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Czechoslovak Mathematical Journal, 38 (113) 1988, Praha 

ASYMPTOTIC BEHAVIOUR OF RICCATFS DIFFERENTIAL 
EQUATION ASSOCIATED WITH SELF-ADJOINT SCALAR 

EQUATIONS OF EVEN ORDER 

W. KRATz, Ulm 

(Received January 3, 1987) 

1. INTRODUCTION 

In this paper we study the behaviour of Hermitian matrix-solutions Q(x) = Q(x; X) 
of the Hermitian Riccati matrix equation 

Q' + ATQ + QA + QBQ - C + AC* = 0 

when the parameter X ~» — oo in case that the (n, w)-matrices A, B, C and C0 are 
of a special form (as described in section 2, formula (2)). More precisely: a matrix 
Q(x), which solves the Riccati equation above, is of the form Q(x) = V(x) U~1(x) 
where U(x), V(x) solve the corresponding Hamiltonian system 

U' = AU + BV, V = (C - AC*) U - ATV. 
The matrices A, B, C, C* are given by formula (2) such that this Hamiltonian system 
corresponds to a self-adjoint scalar differential equation of even order 2n, i.e. 

(0) L(y) = t(-iy(rJ^ = lry 
v = 0 

with realvalued functions rv є C(R), r e С(Д), r(x) > 0 and rJx) > 0 on R. For 
fixed x0 e R we consider solutions Q = VU'1 ofthe Riccati equation, for which U, V 
satisfy (with respect to X fixed) initial conditions at x0, such that U, V form a so-called 
conjoined basis of the Hamiltonian system (see [6]). Our main result (Theorem 1) 
describes the asymptotic behaviour of Q(x;X) = К(х;Я)1/-1(х;Я) as A~> —oo 
for all x Ф x0 (note that Q(x0; X) is not defined if the fixed initial value U(x0) is 
a singular matrix). 

This matrix Q(x; X) occurs in the treatment of variational problems (where (0) 
is the corresponding Euler equation) via Picone's identity (see [10, 6]); and an 
essential aid of that treatment is the asymptotic behaviour of Q(x; X) as x ^ x0 
or X ~> X0 (this is discussed in [5, 6]), and also as X -+ — сю with x fixed. It is shown 
in [6, Theorem l l ] that Q(x; X) ~» oo as X ̂  — oo, x > x0, and this crude result is 
improved in this paper by deriving the precise asymptotic behaviour. Actually the 
asymptotic behaviour of solutions of (0) is treated extensively in the literature (see 
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e.g. [1, 4, 7, 12] for the case Я •* — oo or [3] for the case x -^ oo, Я fixed). But these 
results do not lead to the results below (Theorems 1 and 3) on Q(x; Я). Moreover, 
the methods in [4, 7,12] need stronger smoothness conditions on the coefficients 
rv(x), r(x); essentially r and rn є C„(fí) is needed (then the equation (0) may be 
transformed such that r = r„ = 1). 

The setup of-this paper is as follows.Tn §2 we introduce the necessary notation 
and assumptions, and the main result (Theorem 1) is stated. In § 3 precise estimates 
for Q(x; Я) (Theorem 2) are derived in case that (0) is an equation with constant 
coefficients rv (v = 0, ..., n), r. These estimates combined with inequalities for the 
Riccati equation [6, 9] lead to our main results (Theorems 1 and 3) in § 4. In the 
last § Theorem 3 is applied to derive estimates of solutions of (0) (Prop. 3 and 4). 
On the one hand these estimates do not imply the asymptotic results from [4 or 7], 
but on the other hand one does not obtain uniform estimates for solutions of (0) 
with fixed initial values (as in Prop. 3) from those known results. 

2. NOTATION, ASSUMPTIONS, AND MAIN RESULT 

We consider Hamiltonian systems of ordinary differential equations, which 
correspond to self-adjoint scalar equations of even order, i.e. 

(1) u' = Au + Bv , v' = (C - XCt) u - ATv , 

where the (n, n)-matrices A, B, C, C* are of the special form 

°.'.:::.0\ . / » - ° \ 
» • ' • В~Ф)В°- "''[<,:::j-
0 0 . . . О/ \ / 

ir0(x;X) 0 \ /1 . . . 0 
C = ' • . , Ct = r(x) CQ , C0 = 

\ 0 r ._,(x;A)/ \0 . . . 0 

and where X is a real parameter. We assume thoughout this paper that the realvalued 
functions r(x), r„(x), rv(x; A) satisfy 

(3) r (x ) , r , (x ) sC(B) , rv(x;X)eC(R2), 

v = 0 , . . . , n — 1 and r(x), rn(x) > 0 on R . 

