) = [0, + 0] is o-finite;

2) without assuming the local o-finiteness of the semivariation I' on Xo(2)),
if T[(f.), ()] Xo(ﬂ) — [0, + 0] is locally o-finite, then there are 3-rings
W,‘(fx) < P, i =1,....d, such that [ is finite valued on X2, and for any
i=1,...,d each 9’ measurable function g;: T, > X; (or g;: T; - [0, + ©0)) with
{t.e T, g, (t) * 0} = {r;e T, fi(t;) + 0} is 2, ;- measurable and »

3) lf FL(f:). (*)]: Xa(2,) - [o, + 0] is separately continuous (hence bounded
by Theorem VIIL6), then there are 6-rings 2, ;, < 2;, i = 1,...,d, such that [
is separately continuous on X2, (o and forany i =1,...,d each P -measurable
Junction g2 Ti—> X, or (9;: T, - [0, + w)) with {t;eT,, g(t;) + 0} < {t,eT,
fit:) £ 0} is P, (ro-measurable.

Proof. For i =1,....d put F; = {t,e T,, f(t;) + 0} e o(2)). ..

1) Since I': X(F; ~ o ? )~ [0 + oo] is:o-finite by assumption, by (ii) of Lemma
1 there-are o-rings 2, . < P, i=1,....d, such that o'('@, (Fy) = g(g?)n .F;

for each i = I, »d, and ris finite valued on XZ, ;. Put Z; . U {t €T,

0< lfl(t I < k} »andlet 27 = 2, (an’,,c =1, ...,d.- Then clearly a(@ ) =
= o(2;) " F, for each i=1,...d,and F[(f), (+)] is ﬁmte valued on X&7.. - -
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2) Since I'[(f.), (+)]: X(F; 0 (Z:)) = [0, + 0] is o-finite, there are S-rings 2; =
co(?)AF,i=1,...,d, such that 6(2}) = o(2,) N F; for each i and I'[(f), (*)]
is finite valued on X¢,. Clearly f; is 2;-measurable for each i = 1, ...,d. Put #] =

= U {t:eT, |f(t)| > 1/k} n i, i = 1,...,d. Then obviously 2] is a d-ring such
k=1

that o(2]) = o(2}), and the semivariation I is finite valued on X2/ by the Tsche-
byscheff inequality, see Theorem VIIL.3—7). Since 4; N A€ 2; and A; N A} € P]
forany 4;€ 2, Aie P;and Aj € 2},i = 1, ..., d, P;-measurable functions g;: T; -
— X (or to [0, + o0)) are exactly those 2 ;-measurable functions g; for which {t; € T},
gi{t;) + 0} = F,.

3) may be proved similarly as 2).

Theorem 1. Let (f; )€ Sy = XS(2,, X,),n = 1,2, ..., and let f, (t;) > f{1:) € X;
foreachi=1,....d and each t;e T, Then the following conditions are equivalent:

a) the vector d-polymeasures y,, v,(A4;) = [y (fin)dl, (4;) € Xo(2;), n =
= 1,2, ... are separately uniformly countably additive on Xa(g’i), and

b) lim [(4,) (fi,.) A" € Y exists for each (4;) € Xo(2;).

Proof. b) = a) by the (VHSN)-theorem for polymeasures, see the beginning of
part VIII = [13].
a) = b). Let (4;) € Xo(2;) and let ¢ > 0. For B, € 6(2?,) n A, put

w(By) = i 1 sup {|p.(C; N4y, 4, ..., 4))|, C, € B, 0 o(2,)} ,
12" 1+ 7,(4))

where 7, is the supremation of the vector d-polymeasure y,, see Definition VIII.2
in [13]. Then clearly p,: A; n o(2,) — [0, 1) is a subadditive submeasure in the
sense of Definition 1 in [16]. (Of course, instead of the above suprema we may
alternatively use control measures for the vector measures y,(, 4, ..., 4,): 4; N
no(?,) - Y, n=1,2,...) Applying the Egoroff-Lusin theorem, see Section 1.4
in part I = [6], to the convergence f; ,.x(4;) = fi . 2(4;) and the submeasure
py: Ay 0 o(2,) - [0, 1), we obtain a set N, € 4, no(#,) and a sequence F, ;€
€d; NP, k=1,2,... such that u;(N,) =0, F,, » A n(F; — N,), where

