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EQUATIONS OF EVEN ORDER
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1. INTRODUCTION

In this paper we study the behaviour of Hermitian matrix-solutions Q(x) = Q(x; )
of the Hermitian Riccati matrix equation

Q +ATQ+ QA4+ QBQ — C + ACs =0

when the parameter A — — o0 in case that the (n, n)-matrices A, B, C and C? are
of a special form (as described in section 2, formula (2)). More precisely: a matrix
Q(x), which solves the Riccati equation above, is of the form Q(x) = V(x) U™ *(x)
where U(x), ¥(x) solve the corresponding Hamiltonian system

U =AU+ BV, V' =(C—AC5)U — A™V.
The matrices 4, B, C, Cg are given by formula (2) such that this Hamiltonian system
corresponds to a self-adjoint scalar differential equation of even order 2n, i.e.

©) Ly) = é:o(_ 1Y (ry)® = ary

with realvalued functions r, € C(R), re C(R), r(x) > 0 and r,(x) > 0 on R. For
fixed x, € R we consider solutions Q = VU ! of the Riccati equation, for which U, V
satisfy (with respect to A fixed) initial conditions at x,, such that U, ¥ form a so-called
conjoined basis of the Hamiltonian system (see [6]). Our main result (Theorem 1)
describes the asymptotic behaviour of Q(x;A) = V(x; A) U '(x;4) as A » — o0
for all x % x, (note that Q(x,; A) is not defined if the fixed initial value U(xo) is
a singular matrix).

This matrix Q(x; 1) occurs in the treatment of variational problems (where (0)
is the corresponding Euler equation) via Picone’s identity (see [10, 6]); and an
essential aid of that treatment is the asymptotic behaviour of Q(x;4) as x — x,
or A — A, (this is discussed in [5, 6]), and also as 4 — — oo with x fixed. It is shown
in [6, Theorem 11] that Q(x; A) — 0 as A > — o0, x > X,, and this crude result is
improved in this paper by deriving the precise asymptotic behaviour. Actually the
asymptotic behaviour of solutions of (0) is treated extensively in the literature (see
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e.g. [1, 4, 7, 12] for the case A - — oo or [3] for the case x — o0, 4 fixed). But these
results do not lead to the results below (Theorems 1 and 3) on Q(x; 4). Moreover,
the methods in [4, 7, 12] need stronger smoothness conditions on the coefficients
r(x), r(x); essentially r and r, e C,(R) is needed (then the equation (0) may be
transformed such that r = r, = 1).

The setup of -this paper is as follows. In § 2 we introduce the necessary notation
and assumptions, and the main result (Theorem 1) is stated. In § 3 precise estimates
for Q(x; A) (Theorem 2) are derived in case that (0) is an equation with constant
coefficients r, (v = 0, ..., n), r. These estimates combined with inequalities for the
Riccati equation [6, 9] lead to our main results (Theorems 1 and 3) in § 4. In the
last § Theorem 3 is applied to derive estimates of solutions of (0) (Prop. 3 and 4).
On the one hand these estimates do not imply the asymptotic results from [4 or 7],
but on the other hand one does not obtain uniform estimates for solutions of (O)
with fixed initial values (as in Prop. 3) from those known results.

2. NOTATION, ASSUMPTIONS, AND MAIN RESULT

We consider Hamiltonian systems of ordinary differential equations, which
correspond to self-adjoint scalar equations of even order, i.e.

(1) u' =Au + Bv, v =(C— ACq)u — A"v,

where the (n, n)-matrices 4, B, C, Cg are of the special form
01...0 1 0 ... 0

2 A=| , B= By, Bo=|....... ,

) 00...1 (%) ° 0 0 ]
00...0

ro(x; ) 0 1...0
C= , Co=1(x)Co, Co=1{....... ,

0 ro_q(xs2) 0...0

and where A is a real parameter. We assume thoughout this paper that the realvalued
functions r(x), r,(x), r,(x; A) satisfy
(3) r(x), r(x) e C(R), r/(x;2)e C(R?),

v=0,...,n—1 and r(x),r(x)>0 on R.