Observe, that a function y: R ^> R solves the scalar equation 

(4) L(y) = t(-iy(ry^ = lry 
v = 0 

on R, if and only if the vectors u = (uJx)), v = (vJx)) given by 

(5) u, = / *> , vk= І ( - l ) ' - ' - ! ( r / ) f " 1 - 1 ' , fc-0,...,n-l 
V = fc+1 

(2) 
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are well-defined on R and solve the differential system (1) [6, 8]. Moreover, we assume 
throughout that the (n, rc)-matrices U = U(x; A), V = V(x; A) are the solution of 
the following initial value problem 

(6) V = AU + BV, V = (C - XCt) U - ATV, 

U(x0) = U0 , V(x0) = V0 , 

where x0 є R is fixed, and where the (complex) (n, rc)-matrices U0, V0 satisfy 

(7) rank (t7J, F0
r) = n , ЩѴ0 = V^U0 . 

Then, by [6], the matrices U, Fare a so-called 'conjoined basis' ofthe Hamiltonian 
system (l); we have ÜTV = VTU on R2; the focal points of U (i.e. those x є R, for 
which £фс; A) is singular when A є R is fixed) are isolated; and then the Hermitian 
matrix Q(x; A) : = V(x; A) tf"*(x; A) solves the Hermitian Riccati matrix equation [6] 

(8) Q' + Л г 0 + QA + QEß - С + AC* = 0 , 

whenever it exists (i.e. for all x є R, for which U(x; A) is regular). 
For the formulation of our main result we need some further notation. Let 

(9) Qo-.= *y-*., 5(x) := 2V(r(x) / r„(x)) , д(х;Х):=воо(х), 

if X < 0 , x є й . 
Moreover, let 

(10) sk := expj i rc ( - - ^ ^ ^ і Н , к = 0 , . . . , 2и - 1 (observe £" = ( - l ) " " 1 ) , 

(И) Ф° := Г ° 'и-Ч = ( J Í ; * g ) (with (n,n)-matrices Ф°) , 

(-l)-M 

2 n - l 
Е 0 • • • е 2 л - 1 / ( 2 л , 2 л ) 

and finally we introduce the (n, n)-matrices 

(12) Gf : = Е°Ф°2іФ°и1 for ï = 1,2 with E0 = 
\ l . . . 0 

(13) ^ : = d i a g ( l , o c , . . . , a " - 1 ) , j D a : = d i a g ( a " _ 1 , . . . , a , l ) for a e C , 

where diag denotes diagonal matrices. Observe that Ф0 is a (regular) Vandermonde 
matrix and that the matrix Gx is real, symmetric, and positive definite by [6; p. 140]. 
This implies that the matrix G2 is also real and symmetric, but negative definite, 
since G2 = —D_1G1D^.i, which follows from a simple calculation. 

Now, our basic result is given by 

Theorem 1. If \rv(x; A)| ^ i ^ ( n - v - 1 ) for v = 0, ..., n - 1, x e R, g0 ^ 1, and 
some R > 0, then lim (íJQ0) Ď1/QoQ(x; A) D1/Qo = r„(x) a(x) ß, (x)Gß i (JC) /o r aJ/ 

A^-oo 
x Ф x0, where G = Gx in case x > x0 and G = G2 in case x < 0. 
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(Ofcourse, Q(x; X) exists, i.e. U(x; X) is regular, for x ф x0 ifAis sufficiently small, 
i.e. X ̂  A0 = X0(x). Note, moreover, that Q(x0; X) is not defined if the fixed initial 
value U0 is a singular matrix.) 

Finally we mention, that || • || always denotes the Euclidean norm of a vector resp. 
the induced matrix norm (spectral norm) of a matrix. For quadratic matrices Ql9 Q2 
we write Qx < Q2 (resp. Q1 ^ Q2) if Qx and Q2 are Hermitian matrices and if 
Qi ~ 61 is positive definite (resp. nonnegative definite); and QT (resp. Q) denotes 
the transpose (resp. complex conjugate) of a matrix Q; I denotes the identity matrix. 

3. CONSTANT COEFFICIENTS 

In this section weassume that the differential equation (4) has constant coefficients, 
i.e. 

rv(x; X) = rv(X) є Д , v = 0, ..., n - 1 , rn(x) = rn , 

r(x) = r on R with r > 0 , rn > 0 . 

Thus, by (9)> g(x; X) = q(X) = g = 2y(-XrJrn). We shall derive estimates of the 
matrix 

Q(x; X) = — D1/QQ(x; X) D1/e with Q(x; X) = V(x; X) U~\x; X). 
rnQ 

(Note the corresponding definition of Q(x; X) and (13) of section 2.) 

Theorem 2. Suppose that R, a are positive constants such that [rv(A)| ^ 
S RrnQ2^-1), v = 0, ...,w - 1 for Q è 1, (1/4) ЩѴ0 à -ccffJUo. Гйеи, /or 
any 0 < с < 1, fftere exisř positive constants K = X(n, #, a, c), Kx = Кх(п, Я) 
(depending on n, R, a, c resp> w, jR on/y) such that the following holds: Q(x; X) 
existsfor all x > x0, Q ^ K, and 

WQ(x;X)-G^^K^'2 forall Q^K, 

x è *o + xi(Q) with хі(я) = í c sm — ) ~-^~ > 0 . 
\ 2n/ Q 

If the inequality above on U0, V0 holdsfor —V0 instead of V0, then the assertions 
holdfor x < x0 resp. x ^ x0 — ^(0) with G2 instead of Gx. 