F, =U{t;e Ty, f1,(t;) * 0} € o(?,), and on each F, ,;, k = 1,2, ... the sequence
n=1

Sfim n=1,2,... converges uniformly to the function f;. Since the semivariation
I': Xo(2;) > [0, + 0] is locally o-finite by assumption and (4;)e Xo(2)), by
Lemma 1 (iii) there are F{, € #;,i=1,...,dand k = 1,2, ..., such that F;, » 4;
for each i = 1,...,d, and I'(F},) < +oo for each k = 1,2,.... For k = 1,2, ...
put F{,=F{,n{t,eT, Ifl(tl)] < k}. Then obviously Fj,e A, no(2,) and
Fi, 7 Ay n(F, — N,). Now by the assumed separate uniform countable additivity
of the vector d-polymeasures y,: Xa(#;) - Y, n = 1,2, ... there is a k, such that
Pl Ass s ) = 2(F s Ay, o, A] <'¢f4d
foreach n =1,2,.... : —_
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Repeating the above consideration for the second coordinate and starting with
(Fi 4> A2, ---» A,), We obtain a set F , € A, N o(P,) such that the sequence f3 1>
n=1,2,... converges uniformly to f, on F ;,, |f2(t2)] < k, for each t, € F} ;,, and

l'yn(Fll,kp AZ’ A37 LR Ad) - ‘yn(F,l,kp F,Z,kz’ A3’ T Ad)l < 8/4d

foreach n =1,2,....
Continuing in this way we obtain successively F3 4, ..., F; ;, with the corresponding
properties. Hence

a, = |yn(Ai) - yn(F;',k;)l < 8/4
foreach n =1,2,....
By separate linearity of the integral [z, (+)dI': XS(2;, X;) - Y for each (B;) €
€ Xo(2;) we have the following inequalities for any n,j = 1,2, ...:
bn,.i = Iy"(F;',ki) - yj(F;,ki)l = ”(F'a,m) (fl'.n) ar — j(F’t,kt) (fi.j) dF| =
é H(F'i,ki) ((fi,n - fl,j)9 f2,n’ "'7fd,n) drl +
+ ”(F',,k.) (fl,j’ (fz,n _fz,j),f3,n9 coosfam) dl"l + ...
ot Ij(F'(,m) (fl,js ---9fd-1,j7 (fd,n —fd,j)) drl é
= “fl,n - fl,j”F';,kl . ”fZ,'l“F’z,kz R ||fd»"“F’d,kd . F(F:',ki) +
+ ”fl,j“l"'x,kx . ”fz-'l —fz,.i“F'z,kz . “f3,n"F'3,k3 sl ”fd,n“F’a,ka . f(F;',kx) + ...
et "fl,j"F'x,kx AR "fd_l’j“F'd-l,kd—l . ”fd." —fd»f”F'd,kd . F(F:',ki) .

Since on each F;, ,i=1,...,d, the sequence f; ,, n = 1,2,..., converges uniformly to
the function f;, and || i, ., < ki» there is an ng such that n = nqimplies | f; .| r-
< k;+ 1foreachi = 1,...,d, and at the same time n, j = n, implies

nfiv" - fivfllF'i,kiE(ki + 1) F(Fg,h) < 6/Zd

for each i = 1,...,d. Hence b, ; < ¢/2 for n,j = n,. Thus for n,j = n, we have
the inequality

ki =

|7n(Ai) - )’j(Ai)| Sa,+a;+b,;<iet+ie+ie=c¢.
Since (4;) € Xo(2,;) and & > 0 were arbitrary, the implication a) = b) holds, and
the theorem is proved.

If now (fi,)efo = XS(?,,X;), n=1,2,... is another sequence such that
fin— fifor each i = 1,...,d, and the vector d-polymeasures y,(*) = [, (f{,)dI,
n = 1,2,... are separately uniformly countably additive on Xa(.@,-), then the same
is true for the sequence (f7,), n = 1,2, ..., where

_ /fin fornodd,
"~ N\ fi, forneven.

fﬂ
in

Hence the integral in the next definition is unambigously defined.