Observe, that a function y: R — R solves the scalar equation

n

4) L(y) = X (= 1) (ry™)™ = ary

v=0
on R, if and only if the vectors u = (u(x)), v = (v,(x)) given by
(0) w0, w= 3 (), k=0

v=k+1
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are well-defined on R and solve the differential system (1) [6, 8]. Moreover, we assume
throughout that the (n, n)-matrices U = U(x; 1), V = V(x; ) are the solution of
the following initial value problem
(6) U =AU + BV, V' =(C—-AC5)U — A"V,
U(xo) = Uy, Vi(xo) = Vo,

where x, € R is fixed, and where the (complex) (n, n)-matrices Uy, V,, satisfy
@) rank (U5, Vo) =n, UgV,=ViU,.
Then, by [6], the matrices U, V are a so-called ‘conjoined basis’ of the Hamiltonian
system (1); we have UTV = V'U on R?; the focal points of U (i.e. those x € R, for
which U(x; /1) is singular when A€ R is ﬁxed) are isolated; and then the Hermitian
matrix Q(x; 4) := V(x; A) U~*(x; 4) solves the Hermitian Riccati matrix equation [6]
®) Q + A"Q + Q4 + QBQ — C + ACy =0,
whenever it exists (i.e. for all x € R, for which U(x; 1) is regular).

For the formulation of our main result we need some further notation. Let

©) o= —a. 6(x)i= ). oleid) = 00 o).,
if A<0, xeR.
Moreover, let

(10) & := exp{iﬂ: (l—( ~r- 1)}, k=0,..,2n—1 (observe &" = (—1)""1),
n

2n
1 oo 1
€o €2n-1 ®7; D1, : : 0
(11) @°:= " = o' o> (with (n, n)-matrices @),
STUITII @0, o9,
L ce. &2p-1 (2n,2n)

and finally we introduce the (n, n)-matrices
0 ... (-1
(12) G;:= E°®3,0)7" for i=1,2 with E®=( ............ ,

(13) D,:=diag(l,a,....,a"" "), D,:=diag(e""",...,a,1) for aeC,

where diag denotes diagonal matrices. Observe that @° is a (regular) Vandermonde
matrix and that the matrix G, is real, symmetric, and positive definite by [6; p. 140].
This implies that the matrix G, is also real and symmetric, but negative definite,
since G, = —D_,;G,;D_,, which follows from a simple calculation.

Now, our basic result is given by

Theorem 1. If |r(x; )| < Rog" ™™V for v=0,...,n— 1, xeR, gy = 1, and
some R >0, then lim(1]ge) Dy,0,Q(x; A) Dyjgy = 1,(x) 8(x) Dyx)GDs(y for all
A= —

X % xq, where G = G, in case x > X3 and G = G, in case x < 0.
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(Of course, O(x; A) exists, i.e. U(x; l) is regular, for x = x, if A is sufficiently small,
i.e. A £ Ay = Ao(x). Note, moreover, that Q(xo; 4) is not defined if the fixed initial
value U, is a singular matrix.)

Finally we mention, that ||+ || always denotes the Euclidean norm of a vector resp.
the induced matrix norm (spectral norm) of a matrix. For quadratic matrices Q,, Q,
we write Q; < Q, (resp. Q; < Q,) if Q; and Q, are Hermitian matrices and if
Q, — Q, is positive definite (resp. nonnegative definite); and QT (resp. Q) denotes
the transpose (resp. complex conjugate) of a matrix Q; I denotes the identity matrix.

3. CONSTANT COEFFICIENTS

In this section we assume that the differential equation (4) has constant coefficients,
ie.
r(xAd)=rAeR, v=0,...,n—1, r(x)=r,,

x)=r on R with r>0, r,>0.

Thus, by (9), o(x; 4) = o(A) = ¢ = *3/(—4r|r,). We shall derive estimates of the
matrix

O(x;2) = rl_g By, 0(x; ) By, with Q(x; 2) = V(x; A) U™ '(x; 4) .

(Note the corresponding definition of Q(x; A) and (13) of section 2.)

Theorem 2. Suppose that R, o are positive constants such that |r,(3)| =
S Rr@*" ™Y, v=0,..,n =1 for ¢ =21, (1)r,) U§Vy = —aUJU,. Then, for
any 0 < ¢ < 1, there exist positive constants K = K(n, R, a,¢), K; = K,(n, R)
(depending on n, R, a,c resp. n, R only) such that the following holds: Q(x; 1)
exists for all x > x4, 0 = K, and

"Q(XQ /1) - G1H < Ke7? forall ¢zK,

-1
x = xo + x;(0) with x,(g) = (c sin F—) log ¢ >0.
2n 0
If the inequality above on U,, V, holds for —V, instead of V,, then the assertions
hold for x < x, resp. x < xo — x4(¢) with G, instead of G,.