Proof. We prove the result for x > xQ, since the case x < x0 may be obtained 
from x > x0 substituting x by —x, and then the matrices U, V, and Gx must be 
replaced by D_JJ, -D_^P^according to (5)), resp. G2 = —D_1G1D_1. 

First, it follows from [6; Prop. 4 with rv = —RrnQ
2(n~v~1\ v = 0, ...,n — 1, 

r = r, rn = rn, X = X < 0, and Ü(x0) = J, V(x0) = —urnf\ (using our assumptions 
on rv(A), U0V0) that ß(x; Я) exists on (x0, x0 + č] for all g ^ 1 (i.e. X ^ — r„/r < 0) 
with a positive constant ô = ô(n, R, a), so that Q(x; X) exists 011 (x0, x0 + X1(0J] 
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for Q ̂  K. Here, and in the following K resp. Kx denote different, positive constants, 
which depend on n, R, a, c resp. n, R only. 

Now, the characteristic polynomial of the equation (4) (with constant coefficients) 
is given by P(t) = (-1)" r^P^t|o), where 

Pi{t) = t2n - Q-"Y(-Q>y^-"^t2* + ( - 1 ) " . 
v = 0 rn 

Therefore P(t) has the zeros gk = QÔk, where the дк are the zeros of Pi(i). 
It follows from [11; 66 pp.] (using the assumption on the rv(X)) that (observe (l0)) 

(14) uKii if g ^Ki for к = 0 , . . . ,2n - 1 . 

This implies, in particular, that the ôk (and then also the gk) are distinct for g ^ Klf 

so that the functions exp (§kx), к = 0, .... 2и — 1 form a fundamental system of (4). 
Then the matrix 

^M)^)(V0<T>4). 
is a fundamental matrix ofthe corresponding Hamiltonian system (l). This is obtained 
from the transformation formulas (5), when the following notation is used: 

/0 rx 0 0\ 

. r»-i 
0 

E = rn(E° + E*) with £* = 

(£°, DQ as in (12), (13)), 

Ф = 
• \ 
àzn-i 

г2п-1 

-fon-i* 

c 2 n - l / ò2n-lJ 

D±(x + x0) = diag (eëox, ..., e*-1*), D2(x + x0) = diag (e*"* 

Note, that | /y | ^ r„K1? |ef,.| ^ Xx (for 1 ^ i < ; ^ w, 1 й i á n - 1 - j й n - 2 
resp.) It follows that the solution U, F o f our initial value problem (6) is givenby 

4*)\ _ 
F(x)j -

(15) 

/ J 0 N / D , 0 \ / D , ( x ) 0 - ^ , / f l , , 0 \ / C / 0 \ 
- Vi7 £ / V° е Ч / \ ° ^ ( * V V0 Q~*Du,) \E~lyo - E-*FUo) ' 

i.e. 

where 

U(x) = D , # n Di(x) ^ i + СеФ12 ö2(x) ^2 , 
F(x) = F t/(x) + е"£Г>в(Ф21 Z>i(x) Лі + Ф22 D2(x) Л 2 ) , 

and Л, = e"**uBir tE"4^o + S,V<,), S, = g"ED^$^D^ - F , і = 1, 2 , 
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B , ' * u *u)t ф-г_( -i = p i i fi; 
^22/ V^21 ^22; 

Since <r"<r57" = 2п / (i.e. Ф°~' = (l/2n) Ф^) , which follows from (10), (11) by direct 
calculation, we obtain from (14) 

(16) \\Фк1 - Ф°к1\\ á Kiť *« - 7" < 
2n 

g KYQ~2 for Q ^ Xj 

* 
- 2 

Our definitions imply that E = rn(E° + £*), D1/eD1/e = Q~n+1I, and Ď1JQE°DQ = 
= £°. These formulas, and the formulas above for Lf(x), V(x) imply the following 
representation of Q(x; X): 

g(x; X) = — D1/QFD1/Q + (£° + ĎllQE*DQ) (l + e2(x)) Ф21Ф^(І 4- e,(x))"1 , 
^лб 

with et(x) = Фі2 D2(x) AiA\l ^i"*(*) ФГЛ * =*= 1? 2, ifthe matrices Лх a n d / + ^(x) 
are regular (which implies that U(x) is regular too, since the Ф -̂ are regular for д ^ Kx 

by (16) and (10), (11)). We have that Re sk = - R e sn+k ^ sin (n|2n) > 0 for k = 
== 0, ..., n — 1 by (10), and we obtain from (14), (16), and the definition o f F and E 
the following estimates: | D ^ ( x ) | | й l/ß, ||A2(*)|| ^ V& ||J51/eE*De|| ^ X ^ 
||(1/гя) ß1/eFJD1/ö|| uK,Q-1 and ||£°Ф21ФГі1 - Gi|| S * i < T 2 for all x £ x0 + 
+ Хі(я), Q ^ К. These estimates and the formula for g(x; X) above imply the as­
sertions of Theorem 2 for x > x0 (observe that we have already shown that Q(x; X) 
exists on (x0, x0 + *i(cO]), if w e prove the following: 