Definition 1. Let f;: T, » X;, i = 1,...,d, be Z;-measurable functions. We say

i
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that the d-tuple (f;) belongs to the first integrable class J(I), i.e., (f;)e #4(I),
if there is a sequence of d-tuples (f;,)€ £, = XS(2;, X;), n = 1,2, ... such that
fint;) > fi(t;)foreachi = 1, ..., d and each t; € T}, and the vector d-polymeasures y,,
(A} = fiap (fin) AT, (4;) € Xo(2,), n =1, 2, ... are separately uniformly countably
additive on Xo(2;). In this case we define

§ean (fi) Al =Tim {4 (fi,) AT
for (4;) € Xo(2,). e
We easily obtain

Theorem 2. 1) Let (f;)e X5(2,, X)), let (4;)e Xo(#?,) and let [(4,) < + co.
Then (f; x(4;)) e #4(T') = #,.

2) Letf: T; — X,,i = 1, ..., d, be 2 -measurable functions and let [[(f,), (T;)] =
= 0. Then (f))e #(I') = #,. In particular, if (4;) € Xo(#;) and [(A;) = 0, then
(fi x(4;)) e #, for any P -measurable functions fi: T;— X;, i=1,....d. (Of
course, the integral is identically equal to 0.)

Proof. 1) follows immediately via the implication b) = a) of Theorem 1.

2) Take f; ,€ S(?:,X,),i=1,...,d, n = 1,2, ... such that f; , - f; and If,-,,,| 2
2 lfil foreach i = 1, ...,d, and apply Corollary 3 of Theorem VIII.4.

In the next theorem we summarize the basic properties of the elements of (")
and of the integral on them.

Theorem 3. 1) If (fy,f5. ..., fa), (91, f2, ... fa) € £4(T) and ay, by € K = scalars,
then (a;fy + bygy, f2, ... fs) € #4(T) and
I(A;) (alfl + b191, fa "'5fd) dar = a, f(m) (fz) dar + b, j(A;) (gl’fZ’ ""fd) dr

for each (A;) € Xo(2;). Analogous identities hold in the coordinates i = 2,...,d.
2)If c;eK, i =1,...,d, and (f;) e #,(T), then (c;f;) e #,(T) and

d
Seap (eif ) dI = H ¢; Joan (fi)dr
for each (4;) € Xo(2,). =1

3) If (fi) e #4(I') and (4;) € Xo(2,), then (f; x(A;)) e #(I') and

§o (fi 1(4)) AT = [(4,0m, (fi) AT
for each (B;) € Xo(2,).

4) For a fixed (f;))e #,(T) the indefinite integral [.,(f;)dI': Xo(2,) > Y is
a vector d-polymeasure (0 — 0) absolutely continuous with respect to I', see Defini-
tions VIIL.2.

5) If each T, i=1,...,d, is locally compact Hausdorff topological space
and T'(+)(x;): X6(%;) > Y is a separately regular vector Borel d-polymeasure
for each (x;) € XX, then for each (f;)e J,(I') the indefinite integral |, (f;)dI:
Xo(%;) - Y is a separately regular vector Borel d-polymeasure. (Note that each
vector Baire d-polymeasure is separately regular, see also Theorem 7 in [15].)

6) [(4)) = sup {[Juuy (f) ALfs (f)e £u(D), |fila, S 1 i=1,...,d} = ['(4)

593



for each (A;)e Xa(®,), and similarly [[(f:),(4,)] = I'[(f), (4))] for any 2
measurable functions fi: T; > X; (or f;: T; > [0, +0)), i =1,...,d and each
(4;) € Xa(2,).

Proof. Assertions 1)—4) are immediate consequences of the definitions.

5) follows from the following assertion.

