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ON CERTAIN INFINITESIMAL ISOMETRIES OF SURFACES

ALoIS §VEc, Brno

(Received June 9, 1986)

In the following, I am going to characterize the surfaces of the Euclidean 3-space
which admit non-trivial infinitesimal isometries preserving the mean curvature.
In this sense, the paper is an infinitesimal version of the recent paper [1] of S. S.
Chern; nevertheless, the results are quite different and many problems remain open.

We consider, in the Euclidean space E3, a piece of a surface M. With each point
m e M, let us associate an orthonormal frame {m; vy, Uy, v3} such that v; is a unit
normal vector at m. Then we may write

2
(1) dm = o'v; + 0%,, dv, = 0lv, + ©3vy, dv, = —0lv, + dv;,
_ .3 3
dvy = —wjv; — W30,

with the usual integrability conditions.

Further, let us consider a 1-parametric family of surfaces M(t), t € (—¢, ¢), such
that M(0) = M; for each t, let an isometry ¢,: M — M(t) be given. On M(t), take the
field of orthonormal frames {m(t); v,(t), v,(t), vs(t)} with m(t) = ¢(m), vy(t) =
= d¢(vy), v, = de(v,). Then
(2) dm(t) = o'o,(t) + 0?0,(t), dvy(t) =  oi(t) va(t) + @3(r) vs(1) ,

doy(f) = —@i(t) v4(t) + @3(t) vs(t), dvs(t) = —@3(1) vy(1) — W3(2) vy(1)

with (0) = o] and the integrability conditions

3) do! = —0* A 0i(),
do? = o' A ol(t), o' Aoi(t)+ o® A wy()=0,
doi(t) = —wi(t) A 03(1), doi(t) = oi(t) A ©3(1),
doj(t) = —0i(f) A oi(1).

Let

@) o] := (dol(1)/dt),=, .

From (3 ,), we get 0® A 97 = 0' A @7 =0, ie.,

©) 01 =0.

473



This together with (3;_) yield

(6) AP+ AP=0, 3 AP+PIAR=0,
(7) dp} = @} A @3, do3 = —of A 9.

Given a surface M, the couple {¢3, @3} of 1-forms on M satisfying (6) + (7) is
called the infinitesimal isometry ® of M.
The second form of M(t) is given by

(®) (1) = o' 03(1) + 0® wj(1);
its Gauss curvature K() and its mean curvature H(t) by
) K(t) o' A o* = 0i(t) A @3(1),

2H(t) o' A 0® = 0i(f) A ©® + o' A 0)(1),
resp. Let us define the variations '
(10) OIl := (dl(1)/dt),—o , OK := (dK(1)/dt),=o, 6H := (dH(t)d1),=0 ;
we get
(11) Ol = 0'o} + 0? A ¢},
(12) 0K =0, 20H.0' A @ = ¢} A 0% + @' A ¢F.
The equation (12,) is the consequence of (6,); it is the infinitesimal version of the
theorema egregium.

Consider the surface M. The equation (3;) for t = 0 yields the existence of functions
a, b, ¢ such that

(13) 0} = ao! + bo?, ©} = bo! + cw?;

we have, again on M,

(14) ds? = (0')? + (0?)?, 1I = a(w!)? + 2bo'e? + c(w?)?;
(15) 2H=a +c¢, K =ac— b?.

It is easy to see that the lines of curvature of M are given by

(16) b(w')? + (¢ — a) ®'w* — b(w?)? = 0.

The Euler function E on M be defined by E := H> — K, i.e.,

(17) 4E = (a — c)® + 4b*.

A point m € M is umbilical if and only if E(m) = 0.

Let f: M — R be a function. Its first covariant derivatives f; with respect to the
coframes {w', ?} are defined by

(18) df = f10' + fLo?.
From this,
(19) (dfy — f03) A 0 + (dfy + f0?) A 0 =0,
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and we get the existence of the second covariant derivatives f;; = f;; such that
(20) dfy — fr07 = f1;0" + [1,0%, df, + f101 = f,0" + fr,0%.