(17) A1 is regular, and Ц ^ Л ^ Ц ^ K\ for д ^ K , 

since this implies ||eř(x)|| g K\Q~2 for x ^ x0 + x^g), Q ^ X, from which the 
regularity of I + 8i(x) follows, in particular. Thus, it remains to prove (17). First, 
we show that the matrices St = S^g), i = 1, 2 are Hermitian for g ^ K1. Therefore, 
we consider the matrix solutions Uh Vt of (!) which satisfy the initial conditions 
C/i(x0) = V2{xQJ'= 0, Ѵг(х0) = — U2(x0) = / . Then U ,̂ Fř are 'normalized con­
joined bases' of (l), so that Lf2(x) U*(x) is symmetric (and real) for x e R by [6; 
Def. 2, (7'), (8)]. Our representation (15) of the solution U, V applied to Uh Vh 

i — 1, 2 yields : 

(ED&Ì Dl\x) Ф-^D^) U2(x) Ul{x) (ЕОвФ:}йї1(х)Фй101Ів)т = 

= ( - S j - EDe D^(x) Ф^Ф12 D2(x) $22D1/eE-lS2) x 

x (I + EDfr} Dl\x) ФїЇФ12 D2(x) $22DleE-1)T ^ -S,fa) as x •+ 00 , 

since —Re sk = Re sn+k < 0 for k = 0, ..., n — 1 and Q ̂  X ^ Since the lefthand 
side of the limit is for all x a Hermitian matrix, we obtain that St is Hermitian; 
and a similar argument (let x ^> — co) shows that S2 is Hermitian,too. Next, we have 

Si = — DlltStDlle = (£° + ß1/e£*ße) i ,V*n - — Bi/fBi/,> 
r„e rBö 
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which implies by (16) and (12) that 

(18) \\Si - GJl\\ ^ KlQ-2 for Q è Kt , і = 1, 2 . 
Hence, (l/r„) S t > aI for Q ^ K, so that the matrix 

V0 + StU0 = r„ ( j i V0 - áU0\ + Я S, - a/l U0\ 

is regular by [6; Prop A 1], since 

(~ V0 - aU0\ U0 £ 0 

by our assumption. This implies that Ax is regular for g ^ K (observe that the cited 
Prop. A 1 remains true for complex, Hermitian matrices instead of real, symmetric 
matrices). Now, we obtain for g ^ K that 

A2Alx = $22(ĎllQE*DQ + E°y. 

. (К + gS2ü0) (v0 + gS,uo)-1 (DllQE*DQ + E0) $;' 
with 

V0 = ì 6i/oF0ß1/o , t?0 = 5<U<A/* -
Г„ 

Next, we have (V0 + ^^2^0)(^0 + ^^i^o)"1 = * + в($г ~ ^i) 0> w h e r e t h e 

matrix g = t70(Fo + gÜo)'1 is Hermitian, since ÜTV0 = Fr£70 by (7). Moreover, 

l « - i Q è 0 (i.e. (f0 + е£і#о)т Cf0 ^ 0), ß ^ - sí 

Q 

(i.e. ( ^ Г ^ Щ Г t7o è - (Fo + ^ Í 7 0 ) r Sr'(Ko 4- ЗДЛ 
for Q ^ K (use (18) and theassumption (1/ги) OjV0 ^ -аЩи0). These inequalities 
show that ЦЛзЛГ1!! = ^1 lC°r £ = ^ ' which completes the proof. Q 

The proof above shows, that one may also obtain an inequality similar to Theorem 
2 for values of x nearer x0 (this follows simply from estimates of ||D2(x)||, ||^r*(*)ll 
using (l4)), namely: 

Corollary 1. Under the assumptions of Theorem 2 there exist positive constants 
K = K(n, R, a, c), Kt = Ki(n, R) such that 

lQ(x;X)-G,WuK^y forall y ^ l , ç^max{X,e y / 2 } , 

and x ^ x0 + x*(g) with x*(g) = (c sin (тт/2п))_1 y|g, for any 0 < c < 1; and i/ 
i&e inequality of the assumption of Theorem 2 holdsfor —VQ instead of V0, then 
the assertion holdsfor x ^ x0 — x*(g) with G2 instead ofGv 

Next, we estimate g(x; A) for |x - x0| ^ x*(g) as g ^ 00 (i.e. k ^ -00), if U0 
is regular, i.e. if Q(x0; X) = Fot/"1 exists. 
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Proposition 1. Suppose that U0 is regular, and that R, a are positive constants with 

lV0uA £a . \ry(X)\uRrnQ*n-*-%\ v = 0 , . . . , n - l for ^ 1 , and 

Then,for any c > 0, there exist positive constants K = K(n, R, a, c), Kt = Кг(п, c), 
such that Q(x; X) exists and 

Щх;Х)\\йКі forall g^K, \х-х0\%ф. 