Supplement to (VHSN)-Theorem for polymeasures, see the beginning of part
VIII. Let each T}, i = 1, ...,d, be a locally compact Hausdorff topological space,
let y,: X6(%;) > L“(X;; Y), n = 1,2, ... be operator valued Borel d-polymeasures
separately regular in the strong operator topology, and let lim y,(4;) (x;) = y(4;) (x;)e

n— o

€Y exist for each (4;)e X5(%;) and each (x;)e XX;. Then y,, n =1,2,... are
separately uniformly (or equi-) regular in the strong operator topology, and y:
X§(%;) > LX;; Y) is separately regular in the strong operator topology. The
same is true if 6(%) is replaced by o(%;) or o(%;), where %; denotes the lattice of all
open subsets of T;,i =1, ...,d

This supplement is an easy standard consequence of the (VHSN) — theorem.

6) We prove the first equality, since the second can be proved similarly.

Let (4;) € Xa(2,), let (f))e #4(I') and |fi|,, <1, i=1,...,d, and let & > 0.
Take a defining sequence (f;,) € £, = XS(2;, X;), n = 1,2, ... and use the notation
from the proof of Theorem 1. Since clearly ['((4;) < I''(4;), it is enough to suppose
that I'(4;) < + 0.

Take ng such that

[feao () AT = & + [fap (i) 4T

for n = ny. According to Theorem VIII.1 there is a k, such that
§cao (i) AT| £ & + [[asarip (fin) AT <

e+ ”fl,n”AlnFl,k' oo "fd,n”Aand,k f(Ai)

for each k = k, and each n = 1,2, ....
Let k = k, be fixed. Since on each F; 4, i = 1,...,d ,the sequence f; ,,n = 1,2, ...
converges uniformly to the function f; and |fi4, £ 1, i =1,...,d, there is an

ny = ng such that |fi,[ 4nr,. S 1+ ¢ for each i =1,...,d and each n 2 n,.
Thus

[§ean (F) dT| < 26 + (1 + &) I(4)) .
Since (f;) € #4(I') with | fi]|l4, £ 1,i =1,...,d, and & > 0 were arbitrary, [''(4;) <
< I'(4;). This implies (6) and the theorem is proved.

Owing to the theorem just proved we may apply the extension procedure of
Theorem 1 and Definition 1, starting with #,(I") instead of #,, thus obtaining the
second integrable class #,(I') for which the analog of Theorem 3 holds. Unfor-
tunately, the author has been able neither to prove the equality J,(I') = J(I')
in general, nor to construct an example with #,(I') % # (). In Theorem X.3 we

will prove the equality J,(I') = #,(I') under the assumption that the vector d-
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polymeasure I'(+)(x;): X2#; - Y has a locally control d-polymeasure for each
(x;) € XX; this occurs, for example, if each 2, i = 1, ..., d, is generated by a count-
able family of sets, see Section 3 in part VIII = [13]. Hence in general we are forced
to use transfinite induction for the definition of the class of all integrable d-tuples
of functions. Namely, we introduce

Definition 2. Let o be a countable ordinal and let fi: T; —» X;, i = 1,...,d, be
P -measurable functions. We say that the d-tuple (f;) belongs to the a-integrable
class fa(I’), shortly to #,, if there is a sequence of countable ordinals «, < «, n =
=1,2,..., and a sequence of d-tuples of functions (f,-,,,)e I B =1,2,... such
that f; ,(t;) = fi(t;) for each i = 1, ..., d and each t; € T}, and the indefinite integrals
[y (fin)dI': Xe2,) - Y, n = 1,2, ... are separately uniformly countably additive.
In this case we define

f(ap (fi) Al = Tim oy (fi) AT
for (4;) € Xo(2)). nee

Clearly 4,, = J,, for a; < a,. We put & = S(I') = U F,(I), where Q is the

a<

first uncountable ordinal number. The elements (f;) € # are called d-tuples of func-
tions integrable with respect to the operator valued d-polymeasure I', or simply
d-tuples of integrable functions.

In fact, by transfinite induction we also have

Theorem 4. 1) The assertions of Theorem 3 remain valid if S is replaced by
any £,,0 < a < Q, hence also by £.