Proof. We prove the result for x > x,, since the case x < x, may be obtained
from x > x, substituting x by —x, and then the matrices U, ¥, and G, must be
replaced by D_,U, —D_,V (according to (5)), resp. G, = —D_,G,D_,.

First, it follows from [6; Prop. 4 with ¥, = —Rr,0*" ™", v =10,...,n -1,
F=rfF=r,2=2<0, and U(x,) = I, ¥(x,) = —ar,I] (using our assumptions
onr,(%), UyV,) that Q(x; A) exists on (xo, xo + 0] forall ¢ = 1(i.e.A £ —r,/r < 0)
with a positive constant § = &(n, R, a), so that Q(x; 1) exists on (xo, Xo + x,(2)]
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for ¢ = K. Here, and in the following K resp. K, denote different, positive constants,
which depend on n, R, a, ¢ resp. n, R only.

Now, the characteristic polynomial of the equation (4) (with constant coefficients)
is given by P(f) = (—1)" r,0*"P,(t]e), where

n—1

- v —-n rv v n

Pl(t) — t2" -0 ZZO(_QZ) +1 v t2 + (___1) .
v=

Iy

Therefore P(t) has the zeros g = 00, where the § are the zeros of P,(f).
It follows from [11; 66 pp.] (using the assumption on the r,(4)) that (observe (10))

(14) |6, — & < Kio™? if ¢2K; for k=0,...,2n— 1.

This implies, in particular, that the §, (and then also the g;) are distinct for ¢ = Kj,

so that the functions exp (g,x), k = 0, .... 2n — 1 form a fundamental system of (4).
Then the matrix

W(x) = W(x; 2) = (; EO> (?f 9'3)9) ? (Dtl)(x) Dz&))

is a fundamental matrix of the corresponding Hamiltonian system (1) This is obtained
from the transformation formulas (5), when the following notation is used:

0 r, = *x 00
e IS I
F = SENE E = r,(E° + E*) with E o . 0
0...0 0...0
(E® D, as in (12), (13)),
1 .1
¢= 60 '52)1—1
o=t gt

Dy(x + xo) = diag (%, ..., e™" %), Dy(x + x,) = diag (e¥, ..., eP-1%)

Note, that |f;;| < 7Ky, [efj] SK;(for1 S i<js<nlgisn—-1—-jsn-2
resp.) It follows that the solution U, V of our initial value problem (6) is given by

o (1)

(I 0\ (D, 0 @ Dy(x) 0 o-1(Pue 0 U,
“\FEJ\0 ¢D, 0 D,(x 0 0 "Dy,) \E"'W, — E"'FU,)’

ie.
U(x) = D, @y Dy(x) Ay + D@y, Dy(x) A, ,

V(x) = F U(x) + @"EDy(®,; Dy(x) A, + @55 Dy(x) 4,),
where

and A; = 0 "®,,D,,E ' (Vo + SUy,), S; = ¢"ED,$,'®,,D,,,— F, i=1,2,
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(D, D b, d
b = 1 P12} gt =(~11 ~12>'
(4521 ‘pzz) D, P2
Since #°0°" = 2n1 (i.e. #°~ = (1/2n) #°7), which follows from (10), (11) by direct
calculation, we obtain from (14)
<Ko% for 0=K,.

_ - 1 —
(16) [Py — Do £ K072, [By - o 0"

Our definitions imply that E = r,(E° + E*), D,,,D,,, = ¢™"*'I, and D,,E°D, =
= E°. These formulas, and the formulas above for U(x), V(x) imply the following
representation of J(x; 4):

Q(x; A) = ;1; ﬁl/eFﬁlle + (EO + Dl/eE*De) (I + 82(x)) (1521451‘11(] + 81()‘))_1 ’
with g,(x) = ®;, D(x) A,47" D7 (x) @7', i = 1,2, if the matrices 4, and I + &,(x)
are regular (which implies that U(x) is regular too, since the @, ; are regular for ¢ = K,
by (16) and (10), (11)). We have that Re g, = —Re &4 = sin (n/2n) > 0 for k =
=0,...,n — 1 by (10), and we obtain from (14), (16), and the definition of F and E*
the following estimates: |Di'(x)| < 1/e, |Dy(x)| £ 1), |Dy,,E*D,| < K072,
[(1/r,) Dy;oF Dy || £ Kyo™' and |E°®,, @7, — G| < Ky~ 2 for all x = x, +
+ x4(0), 0 = K. These estimates and the formula for O(x; 1) above imply the as-
sertions of Theorem 2 for x > x, (observe that we have already shown that Q(x; A)
exists on (xo, xo + Xx,(¢)]), if we prove the following:

(17) A, is regular, and  ||4,A7'| £ K, for ¢ 2K,

since this implies [je(x)| < K;07% for x = x, + x4(¢), ¢ = K, from which the
regularity of I + &,(x) follows, in particular. Thus, it remains to prove (17). First,
we show that the matrices S; = S(¢), i = 1, 2 are Hermitian for ¢ = K. Therefore,
we consider the matrix solutions U, V; of (1) which satisfy the initial conditions
Uy(xo) = Va(xo) = 0, Vi(xe) = —Usy(xo) = 1. Then U, V; are ‘normalized con-
joined bases’ of (1), so that U,(x) Ul(x) is symmetric (and real) for x € R by [6;
Def. 2, (7'), (8)]. Our representation (15) of the solution U, V applied to U;, V;,
i = 1,2 yields:

(ED, &7} DTY(x) ®1Dy,,) Uy(x) UL(x) (ED, @75 Dy '(x) @71 D))" =

= (=S; — ED, D '(x) @7, ®,, Dy(x) §,,D,,E"'S,) x
x (I + ED, &7, D7 '(x) P17y @y, Dy(x) $,,D; E~')" - —Si(e) as x— o0,
since —Reg, = Reg,yp <0 for k=0,...,n — 1 and ¢ = K;. Since the lefthand

side of the limit is for all x a Hermitian matrix, we obtain that S; is Hermitian;
and a similar argument (let x> — oo) shows that S, is Hermitian, too. Next, we have

~ 1 =1 1 ~
S; = r—‘ ﬁllesiﬁlla = (EO + 51/aE*De) ‘pizl‘pu - r—g DI/QFDI/Q 5

n n
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which implies by (16) and (12) that
(18) [S:— G7'| <Ko% for ¢2K;, i=12.
Hence, (1/r,) S; > al for ¢ = K, so that the matrix

1
Vo + S,Uq = 7, ({i Vo — aUO} + {— S, — al} U0>
r'l rll

is regular by [6; Prop A 1], since

- 1“——‘-—“T
(— Vo — aUO) Uy 20
r"

by our assumption. This implies that 4, is regular for ¢ = K (observe that the cited
Prop. A 1 remains true for complex, Hermitian matrices instead of real, symmetric
matrices). Now, we obtain for ¢ = K that

A,AT" = &,,(D,,,E*D, + E°)"1.
(Vo + ¢8,00) (Vo + 5,0o)"" (D, E*D, + E°) &7,
with
~ 1 ~
Vo = - Dy4o¥oD1jy, Uy = DUoDyy, .

Next, we have (V, + 05,0,) (Vo + 05,0o)" " =1 + oS, — §;) Q, where the
matrix @ = Uy(¥, + @U,)~! is Hermitian, since U”7, = 77U, by (7). Moreover,

0 =0 (ie. (Vo +05,00)"0,20), Q= 1§;‘
0
- e — ~ 1 TR R M NT N— ~ ~ o~
<i.e.(V0 +05,00)" U, 2 é(Vo + 08,0,)" STV, + S1Uo)>

for ¢ = K (use (18) and the assumption (1/r,) UgV, = —aUjU,). These inequalities
show that | 4,47 | < K, for ¢ 2 K, which completes the proof. [J
The proof above shows, that one may also obtain an inequality similar to Theorem

2 for values of x nearer X, (this follows simply from estimates of || D,(x)|, [Pt '(x)|
using (14)), namely:

Corollary 1. Under the assumptions of Theorem 2 there exist positive constants
K = K(n, R, «,c), K; = K,(n, R) such that

[0(x; 2) — Gy|| £ Kee™? forall y=1, o= max{K,e"?},

and x 2 x, + xi(e) with x7(¢) = (csin (n[2n))~! y/o, for any 0 < c < 1; and if
the inequality of the assumption of Theorem 2 holds for —V, instead of Vy, then
the assertion holds for x < x5 — x’f(g) with G, instead of G,.

Next, we estimate 0(x; 4) for |x — xo| < x¥(g) as ¢ » o0 (i.e. A » — o), if U,
is regular, i.e. if Q(xq; A) = VoUg! exists.
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Proposition 1. Suppose that U, is regular, and that R, a are positive constants with

iVOU(;‘ Za.

n

()] < Rr@*® ™D, v=0,..,n~1 for g1, and

Then, for any ¢ > 0, there exist positive constants K = K(n, R, o, ¢), K, = K,(n, c),
such that Q(x; ) exists and

[0(x; 1) K, forall ¢ 2K, |x~ x| <clo.