Proof. Since 
II 

v0u-0 < a 

is equivalent with 

-*щи0й-щѵ0й*щи0> 
rn 

the existence of ß(x; X) on R for g ^ K follows from Theorem 2. Now, we consider 
the matrix ß*(x) = ß(x0 + x|g; X) for g ^ K, x є R. Because 

fi^i/j - QÄ , r , 0 , B 0 , = Я0 > — D1/ukCSDUQ = -gCQ , 
rnQ 

ĎQAĎ 

and ||C*(e)|| á JR<T2 with 

J_ 
г„Г 

С*(в) - ~ ĎllQCĎllQ 

by (2), (13), and (9), it follows from (8) nad (6) that Q*(x) is the solution of the 
following initial value problem: 

Q*> + ^ g * + б*Л + Q*#oO* - C0 - C*fc) = 0 , ß*(0) = Qt(g) 
with 

Qt(g)~ — öx/eV0v;xD1/Q. 
rnQ 

Since ||C*(e)|| й Rg~2 ^> 0, and ||ß*(e)|| š a#" 1 ~> 0 as g ~+ oo, theresults on the 
continuous dependence of solutions of initial value on parameters and initial values 
(compare e.g. [2; 22 pp.]) imply that lim sup || Q*(jc; g) - Go(*)|| = 0 (in particular 

e^oo |x|^c 
||6*(x; g) - Qo(x)W ^ 1 for |x| g c, g ^ K(n, R, a, c) and any c > 0), where Q0(x) 
is the solution of the initial value problem 

ßo + ATQ0 + Q0A + Q0B0Q0 - C0 = 0 , ß0(0) = 0 . 

Note that Qo(x) must exist on [ - c , c] for any c > 0, thus on Й, which is also included 
in the results mentioned above [2; 22 pp.]. It follows that 

| |e*(*; o)\\ й 1 + sup ||ß0(x)|| = K,(n, c) for g à K , |x| g c , 
|x|gc 

hence ||ß(x; A)|| = ||G*(e(x - x0), A)|| g JCj(n, c) for g ^ fc, |x - x0 | ^ c/g, which 
is our assertion. П 
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Remark . It follows from results on Hermitian systems with constant coefficients 
(compare e.g. [9; p. 16l]) that any Hermitian solution of Q' + ATQ + QA + 
4- QB0Q — C0 = 0 on ( - o o , oo) satisfies G2 й Q(x) й Gt for х є R. Moreover, 
the particular solution Q0(x) with Qo(0) = 0 satisfies lim Q0(x) = Gl9 lim Q0(x) = 
= G2, and the following algebraic equations hold: *~*°° * ^ - « 

ATGi + GtA + GßoGi - C0 = 0 , i = 1, 2 . 

Of course, these results may be verified directly in our special situation by a rather 
tedious caclulation. 

A direct consequence of Cor. 1 (with y = 1, c = J) and this Prop. 1 (with c = 
= (isin(rc/2tt)) -1 isthe 

Corollary 2. Under the assumptions ofProposition 1 i^ere exísí positive constants 
K = K(n, R, a), i ^ = Kx(n, R) such that 

\й(х\к)\йКі forall Q^K, xeR. 

4. VARIABLE COEFFICIENTS 

In this section we consider the behaviour of V(x; A) U'1^; A) as A ~> — oo on 
a compact interval [x0 — a, x0 + a]. Therefore, we fix a > 0 and introduce the 
following further notation: 

(19) 0 < r* й r(x) S r* , 0 < r„* й rn(x) g r* for |x - x0 | ^ a 

with suitable positive constants r*,. . . , r* . 

Observe that these constants exist by (3). Moreover, we need the common modulus 
of continuity of r(x) and r„(x), namely: 

(20) co(h) = max {(|r(x) - r(y)\ + \ф) - r„(y)\) : \x - y\ ^ h , 

\x — x0 | ^ a , \y — x0 | ^ a} for ft ^ 0 . 

We shall derive estimates of the matrix (compare section 3) 

(21) Qfaik) = , \ , Qx Di/Q(x;x) Q(x; X) Ď1/Q(x;X) 
rn{x) Q{x; A) 

with Q(x;X) = F(x;A) i r*(x ;A) , e(x;A) = 2ý(-Xr(x)\rn(x)) (according to (9)). 
Our main result in this section is 

Theorem 3. Suppose that R, cc are positive constants such that |rv(x; A)| g 
g RQ2Jn-y-l\ v = 0 , . . . , n - 1, |x - x0 | й a, Qo = 2 У - А ^ 1, and OjF0 ^ 
^ —осЩи0. Then there exist positive constants K,KX (depending on n,r*,r*, 
rn*> r*> R> a resp. n, r#, r*, rn*, r*, # on/y) swcfr that the following holds: Q(x; A) 
exists for x0 < x ^ x0 + a, A ^ —X, and 

| |e(x; A) - G1|| а a>*(io) : = ^ i f c o 2 + a<logio/eo)) /o r eH A g - X , 
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x0 + хх(Я) ^ x ^ x0 + a with Xj(A) = c log Q0JQ0 > 

с = ( i sin (n|2n) min ^ ( r ( x ) / ^ ( x ) ) ) " 1 > 0 . 
|jc-*oIís« 

Ifthe inequality above on U0, V0 holds with — V0 instead of V0, then the assertions 
holdfor x < x0 resp. x ^ x0 — x^X) (x ^ x0 — a) with G2 instead of Gj. 