2) Leta,,n = 1,2,... be countable ordinals, let (f; ) € F,,n = 1,2, ..., and let
fint) = ft)e X, for each i =1,...,d and each t,e T;. Then the analogs of
a) and b) of Theorem 1 in this setting are equivalent, and if they hold, then (f;) € 4,
for any o satisfying o > a, for alln = 1,2, ..., and

§ean (f) I = lim [y, (fi,0) AT
for each (A;) € Xo(2)). e
3) Let UeL(Y,Z). Then UI': X2, —» I'(X;; Z) is separately countably ad-
ditive in the strong operator topology, U I'(A;) < |U| I'(4;) for each (4;) € Xo(2)),
and (f;) € £ (UT) for each (f;) € £, for any countable ordinal o.
Using Theorem VIII.1 and the assertions 1) and 2) of Theorem 4 we immediately
have

Corollary 1. For each i = 1,...,d let ?; be a é6-ring such that P, = P} < o(2;),
and let I' be the restriction to X2, of an operator valued d-polymeasure I'': XP; —
— I9(X;; Y) separately countably additive in the strong operator topology with
necessarily locally o-finite semivariation I’ on Xo(2;) = Xo(2;). Then
XS(#2;, X;) = F(I), hence I(I'") = I,4(T) for each countable ordinal o, and
thus #(I'") = #(I). Further, I = I' on Xo(2,), and similar equalities hold for

PIC), ()], 17, and |I7[.
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Similarly we have the following useful

Corollary 2. Let f;: T; > X, i = 1,...,d, be ?-measurable functions, and put
F; = {t;e T, f(t;) + 0} € o(2,). Let « be countable ordinal and suppose there are
sets Fi ea(?),i=1,...,d, k =1,2,...such that F,,, » F,foreachi = 1,...,d,
and (fixr,,) € Fo for each k = 1,2, .... Then (f;) € £, if and only if there is
a vector d-polymeasure y: Xo(2;) — Y such that

WA, 0 Fi) = Soup (fixr,,) T
for each (A;) € Xa(2,) and each k = 1,2, ... . If this is the case, then

WA:) = 5(A() (f,-) ar
for each (A;) € Xo(2,).

We easily deduce also the following two corollaries:

Corollary 3. Let o, a,, n = 1,2, ... be countable ordinals such that a > a, for
each n =1,2,..., let (fi,)e I, n=1,2,..., and for each i = 1,...,d let the
sequence f;,, n =1,2,... converge uniformly to a function f;: T; > X;. Then

i

(f: 1(4))) € £, for each (4;) € Xo(2,) with finite semivariation ['(A,).

Corollary 4. Let o be a countable ordinal and let d, be a positive integer such
that 1 < d, < d. Suppose that f: T; » X;, i = 1,...,d{ are P-measurable func-
tions such that (fy, ..., fa X4, 41 X(Aa, + 1), ..., X4 2(AJ)) € £, for each (xg,44, ...
vy Xg) € Xgper X oo X Xy and each (Ag 4y, ..., A€ Pyiyy X .. X Py, let fi€
eS(2, X)) for i =d, +1,....d, let By, 1y, ..., By) €0(Py,+1) X ... x o(2P,) and
f[( 1o oeosSas X(Ad1+1)’ -",X(Aa))’ (T,)] < +o0. Then (fy, -..s fays fa,+1 X(Aal+1),
s S X(Ad))e Fat1-

Now we can prove

Theorem 5. Let o be a countable ordinal, let (f;)e S, and let ¢;: T; > K, i =
=1,...,d, be bounded 2 -measurable scalar valued functions. Then (¢,f;) € F oy ,-

Proof. Fori = 1,...,dput F; = {t,e T, f(1;) # 0} € 6(2,). Since by assumption
the semivariation I': X(F; n o(2;)) > [0, + 0] is o-finite, there are F;,e 2,
i=1,...,d, k=1,2,... such that F,, » F, for each i = 1,...,d, and ['(F;;) <
< +oo for each k = 1,2,.... The sequences F;, = F;, 0 {t;e T, |f{(t;)| < K},
i=1,...,d,k=1,2,... possess the same properties. Since ¢;: T; » K, i =1,...,d,
are bounded scalar 2 ;-measurable functions, it is well known, see Thoerem B in § 20
in [18], that there are sequences ;€ S(o(%,),K), i = 1,...,d, n = 1,2, ... such
that the sequence ¢;,, n = 1,2, ... converges uniformly on T; to the function ¢;
for each i = 1, ..., d. Let k be fixed. Since on each F;,, i=1,...,d, k =1,2,...
the sequence ¢; ,fi, » = 1,2, ... converges uniformly to the function ¢,f;, and since
(@infi 2(Fix)) € F, for each k,n = 1,2,... by Theorem 4, we have (¢.f; x(Fi)) €
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€ S+, by Corollary 3 of Theorem 4 for each k = 1,2,.... Hence (f;)€ Sy,
by Corollary 2 of Theorem 4. The theorem is proved.
The next theorem is obvious.