Proof. Since
Lyus

Ty

Sa

is equivalent with
—aUlU, < L U2V, < al2U,,
rll

the existence of Q(x; A) on R for ¢ = K follows from Theorem 2. Now, we consider
the matrix Q*(x) = Q(x, + x[¢; ) for ¢ = K, x € R. Because

1
5:;Aﬁm =04, T‘nDQBﬁg = By, a 51/91C:51/¢ = —0Cy,

and ||C*(g)| < Re™? with
l
C*(Q) e ﬁl/aCBUo

Il

by (2), (13), and (9), it follows from (8) nad (6) that Q*(x) is the solution of the
following initial value problem:

0% + ATQ* + Q*4 + Q*ByQ* — C, — C*(2) =0, Q*(0) = Qg(e)
with

0o(0) = o ﬁl/oVoUo Dije -

n

Since |C*(e)| < Re™2 — 0, and | Q5(e)| < @0™' — 0 as ¢ — o, the results on the
continuous dependence of solutions of initial value on parameters and initial values
(compare e.g. [2; 22 pp.]) imply that lim sup ” 0*(x; @) — Qa(x)| = 0 (in particular

[@*(x; @) — Qo(x)|| < 1 for |x| < c, Q > K(n R, a,c) and any ¢ > 0), where Qy(x)
is the solution of the initial value problem

0o + A"Qo + Qo4 + QByQy — C, =0, Qo(o) =0.
Note that Q,(x) must exist on [ —c, c] for any ¢ > 0, thus on R, which is also included
in the results mentioned above [2; 22 pp.]. It follows that

lo*Cs )l =1+ sup Q)] = Ky ¢) for 02K, |x] <e,

hence || O(x; 4)] = “Q*(Q(x — Xo), A)|| £ Ky(n, ¢) for @ 2 k, |x — xo| < cfo, which
is our assertion. []
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Remark. It follows from results on Hermitian systems with constant coefficients
(compare e.g. [9; p. 161]) that any Hermitian solution of Q' + ATQ + Q4 +
4+ 0ByQ — Co = 0 on (— o0, ) satisfies G, < Q(x) < G, for x € R. Moreover,
the particular solution Qg(x) with Qo(0) = 0 satisfies lim Qg(x) = Gy, lim Qy(x) =
= G,, and the following algebraic equations hold:  *7%® oo

ATG, + G,A + GByG; — Co =0, i=12.

Of course, these results may be verified directly in our special situation by a rather
tedious caclulation.

A direct consequence of Cor. 1 (with y = 1, ¢ = }) and this Prop. 1 (with ¢ =
= (4sin (n/2n))"" is the

Corollary 2. Under the assumptions of Proposition 1 there exist positive constants

K = K(n, R, «), K; = K,(n, R) such that
[O0(x; A)]| £ K, forall ¢2K, xeR.

4. VARIABLE COEFFICIENTS

In this section we consider the behaviour of V(x; ) U™*(x; A) as A > — o0 on
a compact interval [x, — a, Xo + a]. Therefore, we fix a > 0 and introduce the
following further notation:

(19) 0<reSr(x)S71*, 0<ru=<r(x)sry for |[x—xi|<a
with suitable positive constants 7y, ..., 7 .

Observe that these constants exist by (3). Moreover, we need the common modulus
of continuity of r(x) and r,(x), namely:

(20) o(h) = max {(|[r(x) — r(y)| + [r(x) = nO)]) : [x = y[ =k,
|x —xo| Sa, |y — x| Sa} for h20.

We shall derive estimates of the matrix (compare section 3)
~ 1
(21) 0(x; 4) = —————= Dijoiiny (%5 4) Dy jgeiny
rJ(x) o(x; 1)

with Q(x; 4) = V(x; ) U™ Y(x; 4), o(x; 4) = 2/(—=A7(x)[rs(x)) (according to (9)).
Our main result in this section is

Theorem 3. Suppose that R, o are positive constants such that [r,(x;).)[
SR, v=0,..,n—1, |x—xo| S a, go=22-A21, and UgV,
= —aU2U,. Then there exist positive constants K,K, (depending on n,ry, r*,
Tuks Tas R, & TeSP. 1, T, 1%, Ton, T, R only) such that the following holds: Q(x; 1)
exists for xo < x < X9 + a, A £ —K, and

” Q(X; A) -G “ = w*(Qo) = Kl(Q(;z + w(k)g Qo/Qo)) forall A= -K,

=
2
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xo + x;(2) £ x < xo + a with x,(1) = cloggo[eo ,
¢ = (4sin(n/2n) min 2/(r(x)r(x)))" > 0.
|x=xo|sa

If the inequality above on U, V, holds with —V,, instead of V,, then the assertions
hold for x < x, resp. x < xo — x4(1) (x = x, — a) with G, instead of G;.