(Note that the constants K, Kx do not depend on a *directly', but, of course, 
in general the quantities r*, r*, r„*, r*, Я, and also ct)(ft) depened on a, i.e. the 
interval [x0 — a, x0 + a].) 

Proof. As in the proof of Theorem 2 we may restrict ourselves to the case x > x0, 
First, we introduce the solution Uj^x), F*(x) ofthe initial value problem: 

U'* = AU* *b B*V* , n = (C* - ЯС0*) tf* - ЛГК* , 

tf*(x0) = U0, ^*(xo) = V0 , 
where 

В* = — £ 0 ^ Я(х) , С* = - R ß 2
0 ^ C(x) , and C0* = r*C0 й Cj(x) 

Г и * 

for |x — x0 | g a by (19) and (2). This initial value problem has constant coefficients, 
and therefore we obtain the existence of Q^(x;X)=^V^(x;X)U^1(x;X) on 
(x0, x0 + a\ for Я ^ —K from Theorem 2. Now, the inequalities B* ^ #(x), 
C* £ C(x), C0* ^ C*(x) and the fact that U(x0) = U*(x0)9 V(x0) = F*(x0) imply 
that 6(x;A) exists with Q(x;A) ^ Q*(x;X) for х є ( х 0 , х 0 + a ] , Я S —K- This 
follows from [6, Prop. 4 and Theorem 7, which implies lim(Ü r(x) V*(x) и^1(х) . 

JC^*o + 
. U(x) - tfr(x) K(x)) - 0]. Then Cor. 1 (applied to ß*) and Gx > 0 imply that 

(22) Q(x; Я) ^ ß*(x; A) > 0 for x0 + \ x±(X) S * й *o + a , A g -К . 

Next, we fix any x є [x0 + х^Я), x0 + a\ and introduce the following quantities 
(depending on x): x* = x - | хх(Я) ^ x0 + \ хх(Х), and 

r~ = min r(r) , r+ = max r(t), r~ = min rn(t), r* = max rn(t), 
[**,*] [x*,x] [x*,x] [x*,x] 

в" = 2У(-Яг~/ги-) , £ + = 2 У(~ Я г + / г п + ) - W e consider the solutions U*(t), V*(t) 
of the initial value problem (with constant coefficients): 

U±f = AU± + Б ± К ± , 7 і ' = (С* - AC#) C/± - ArV± , 

U*(x*) = U(x*; Я), F*(x*) = F(x*; Я), 

where J 5 * , C * , C j are defined according to (2) with r*,r^,r* = ±Ä£2
)
(n~v~1) 

(v = 0, ..., n - 1) instead of r, rm rv resp.. Then B* ^ Б " ^ B(í) è ^ + , C* g 
^ С" ^ C(t) й C\ and C0:i: й Co ^ Co(0 ^ C0

+ on [x*, x] , Q*(x*; Я) g 
ž ô 1 ^ * ; A) = Q±(x*; Я). Hence, we may apply [6; Prop. 4] again, and we get: 
6±(ř ; Я) = K=*=(i; Я) ^ ± _ 1 ( ř ; A) e x i s t s on [x*, x] with 

(23) e*(r; Я) g Q-(t; Я) ^ g(ř; Я) g ß+(r ; Я) on [x*, x] for Я g - К . 
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Since ß(x*; A) = Q*(x*; A) > 0 by (22), Theorem 2 with a - 0 (and c = | ) can 
be applied to Q±(t; A). (Note here, that the initial values U(x*; A), F(x*; A) depend 
on A, of course, but the constants in Theorem 2 do not depend on U0, V0 but only 
on a, which may be 0 here since U(x*; X)T V(x*; A) ^ 0.) Let ß ± ( t ; A) = 
= ( l / r*e*) ß 1 / e ± ß± ( r ; A) ß 1 / e ± , then Theorem 2 yields: 

(24) | |g*(i; A) - Gi|| ^ K ^ " 2 for x* + 4 ^ t й * , A ̂  - K 

with x* = ( I sin (7i/2n))"1 log @1/^1. Observe that (24) holds for ř = x, in particular, 
sincex* + x * g x for A ̂  —X, which follows from: 

x* + хГ = x - - [ sin J L V ' toeejL 1 + í /sin " V * l 0 g ^ 
3 / . яѴ 

sin — 
2\ 2n/ g0 с* 3 \ 2nJ c*oo 

with 
с* = min V(KOK(0) ^ ^ = W * / r i ) Š Ѵ ( ' * Ы • 

| r - x o | ^ f l 

Now, (23) and (24) for t = x yield for A ̂  - X : 