Theorem 6. Let f;: T; » X;, i = 1,...,d, be ?-measurable functions and put
F; = {t;e T, f{t;) + 0} € o(2)). Let the variation o(I', (+)): X(F; n ;) > [0, + 0],
see Definition VIIL.3-c) in [13], be o-finite, and let (|fi|) € #(o(T, (*))) = £, (o(T, (*)))-
Then (f;) e #4(T) and

o(fy (£i) AT, (4) £ fan (
for each (4;) € X(F; n o(2))).

The following important result is a generalization of the Lebesgue dominated

convergence theorem in %,(m), see Theorem 11.17 in [7].

) do(T, (+))

fi

Theorem 7. Let g;: T; » X;, i = 1,...,d, be P,-measurable functions, and let
the multiple Ly-gauge [[(g;),(*)]: Xa(2;) = [0, + 0] be separately continuous
(then I[(g,), (T;)] < + oo by Theorem VIILG). Further, letf;,: T; > X;,i =1, ..., d,
n=1,2,... be Pr-measurable functions, let f;,(t;)) - fi(t;)e X; for each i=
=1,...,d and each t;€T;, and let |f;,| < |g;| for each i =1,...,d and each
n=1,2,.... Then

1) lim (P[(f; = fim 920+ 90)s (T)] + PL(g 0 S2 = f2ums 9355 90)s (TN] + -

n—o

.t f[(gl’ "',gd—hfd _fd,n)? (Tl)]) = 0’
2) (9;)e #4(T), and for any g,,€S(2?,.X,), i=1,...,d, n=1,2,... such
that g;,, — g; and |g;,,| 7 |gi|, i = 1,...,d, we have

im  feap (9in) Al = ey (95 dI
uniformly with respect to (A4;) e Xo(2,), and
lim  I[gy,,), (4:)] = F[(9:), (45)]

uniformly with respect to (A;) € Xo(2;), and
3) (fi), (fimeZy(I)., n=1,2,...,and
lim [y (fing dI = [, (f))dI,

i (0. (40] = LG (4]

both uniformly with respect to (4;) € Xo(2;).
Proof. 1) In view of the symmetry in the coordinates i = 1, ..., d it is sufficient
to prove

() 1im Py — i 022 -+ 80 (T)] = i PLy = i 0200 (S,)] = 0,

where S,, = {t;e T;, gi(t;) * 0} € o(2)).
Let 2, = U2, n{tyeT,, |g,(t;)| > 1/k}, and for A4, € do(?}) = o(?,) S,
k=1
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put puy(4,) = I[(x(41), 92, ..., 94)s (S,)]- Then by the separate continuity of
I'[(g:),(*)]: Xa(2,) > [0, + ) and other properties of the multiple L,-gauge,
see the assertions of Theorems VIIL3 and VIIL4, we immediately see that y,: o(27) —
— [0, + ) is a subadditive submeasure in the sense of Definition 1 in [16].Hence
by the Egoroff-Lusin theorem, see Section 1.4 in part I = [6], which remains valid
for such py, there are Ny € 6(2}) and F,, € 2}, k, = 1,2, ... such that p,(N,) = 0,
F,, 7~ 8, — N;, and on each F,, k; = 1,2,... the sequence f;,, n=1,2,...
converges uniformly to the function f;.