Theorem. Let M = E3 be a surface without umbilical points; M admits a non-
trivial infinitesimal isometry @ with

(21) 0H =0
if and only if
(22) 2b(H,E, — H,,E) +

+ (¢ — a)(H,E, + H,E, — 2H,E) — 2b(H,E, — H,,E) = 0.
If a general surface M = E? admits a non-trivial infinitesimal isometry ® satisfying
(21), we have (22). The surfaces admitting non-trivial infinitesimal isometries @
with (21) depend on 4 functions of 1 variable in the sense of E. Cartan.

Proof. From (6) and (13), we get the existence of functions Ry, R, Ry on M
such that

(23) ¢} = Rio' + R,0?, ¢3 = R,0' + R;0?,
(24) R, — 2bR, + aRs = 0.

The condition (21) is equivalent, see (12,), to

(25) R, +Ry;=0.

First of all, let us suppose that M contains no umbilical points, i.e., E # 0 on M.
From (24) and (25), we get (¢ — a) Ry = 2bR,, and E + 0 implies the existence
of a function R on M such that R, = 2bR, R, = (¢ — a) R. Thus (23) turn out to be

(26) @7 = R{2bo' + (c — a) 0?}, ¢} = R{(c — a) o' — 2bw?}.
Let us mention that, see (11),
(27) OIl = 2R{b(w')* + (¢ — a) w'®* — b(w?)?} .
The couple M + @ is thus given by (13) + (26). The differential consequences are
(28) (da — 2bo?) A @' + (db + (a — ¢)w}) A @?* =0,
(db + (a — ) @}) A @' + (de + 2bw}) A @* =0,
(29) dR A {2bo' + (¢ — a) @} + R{2(db + (a — c) w}) A

A o' + (de — da + 4bwl) A 0?} =0,
dR A {(c — a) @' — 2bw?} + R{(dc — da + 4bw}) A
Ao —2(db+ (a - c)wl) A 0} =0.

Using Cartan’s lemma, we get the existence of functions o, f, y, 8, ry, r, such that

(30) da — 2bwi = aw' + fw?, db + (a — ¢) 0] = po! + yo?,
de + 2bw? = yo! + dw?,
(31) dR = r0' + r,0*,
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and satisfying

(32) (c—a)ry —2br, =R(a+7y), 2br; +(c—a)r,=—R(B +9).

It is elementary to see that the equations (28) + (29) are linearly independent. Thus
the system (13) + (26) is in involution and its solutions depend on 4 functions of

1 variable.
Let us rewrite (32). From (9),-,, we see that

(33) 2H =a + ¢,

with the notation (18), the equations (30, ;) imply 2H; = o + y, 2H, = f + 0,
i.e., (32) may be written as

(34) (¢ —a)ry — 2bry = 2H,R, 2br; + (¢ — a)r, = —2H,R.
Because of E # 0, we may evaluate r,, r, from them, and (31) turns out to be
(35) dR = 1Rw

with

(36) o:= E"'[{(c — a)H, — 2bH,} o' — {2bH, + (¢ — a) H,} 0*].
The integrability condition of (35) being R dw = 0, there exists a non-trivial func-
tion R on M if and only if dw = 0. By a direct calculation, this is exactly (22).

Now, let us drop the supposition E # 0 on M. Because of (25), (23) may be written
as

(37) ¢} = Rio' + R,0*, ¢3 = R,0' — R,0?;
the condition (24) being

(38) (c—a)R; —2bR,= 0.

Of course

(39) oIl = Ry(0')? + 2R,0'w* — Ry(w?)*.

Our problem is thus given by (13) + (37) + (38). The differential consequences
of (13) are (28), and from (37) we get

(40) (dR; — 2R,0}) A @' + (dR; + 2R,@?) A @* =0,
(dR, + 2R,@?) A ' — (dR; — 2R,0}) A @? = 0.