S(x; A) ^ — J51/# ô
+ (x ; A) ß 1 / e = ^ ß e + / e ß + (x ; A) 5 e + / e á 

ГИ0 rnQ 

U-D,+,fa+Ktft*I)D,+b, 
rnQ 

and this is (with another Kt) g G1 + û)*(^0)/, since <o(fc) ^ 2(r* + r*) by (19), 
(20) and 

- = ^ ~ T = ' 7 i i (*) - (*)) ^ 1 + « i l o š <?oA?o , ^ ^ 1 + Kx log ^o/^o 
Q Q{x;fy \j\rn r ) rn 

(use that x — x* ^ ^ ! log @o/@o> ar*d that the modulus of continuity a>(h) has the 
obvious properties: co(h) ^ co(fo') if h g ft', co(nh) ^ и co(fo) for и e A/, thus, co(fr) ^ 
^ co(ch) ^ (c + 1) co(h) for all c ^ 1, h è 0). 

Similarly, we obtain that g(x; A) ^ Gx — со*(^0)/, which completes the proof. • 

Remark. If we have additionally that r„(x), r(x) є C^R), then we obtain (under 
the assumptions of Theorem 3) the estimate 

||ß(x; A) - d | | g Kx
 l^^9- for all A й -K, x0 + x±(X) g x й *o + « 

£o 

with x^A) as in Theorem 3, but where the constant K1 may depend on 
ct := max {|^(x)| + |r'(x)| : |x - x0 | S a} < °° a l S 0 -

Proof of Theorem 1. Fix any x ф *o> choose a ^ |x - x0 | , and choose 
a constant a > 0 (which is obviously always possible) such that the assumptions 
of Theorem 3 hold. Since x^A) ^ 0 as A ^ - o o , we have that jx - x0 | è *i(A) 
for A sufficiently small. Moreover, lim co(log Qo|Qo) = 0 by the continuity of r„(x) 
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and r(x), and therefore the estimate of Theorem 3 implies the assertion of Theorem 1. 

If U0 is regular, the proof above and Cor. 2 yield the following 

Corollary 3. Suppose that U0 is regular, and that R, a are positive constants such 
that 

|rv(x;A)|á£eš(l ,~v~1)> v = 0 , . . . , n - l , | x - x 0 | g a , e 0 ^ l > 

ЦѴоЩЦй*. 
Then there exist positive constants K(n, r*, r*, rn%, r*, R, a) and К±(п, r*, r*, 
r„*, r*, #) swcft íftaí Q(x; Я) exists on [x0 — a, x0 + a] with ||<2(x; Я)|| ^ Kj_ for 
x є [x0 — a, x0 + a], ř/Я ^ —K. 

5. ASYMPTOTIC BEHAVIOUROF SOLUTIONS 
OF THE CORRESPONDING SCALAR EQUATION 

In this section we use the same notation as in the previous section, and we study 
the asymptotic behaviour of the particular conjoined bases Uh Vh i = 1, 2 of (l) 
with the initial conditions 
(25) U,(xa) = V2(x0) = 0 , Vx(x0) = -U2(x0) = I. 

This leads to asymptotic properties of any solution (w, v) of (l) resp. (4) with fixed 
initial conditions at x0. First, we derive from Theorem 3 the 

Corollary 4. With the same assumptions and notation as in Theorem 3 the fol­
lowing inequalities hold: 

,4 : л, ч Bi/Q(xou) Щ\*'>x) u2(x; A) D1/Qixoix) ~ G 

5iMxo;A) VÎ1 (x; A) V2(x; Я) Ďífe(xolX) - G 

e(*o; Я) rw(x0) 
1 

^iu)*(eo) ; 

і ^ і ^ * Ы 
lk(*o; я) rn(x0) 

for all Я ^ —X and х^Я) g |x — x0| ^ а, ѵѵйеге G = G2for x > x0 and G = Gx 
for x < x0. Moreover, 

lU^(x;X)U^x;X)WuK^o1 forall 0 ^ | x - x 0 | ^ a , Я ^ - Х 

(Observe that the asymptotic behaviour does not depend on x, e.g. g(x; Я), but only 
on x0 in contrast to Theorem 3 and (21).) 

Proof. For any fixed х є [ х 0 — a, x0 + a] consider the particular conjoined 
bases Ui(t) = Ui(t; Я, x), f̂ (i) = V^t; Я, x), i = 1, 2 of (l) with the initial conditions 
ffi(*) = ?i(x) = 0, 02(x) = Ki(x) = /. Then, it follows from [6; (T) and the 
proof of Cor. 13] and (25) that 

Oi(*o) = Щг(х) U2(x) and ß2(x0) = Ff'(x) V2(x) hold for 

utt)-VJtt)u7Kt). 
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Hence, Theorem 3 applied to Qt (with x instead ofx0) yields the first two inequalities. 
The additional inequality follows from these inequalities and from the fact that 

ЩХЫ U,(xo) = 0 , i V2\x) U,(x) g 0 
áx 

for all x (by [6; Prop. 3]). D 

Remark . For any solution y = y(x; X) of(4) with fixed initial conditions u(x0) = 
= w0, v(x0) = v0 we have by (25) that 

u(x) = U2(x) (~u0 + U2\x) U,(x) v0), v(x) = V2(x) ( -w 0 + V2\x) V,(x) v0) . 