Let ¢> 0. Since obviously I[(29, g, ---» 94)s (Sg)]: Xo(2:) = [0, +0) is
separately continuous, there is a positive integer k; o such that

F[(zgla 92505 gd) (591 - Fk1 0’ gz’ R qa)] < 8/2
Since F,, j€ 2, there is a positive integer k, such that F, €2 N {t,e Ty,
l9:(t,)] > 1 ko} Hence (1/ko) x(Fy,,) (t1) < |g4(t1)| for each t;€T,. But then

F[(X(Fkx.o) 92> -0 gd) (Fkl,u’ ng’ . Syd)] < kO f[(g) (T)] < 4 00. Since on Fkl,o
the sequence f, ,, n = 1,2, ... converges uniformly to the function f1, there is a posi-
tive integer n, such that

b, = Hfl - fl,n” Fyio P[(X(Fh,o)’ 925+ 9)> (Fis 00 Sz -5 Sed)] =
< f1 = fial Fioo ko P(g2), (T)] < &2
for n = n,.

Hence for n = ny,

P[(fl —fim 25 eens gd) (Sg-)]
= f[(f1 - fl,m G2 e0s gd), (Sg1 — N, — Fy, 0 yz’ .- Sﬂd)]
+ PL(f1 = fim G20 o0 9)s (Fey 05 Sga s Sg)] < 8[2 + bu <&
Since ¢ > 0 was arbitrary, (i) and hence also 1) is proved.
2) Let (g;.) € XS(2;, X,), n = 1,2, ... be such that gin~ gi a0d |9, 7 |gi]
foreach i = 1, ...,d. Then we have the mequahtles
”(,m (gi,ki.l) ar — j(Ai) (gi,k.-,z) dl"l =
H(A,) (gl ki T 91k, 92k, "'5gd,kd,l) dFI +
+ H(A)(gl k20 (92000 = I2k2.2)s I3 ka0 s Jdika, 1)drl +.
”(A;) (91 Jei,2o o Ja=1kaoy 20 (Yaka,, — Gaka 2) dF|
= P[(Gl,km gl,k1,2)5 g2 -0 gd)’ (T;)] + ...
ot F[(gl’ o Ga-1s (gd,kd,l - gd,kd,z))’ (Ti)] =
= f[((gl - 91,k1,,)’gz, -nygd)a(Ti)] +
+ I'((9: - Iiein)s 925 -5 9a)s (Ti)] +
-t f[(gp s Ga-1,(9a — gd,kd,1)7 (T')] +
+ F[(gl, o Ga-15 (94 — gd,kd,z)’ (T")]
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for any multiindices (k; ;) and (k; ,) and any (4;) € Xo(2;). Hence 1) = 2). It is
easy to see that similarly 1) = 3). The theorem is proved.

For the next theorem we need

Lemma 3. Let (4;)e Xo(2,), let Nie A,no(®?), i=1,...,d, and let
PNy, Ay oy A)) + ... + (44, ..., A4_1, N;j) = 0. Further let f:T, > X, i=
=1,...,d, be P-measurable functions and let a be a countable ordinal number.
Then (fix4,) € F, if and only if (f; x(4; — N))) € S, If (fi x(4))) € £, then
(1) S (fixa) AT = [z, (fi x(4; — Ni))dr
for each (B;) e Xa(2)).

Proof. Suppose that (f;x(4; — N;))eS,. Since (fy x(Ny),f> x(4; — N, ...
s fa X(Aa - N,,)e Jy e S, and LB.-) (f1 X(N1)af2 X(Az - N2)>
cows fax(Ag — Ny))dI' = 0 for each (B;)e Xo(2;) by the assertion 2) of Theorem
2, (f1 x(A1)s f2 2(A2 — N3),....fax(As — Ng)) €1, and
_‘(Bg) (f1 X(Al)afl x(Ax — Nz), o Ja X(Ad - Nd)) ar = f(Bi) (f; X(Ai - Ni)) dr - for
each (B;)e Xa(#;). Repeating the above consideration with the coordinates i =
= 2,...,d we obtain that (f; x(4;)) € #, and that equality (1) holds for each (B;) €
€ Xo(2,). The converse assertion is clear.

Using this lemma we now prove the following generalization of Theorem I.11.