(Note that the constants K, K; do not depend on a ‘directly’, but, of course,
in general the quantities ry, 7%, 7,4, 7i, R, and also w(h) depened on a, ie. the
interval [x, — a, xo + a].)

Proof. As in the proof of Theorem 2 we may restrict ourselves to the case x > x,,
First, we introduce the solution Uy(x), V(x) of the initial value problem:

Uy = AUy + ByVy, Vi = (Cyx — 2Co4) Uy — ATV, ,
U*(xo) = Uy, Vi(xo) = Vo ,

where

B, = L By = B(x), Cy= —RD < C(x), and Copy = r4Cy £ C(x)

Frx
for |x — xo| < a by (19) and (2). This initial value problem has constant coefficients,
and therefore we obtain the existence of Qu(x;A) = Vi(x; ) Uz '(x; 1) on
(xg» xo + a] for 2 < —K from Theorem 2. Now, the inequalities By = B(x),
Cyx = C(x), Cox < Cg(x) and the fact that U(x,) = Usy(xo), V(xo) = Val(x,) imply
that Q(x; 1) exists with Q(x; ) = Qu(x; 4) for x€(xq, Xo + a], 4 < —K. This
follows from [6, Prop. 4 and Theorem 7, which implies lim (TU"(x) Va(x) Uz '(x) .

x=Xxo+

.U(x) = U"(x) V(x)) = 0]. Then Cor. 1 (applied to Q) and G; > 0 imply that
(22) O(x;4) = Qu(x;4) >0 for xo+4x,(A)Sx<xp+a, A=< -K.
Next, we fix any x € [xo + x;(4), X, + a] and introduce the following quantities
(depending on x): x* = x — % x,(A) = xo + % x4(%), and
PT =minr(t), r* =maxr(t), r; =minr(t), r =maxr(l),

[x*,x] [x*,x] [x*,x [x*,x]
o™ =2/ (=ar7|r7), o = 2/(=ar*[r}). We consider the solutions U*(r), V*(1)
of the initial value problem (with constant coefficients):

U* = AU* + B*V*, V¥ =(C* — AC5)U* — ATV,

U(x*) = U(x*; 1), VEx*) = V(x*;2),

where B*, C*, C¥ are defined according to (2) with r¥, r¥, r¥ = +Re3" """V
(v=0,...,n —1) instead of r,r,r, resp.. Then B, = B~ = B(t) 2 B*, C, <
SC =C(t)<C*, and Copu S C; S Co(t) £ Cq on [x*,x], Qu(x*4) <
< 0%*(x*; 4) = Q*(x*; A). Hence, we may apply [6; Prop. 4] again, and we get:
Q*(t; 4) = V*(t; A) U=~ Y(1; A) exists on [x*, x] with
(23) QA =Q (1) =04 < Q% 4) on [x*x] for A< —K.
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Since Q(x*; 1) = Q*(x*; 4) > 0 by (22), Theorem 2 with & = 0 (and ¢ = }) can
be applied to Q*(t; A). (Note here, that the initial values U(x*; 1), V(x*; 1) depend
on A, of course, but the constants in Theorem 2 do not depend on Uy, V, but only
on o, which may be 0 here since U(x*; A)T V(x*; 1) 2 0.) Let O0*(t; 1) =
= (1/r¥o*) Dyjp Q*(t; 4) D, p«, then Theorem 2 yields:

(29) [0%(t; ) — Gy|| £ Kyo5? for x*+xf<t<x, A< -K

with x§ = (% sin (n/2n)) ™" log 0*[o*. Observe that (24) holds for t = x, in particular,
since x* + x’f < x for A £ —K, which follows from: .