Hence, in view of Theorem 3 and this Cor. 4 it suffices to discuss the asymptotic 
bebaviour of U2(x; X) if one wants to analyze y(x; X). We shall restrict thisdiscussion 
to the case x §; x0. 

First, we need some identities, which follow from (2), (10), (11), and (12) by a rather 
tedious calculation / 

(26) < diag(e0,..., *-o Ф\і' = A + вд = L ; ; *; * * 
\7o ••• Уп-il 

Л - 1 

and this Frobenius matrix has the characteristic polynomial P0{z) = zn — £ yvz
v = 

= (z - e0)...(z ~ s,,_j), so that e.g. v = 0 

(27) ,.-,='i>,=^, '.-(-')-'-n' .r';'|fL-
v=o sm{n|2n) v = o sm((v + l)n|2n) 

and 

(28) 0 < y* := sin (7i/2w) = min Re (sk) g yn-ijn g 
fc = 0 , . . . , n - l 

^ max Re (sk) = : y* = sin (n (- + Ї^^Ш\\ . 
fc = o,...,«-i \ \2n n )J 

Moreover, these identities, (25) (use also the notation (9), (21)) imply that U2 = 
= U2(x; X) satisfies the initial value problem 

(29) U'2 = (A + BQ2) U2 , U2(x0) = - / , 
where 
(30) A + BQ2 = QĎllt(A + BoG, + At) De , A1 = B0(U2(x; X) - Gt). 

Proposition 3. With the same assumptions and notation as in Theorem 3 and Cor. 3 
(but with U0 = —/, V0 = 0, a = 0) we have 

det U2(x; X) = ( - 1 ) " exp {ooV,_, J*0 o{t) ât] a(x; X) for 

x0 5Í x ^ x0 + a , X g —K , 
where 

\jß(x; X) й oc(x; X) й ß(x; X) := exp {Qo ß 0 s(t; X) d/} , 
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e(t; A) ~ Kx for x0 S t S Xi(fy , 
g(i; A) == i^! co*(í?o) / ö r x i W á ř ž ^o + я • 

Proof. By Theorem 3, Cor. 3, and (30) we have ||^i(t; A)|| S s(t; A). Hence, we 
obtain from (26), (29), and (30) that 

det U2(x; X) = ( - 1 ) " exp {£0 trace (A + BQ2) (t;X) dt} = 

= ( - 1 ) " exp {Qo7n^ £ 0 5(t) di} exp UX
X0 8*(t; X)dt} 

where 
e*(i; A) = trace (QD1/ÊAiDa) , thus |e*(i; A)| g eo á(í) ||^(f; A)|| , 

and the factor o(t) can be included in the constant Kv П 

Remark . If we have additionally rn, re Ct(R), then 

QÖKlil+x~Xo)eß(x;X)UQoUi+x~Xo) for х0йхйх0 + а, A g - K , 

where Кг may also depend on max {|r'(x)j + \K(X)\ : \x — x0 | S «}• Observe also, 
that Prop. 3 yields lower bounds for ||L^2(x;A)|| and | |^I*(x;A)| | , since forany 
matrix H = (fcl9 ..., hn), ht є Cn we have by Hadamard's inequality: 

| |#| | ^ max \\hiW Ž | d e t # | 1 / n . 
i = l , . . . , n 

Finally, we derive upper bounds for | | t^(x; )̂[|> ||^2*(*> ^)||> namely: 

Proposition 4. With the assumptions of Prop. 3 and with rn, r є C^R) there exist 
constants K,K1 (depending on n, r*, r*. rnHc, r*, P as in Prop. 3 and Xj depending 
also on max {|rJ,(x)| + | r ' (x)l : Iх ~~ x o | á я})> swc^ řftaí 

||t/2(x; Л)| й e * ' ( 1 + — > exp {ЄоУ*.£0 5(t) dí} , 
and 

\\U-2\x; A)|| <; ef'<1+*-o) exp (_ЄоЬ £ Щ át} for 
xo = x — xo + a > X S —K . 

Proof. Put 02 : = Ф°1Ѵ^ви2, then by (26), (30) 0 2 = ^ d i a g ( e o , . . . , e ^ ) + 
+ J 2 ) 02 with Л2 = Ф^ї^ іФ?! + A2 where 

^ = тЧ^ FT Ф?Г diag «й - *)' -' ^ °)ф ? 1 • 
e(jc; A) á(x) 

Hence, by Theorem 3 and its remark we obtain that ||^2(x; ^)|| й e(*; A) with 

e(x; X) = Kt for x0 S x ^ xx(A) and == K^ log Q0jQ0 for 

xx(A) g x ^ x0 + a . 

Now the matrix P : = Ü\Ü2 is positive definite and satisfies 
P ' = ^ ( 2 diag (Re г 0 , . . . , еп_0 + A2 + A\) 02 . 

Hence by (28), P' g g(2y* + є) P and P' ^ @(2y* — г) P, which yields our assertions. 
D 
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