Theorem 8. Let f;: T; > X;, i = 1,...,d, be bounded ?-measurable functions,
let (A;)€ Xa(2;) and [(4;) < +co. Further, let a,0,, n =1,2,... be countable

ordinals and let o > o, for each n = 1,2, .... Finally, suppose that there are
(fin) € Fup n=1,2,... such that
(+) a,(8) = P({t; € Ay, |Fa(t2) = Fialty)] > 8}, Ay ooy A)) + ...

cee + P(Ay, s Aoy, {tae Ty, |f,,(t,,) —-f,,,,,(td)| >6})—>0 as n—o o
for each & > 0. Then (fixa,) € F.. If, moreover, b = sup I fimla, < 400, then

fi‘l} S (fin 2(4:) AT = [, (fi x(4:)) AT

uniformly with respect to (B;) € Xa(2).

Proof. First, suppose b < + c0. Using the monotonocity and separate countable
subadditivity of the semivariation I': X(4; N o(2;)) - [0, + ), we deduce from
(*) in the usual way, see § 22 in [18], that there are sets N;e A; 0 o(2)), i = 1, ..., d,
and a subsequence {n,} = {n} such that [(N, A,;..., 4,) + ...

o + (A, ..., Ag—y, Ng) = 0 and fix = fi, 2(A}) = fi x(4}) for each i = 1, ..., d,
where A; = A; — N;. According to Lemma 3 we may replace each 4;,i =1, ..., d,
by A;. Obviously,

S (fi) AT = sy (f1,) dr| <

< S (fix = Fi) Soso s fa) AT| + ..

599



oo+ o (FLs oo Samr,pp (fig — fi)) dT| S
STL((f1x = f1.5) boayrs oo bag)s (AD)] + ..
o PI(b (AL, s b t(Aiss), (fik = fag))s (40)]
for each j, k = 1,2, ... and each (B;) € Xo(2;).

By the symmetry in the coordinates it is sufficient to estimate the first term on
the right hand side of the above inequality. Clearly

PL((fi = f1.5), b 2(43)s -, b 1(42)), (4)] £
= F[((fl k= fl)’ b X(A’z), .. b X(A:x))y (A:)] +
+ F[((fl - fl ,j)a b X(Alz), LR} b X(An,i))’ (A:)] }) and
P[((f1 = f1.), b x(A3), ..., b x(43)), (47)] <
< 26 P({t; € 4, |fi(ty) — f1,(ts)| > 8}, A4S, ..., A7) +6b*7 F(4))
for any r = 1,2, ... and any & > 0. Hence we immediately see that (f; x(4})) € £,
and lim [ (g, (fim 2(4}) AT = [ (5, (f: 2(4})) dI" uniformly with respect to (B;)e
k= o
€ Xo(2,).
If it were not true that lim [, (fi, x(4}) dI' = [, (f: x(4}) dI' uniformly

with respect to (B;) € Xa(2;) (i.e., either the above limit does not exist for some (B;) €
€ Xa(#,), or it is not uniform with respect to (B;) € Xo(2;)), then there would be
an ¢ > 0, a subsequence {n;} = {n}, and d-tuples of sets (B; ;)€ X(2,),j = 1,2, ...
such that

|feoi, (i 2(4) AT = [, (fi (A)) dT| > &

for each j = 1,2, .... However, by the first part of the proof there is a subsequence
{ix} = {j} for which this is not true. Hence the theorem is proved in the case
b < +o.

Now let b = + 0. By () there is a subsequence {n,} < {n} such that
P({tye Ay, [£1(t) = findt)] > 1/25, Ay A + ..

o+ P(Ay oo Agy, {tae A |fits) = fanlts)] > 1/2°}) < 1)2.
Put

Ay = {ti € A4;, ‘fi(ti) - fi,nk(ti)l > 1/2k} >

let N, =UA4;; and N, =N N;,, i=1, ...,d, k=1,2,.... Then clearly

j=k k=1
I(Ny, Ay ..y A)) + ... + (44, ..., 44—, N;)) = 0. For i and k as above put
fix = fim 1(A; — N;y). Then obviously (fi,)e #,, for each k =1,2,...,
Siw=fix(A; — N;)foreach i = 1,...,d, and ||fi ||z, £ ||fill4, + 1 for all i and k

considered. Hence (f; x(4; — N;))e#, by the first part of the proof. Thus (f; x(4;))e #,
by Lemma 3. The theorem is proved.
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