1 -1 +
X* 4 xt=x— %(sm __) log oo 1 + i(sin 211:_) log (c*gy)
n

+

2n Q0 c* 3 0o
with .
¢t = min Z/((Ofr0) S ¢* = 2/(r*]rE) < X /re).
|t—=xo]<a
Now, (23) and (24) for ¢ = x yield for 1 £ —K:
r*o
Q(x; ’1) r_— 51/e 0 (x )') 51/@ - :0 e*/e Q+(x; ’1) 5e“/e =

rn 0" -
= —TQ— 59*/9((;1 + K00 21) De"/e ’

and this is (with another K;) < G; + 0*(g,) I, since w(h) < 2(r* + ry) by (19),
(20) and

+ + A 2n +

¢ - Q" (x; \/(— (x) -2 (x)) <1+ K, loggofeo » 'n <14 K, log go/00

0 Q(x, A) T
(use that x — x* < K, log 0o/0y, and that the modulus of continuity w(h) has the
obvious properties: w(h) < w(k')if h < k', w(nh) < n w(h) for n e N, thus, w(h) <
< w(ch) < (c + 1) w(h) forallc¢ = 1, h = 0).

Similarly, we obtain that §(x; 1) = G, — ®*(g,) I, which completes the proof. [J

Remark. If we have additionally that r,(x), r(x) € C;(R), then we obtain (under
the assumptions of Theorem 3) the estimate
103 Qo0
)

with x,(4) as in Theorem 3, but where the constant K; may depend on
¢y i= max {|r(x)| + |F(x)] : [x — xo| £ a} < 0 also.

[0(x;2) — Gy|| £ Ky —== forall A< —K, xo+x;() Sx=<x+a

Proof of Theorem 1. Fix any x % x,, choose a = |x - xol, and choose
a constant o > 0 (which is obviously always possible) such that the assumptions
of Theorem 3 hold. Since x;(4) - 0 as 2 > — oo, we have that |x — xo| = x,(4)
for A sufﬁc1ent1y small. Moreover, lim w(log @¢/o) = O by the continuity of r,(x)

A=~
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and r(x), and therefore the estimate of Theorem 3 implies the assertion of Theorem 1.

If U, is regular, the proof above and Cor. 2 yield the following =

Corollary 3. Suppose that U, is regular, and that R, « are positive constants such
that
[rx; )] S RV, v=0,..,n—1, [x—xi|Sa, g1,
[VoUs || £ a.
Then there exist positive constants K(n, Ta> ¥, Poges r,f, R, oc) and Kl(n, Ty ¥,
Tuks Tns R) such that O(x; 1) exists on [xo — a, xo + a] with ||Q(x; A)| £ K, for
x€[xo — a,xy + a],if A £ —K.

5. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
OF THE CORRESPONDING SCALAR EQUATION

In this section we use the same notation as in the previous section, and we study
the asymptotic behaviour of the particular conjoined bases U, V;, i = 1,2 of (1)
with the initial conditions

(25) Uiy(xo) = Va(xo) = 0, Vi(xo) = —Uy(x) =1.

This leads to asymptotic properties of any solution (u, v) of (1) resp. (4) with fixed
initial conditions at x,. First, we derive from Theorem 3 the

Corollary 4. With the same assumptions and notation as in Theorem 3 the fol-
lowing inequalities hold: ’

1
'Q(xo§ 2) 7,(o)
1
— D
‘ o(x0; 2) 74(¥o)
forall A £ —K and x,(2) £ |x — xo| £ a, where G = G, for x > x, and G = G,
for x < xy. Moreover,

[U7(x; A) Uy(x; )| £ Koo forall 0L |x — x| Sa, A< -K

Dl/e(xo;l) Ul—l(x; }”) Uz("; '1) Dl/e(xo;l) - G“ = K1CU*(QO) >

1/e(x03%) V1—1 (X; '1) Vz(X; A) Bl/g(xu;&) - G| = KICO*(QO)

(Observe that the asymptotic behaviour does not depend on x, e.g. o(x; ), but only
on X, in contrast to Theorem 3 and (21).)

Proof. For any fixed xe[Xq — a, x, + a] consider the particular conjoined
bases U (t) = U(t; 4, x), V(1) = Vi(t; 4, x), i = 1, 2 of (1) with the initial conditions
Ui(x) = V5(x) = 0, Uy(x) = Vy(x) = I. Then, it follows from [6; (7) and the
proof of Cor. 13] and (25) that

Oi(x0) = UTH(x) Uy(x) and @,(xo) = Vi *(x) Va(x) hold for
0i(t) = V() 07'(r).