Using Cartan’s lemma, we get (30) from (28) and, from (40), the existence of
functions Sy, S, such that

(41)  dR, - 2R,0} = S;0! + S,0%, dR, + 2R,0} = S,0' — S;0?.
The differential consequences of (38) are then
(42) (¢c—a)S; —2bS, + (y —9)R; —2BR, =0,

(¢c—a)S, +2bS; + (6 —B)R; — 2yR, = 0.
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The exterior differentiation of (30) + (41) yields
(43)  (da — 3Bw}) A @' + (dB + (2 — 2y) ®}) A @? = 2Kbw'! A 0?,
(dB + (@ —2y) o) A @' + (dy + (28 = d) ) A w? = K(c — a) ' A w?,
(dy + (28 — 8) w}) A ©' + (dd + 3ywl) A 0> = —2Kbo' A w?,
dS, — 3S,0%) A o' + (dS, + 35,0%) A w? = 2KR,0' A 0?,
1 2 11 2
dS, + 35,0}) A o' = (dS, — 3S,0%) A w?* = —2KR,0' A 07,
2 1 2%l 1

>

and we get the existence of functions A4, ..., E, T, T, such that
(44) do — 3Bw; = Ao' + (B — bK) ?,

dB + (¢ — 2y) wi = (B + bK) 0! + (C + aK) 0?,

dy + (28 — §) wi = (C + cK) 0" + (D + bK) 0*,

dé + 3yw} = (D — bK) o' + Eo?,

dS, — 35,07 = (T; + KR,) »' + (T, — KR,) »*,

dS, + 38,07 = (T, + KR,) o' — (T; — KR,) @*.
Using these, we get, from (42),
(45) (¢ —a)Ty — 2bT, + 2(y — @) S, — 4BS, +

+(C— A4+ 2K — aK)R; — 2(B + 2bK)R, =0,

26Ty + (c—a) T, + (B +0)S; — (x+7)S; +

+ (D - B)R; — (2C + aK + ¢K)R, = 0,

—(c —a) T, + 2bT, + 4yS; + 2(6 — B) S, +

+(E— C— 24K + ¢cK)R; — 2(D + 2bK)R, = 0.
From (45, 3),
(46) 23y — o) Sy +2(6 — 3B) S, +

+(E— A+ 3K —3aK)R, —2(B+ D + 4bK)R, = 0.
Consider the system (46) + (42) + (38) for S, S,, Ry, R,. If @ is non-trivial, this
system must have a non-trivial solution — see (39) — and its determinant 4 must
vanish. Let us calculate 4 at a point m, € M. Because of II = a(w')® + 2bw'w® +

+ ¢(w?)? — see (8) — we may choose the frames in such a way that b(m,) = 0.
Then, at m,,

(47) 6y — 20 20 — 68 B+ D
A(mg) =2(c—a)| c—a 0 B =
0 c—a Y
= 2(c — a) {(c — a)*(B + D) — 2(c — a)(y6 — ap)} -
Again at my € M, we have
(48) 2H, =a+7y, 2H, =B+, 2H,, =B+ D,
4E = (c — a)*, 4E, =2(c—a)(y —«), 4E,=2(c—a)(0 - B).
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Thus

(49) 2EH,, — H,E, — H\E, = }{(c — a)*(B + D) — 2(c — a)(yd — af)},
and we get, at mye M,

(50) A(my) = 8(c — a)(2EH,, — H,E, — H,E,).

Thus 4(m,) = 0 is equivalent to (22) for b = 0. The left-hand side of (22) being an

invariant of our surface, we are finished.

Remarks. Evidently, all surfaces of revolution satisfy (22). Indeed, let M be a surface
of revolution. The frames of M be chosen in such a way that »; be tangent to the
circles of M. On each of these circles, H = const. and E = const.; further, b = 0
on M. Thus E; = H, = 0 on M, and (22) is satisfied.

For E = 0, (22) may be written as

(51)  2b(E"'H,); + (¢ — a)((E"'Hy), + (E™"H,),) — 2b(E"'H,), = 0.

Using the tensor notation, we may write (22) as follows: Let ¢;; dx’ dx/ = 0 be the
lines of curvature on M; (22) is then

(52) ¢UHE,; = EcH,; .
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