362



Hence, Theorem 3 applied to 0, (with x instead of x,) yields the first two inequalities.
The additional inequality follows from these inequalities and from the fact that

- d . _
U3 Y(x0) Us(xo) = 0, = U;'(x)Uy(x) £ 0

for all x (by [6; Prop. 3]). O

Remark. For any solution y = y(x; 1) of (4) with fixed initial conditions u(x,) =
= u,, v(xs) = vy We have by (25) that

u(x) = Uy(x) (—uo + U3 (x) Uy(x) 1o), v(x) = Vy(x) (—up + V5 '(x) Vi(x) vo) -

Hence, in view of Theorem 3 and this Cor. 4 it suffices to discuss the asymptotic
bebaviour of U,(x; 1) if one wants to analyze y(x; 4). We shall restrict this discussion

to the case x = x,.
First, we need some identities, which follow from (2), (10), (11), and (12) by a rather

tedious calculation 01 ... 0
(26) @9, diag (gg -+ 84-1) P}; = A + BoG, = o -
Yo © Ya-1

and this Frobenius matrix has the characteristic polynomial Py(z) = z" — z 7,2"
=(z — &)...(z — g_,), so that e.g. v=
ety 1 —' cos (vi/2n)
27 =) =——", = (=1)"*k 1y cos(vmj2n)
@) e V;O sin (n/2n) = (1) v=o sin((v + 1) n/2n)
and
(28) 0 <y4:=sin(n/2n) = min Re(g) < y,-4/n <

k=0, 1 [(n__J_)ﬂ)) .

n

< max Re(g)=:9* =sin <1t <§1— +
n

Moreover, these identities, (25) (use also the notation (9), (21)) imply that U, =
= U,(x; 4) satisfies the initial value problem
(29) Uy = (4 + BQ,)U,, U,y(xo) = —
where
(30) A4+ BQ, = QEI/Q(A + BoG; + Al) ﬁg , 4y = Bo(Qz(xQ },) - Gl)'
Proposition 3. With the same assumptions and notatlon as in Theorem 3 and Cor. 3
(but with Uy = —1, Vy = 0, o = 0) we have
det Uy(x; 4) = (—1)"exp {Qo¥n-1 [% 6(t) dt} a(x; 1) for
Xo=Sx=Xxo+a, A= -K,
where

1B(x; 2) < afx; 4) < B(x; A) := exp {go [%, &(t; 2) dt} ,
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et; 4) = K, for xo =t = x,(3),
gt; A) = K, 0*(go) for x(A) St =<x,+a.

Proof. By Theorem 3, Cor. 3, and (30) we have |[4,(s; 4)| < &(t; ). Hence, we
obtain from (26), (29), and (30) that

det Uy(x; 4) = (—1)"exp {[}, trace (4 + BQ,) (t; A) dt} =
= (—1)"exp {QoVn—1 [3, 0(t) dt} exp {[%, e*(t; 4) dt}

eX(t; A) = trace (eDy 4, D,), thus |e¥(t; A)| < 0o 6(t) || 44(t; 2)]
and the factor &(¢) can be included in the constant K;. [

where

Remark. If we have additionally r,, r € C;(R), then
0o \HTETX < B(x; 2) < 0t TFT™ for xp xS x0+a, A5 -K,
where K; may also depend on max {|r'(x)| + IrZ,(x)[ :|x — xo| £ a}. Observe also,

that Prop. 3 yields lower bounds for |[U,(x; )| and |Uj*(x; A)||, since for any
matrix H = (hy, ..., h,), h; e C* we have by Hadamard’s inequality:

|H| = max ]h | = |det H|''".

Finally, we derive upper bounds for ||U,(x; 4)[, |U3 *(x; 4)|, namely:

Proposition 4. With the assumptions of Prop. 3 and with r,;, r e C,(R) there exist
constants K, K, (depending On N, Ty, 7*. Ty, 7o, R as in Prop. 3 and K, depending
also on max {|rj(x)| + |r'(x)| : |x — xo| £ a}), such that

[U2(x; A)| < 06"+ exp {@oy* [Z, 8(1) di} ,
and

Uz (s D) = 067 exp { —aovx [5, (1) dt}  for
Xg<x=Xxg+a, A= -K.
Proof. Put U, := #9;'D Uz, then by (26), (30) U} = o(diag (o, ..., &—1) +
+ 4,) U, with 4, = &9,'4,8%, + 4, where
4= Q(xl; %) 5(();) P’ ding (= 1), 1,0)
Hence, by Theorem 3 and its remark we obtain that |[4,(x; )| < &(x; 2) with
&x;4) =K, for x5 < x = x4(4) and =K,loggefe, for

x(A) £x<x0+a.

Now the matrix P := U0, is positive definite and satisfies
P’ = oUj(2 diag (Re &g, ..., 6,1) + 4, + 43) U, .

Hence by (28), P’ < o(2y* + &) P and P’ Z 9(2y, — &) P, which yields our assertions.
O
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