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IDENTITIES AND DELETING MAPS ON QUASIGROUPS

JAN DuPLAK, Presov

(Received March 22, 1985)

V. D. Belousov in [2] and M. A. Taylor in [6] have proved a theorem that is
a generalization of a theorem of Belousov (see Theorem 2.1.1 in [3]). In this paper
we give a generalization of these results and its applications.

1. PRELIMINARIES

Analgebra (Q,fy,....f,) = (Q,F)is called an algebra of quasigroups if (Q,f;) is a
quasigroup for all ie{1,2,...,n}. An algebra (Q, f1, /2, f3) is called a primitive
quasigroup if there exists a permutation (ijk) of the set {1,2,3} such that (Q, f;) and
(0. f,) are respectively the left and the right division groupoids of a quasigroup(Q,f;);
if f; is denoted by +, then we put f; = ~, f, = \, thus(Q, +, /, \) means a primitive
quasigroup. An algebra (Q, F) is called an algebra of primitive quasigroups if for each
feF there exist g, h € F such that (Q,f, g, h) is a primitive quasigroup. For every
quasigroup (Q, f) there exists a primitive quasigroup (Q, f, g, h) and for every
algebra of quasigroups (Q, F ) there exists an algebra of primitive quasigroups (Q, G)
with F < G.

Let (Q, A) be a quasigroup; we define A[x, y] = z iff A7'[x, z] =y iff
Az, y] = xiff " A7) [y, z] = xiff (7'4)7! [z, x] = y iff A*[p,x] = z. The
set {A, 714, A7, THA™Y), (T14)7, A%} = ZA is called the system of division
operations of A. An algebra (Q, F) is said to be an algebra of parastrophic quasi-
groups if 5f < F for each f € F. For every algebra of quasigroups (Q, F) there exists
exactly one algebra of parastrophic quasigroups (Q, XF), where XF = |J{Zf; fe F}.

Throughout the paper, for a quasigroup (Q, *) we put L,x = a. X, R,x = x . a,
Tx =x\a, L;'x =a~x, Ry7'x=xra, T,'x =arx,

To={L,R T,L"",R"}, T™'}.

If a quasigroup operation is denoted by another symbol, say o, then we put aox =
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=Lx, xoa = Rx, ..., Te ={L, R ...}. If (Q, F) is an algebra of quasigroups
we denote Ty = {T7; - € F}.

A word on algebra (Q, f1, f2, ..., f,) is a formal expression consisting of variables,
brackets and operations f, ..., f,. The length I(w) of a word w is the number of
occurences of variables in w. In the following, the set of all variables that occur in
a word w will be denoted by V(w).

Let x,y,...,2, Xy,..., X, ... be variables and let ay, ..., a,, ... be elements of
aset Q. A retraction map with invariant variables x, y, ..., z (or a retraction map,
if there is no danger of confusion) is a map w > wy, where V(w) = {x, y, ..., z,

X1y +ens Xy ...} and wy is a formal expression obtained from a word w on an algebra
(Q, F) by replacing each variable x; in w by a,, for all x; € V(w); if a set of invariant
variables of a retraction map is empty then the image of a word w is an element of Q.

An identity on an algebra (Q, F) is a pair (w, w’) of words on (Q, F) that is written
w == w’. We say that an identity w == w’ is valid on (Q, F) (or (Q, F) satisfies w = w’)
and write w = w' if for every retraction map ¢ with no invariant variables gw = ow’,
i.e. gw, gw’ are equal elements in Q. Words w, w’ on (Q, F) are said to be equivalent
if (Q, F) saitsfies the identiy w = w’. A word w, is said to be a subword of an identity
w == w’if w, is a subword of w or w'. Identities w = w’, w; == w] are called equivalent
if the validity of one of them implies the validity of the other. Let ¢ be a retraction map
and let w, w’ be words on an algebra (Q, F). We say that gw, ow’ are equivalent and
write gw == gw’ or gw = gw' if for each retraction map ¢ with no invariant variables
ow = ow'.

An identity w = w’ on an algebra (Q, F) is called balanced if each variable occurs
exactly twice in w == w’, once on each side. The length I(w = w’) of an identity
w == w’ is the sum of the lengths of w and w'.

Let w, w, be non-empty words on an algebra of quasigroups (Q, F), and let w,
be a subword of w. We define Z(w, w,) as the set of non-negative integers as follows:
(i) Z(w, w) = {0} for any word w,

(ii) n e Z(w, w,) for w + w, iff there exists a word w, of length n + 1 such that
either w, . w, or w, . wy is a subword of w.

Let f be an n-ary operation on a set Q and let o, 5, ..., %, ; be permutations of Q.
Then the n-ary operation oc,,Hf(oclxl, ..., 0,X,)is called anisotope of f; the isotope will
be denoted by f=®+1_ An algebra (Q, F) is called an isotope of an algebra
(Q, F') if every f € F is an isotope of some f’ € F’ and conversely. It is known that
every isotope of a quasigroupisa quasigroup. An isotope of a group is called a transi-
tive quasigroup.

A property P of a quasigroup (Q, *) is said to be universal if every isotope of (Q, *)
has property P. It is known that the transitivity of quasigroups is a universal property
of quasigroups.

Let (Q, F) be an algebra of quasigroups, W the set of all words on the algebra
(Q, F) and let (W, F) be the algebra of words on (Q, F). Let x, y, ..., z be variables.
A map 6: W— W, w > Sw, where dw is the word that we get from w by deleting all
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variables except x, y, ..., z, all superfluous operations and all superfluous brackets
(in this order) is said to be a deleting map with invariant variables x, , ..., z (briefly
a deleting map). Obviously, each deleting map is an endomorphism.

Let (W, F), (W', F') be the algebras of words on algebras of quasigroups. A map
w: W— W', w— ow, where ww is the word that we get from w if each operation
symbol in w is replaced by an operation symbol in F’ (equal operation symbols in w
are not necessarily replaced by the same symbol)is called a change operation map;
if each operation in F’ is an isotope of an operation in F, we say that w is a change
isotopy operation map.

Let w=w’ be an identity on an algebra of quasigroups (Q, F) and let P be
a property of a quasigroup (Q, *), where the operation () occurs in w = w’; we say
that P is an invariant (isotopy invariant) of w == w’ if for every change operation
(resp. change isotopy operation) map w there exists an operation o occuring in
ow = ow’ such that (Q, o) has the property P.

1.1. Lemma. Let w =w" be a balanced identity of length <6 on an algebra
of quasigroups (Q, F). Then w ==w’ is equivalent to at least one of the following
identities
(D) x.(yoz)=x0(yvz)

(I x.(yoz)=(xop) vz
given on the algebra (Q, XF).

Proof. Let V(w) = V(w') = {x, y, z}. First, let Z(w, x) = Z(w', x) = 1; then
w=x.(yoz) and w = x.(yv z) for convenient operations *,d,°, v in IF
(if, for example, w = (z m y) ® x we put (+) to be the dual of ®, o the dual of m).
Now, let Z(w, x) = Z(w', z) = 1 i.e. there exists no te V(w) such that Z(w, t) =
= Z(w', 1) = 1; then obviously w = x.(yoz), w = (xoy)vz for convenient
operations in ZF. This completes the proof.

Identity (IT) is called the general associative law (see [3, p. 76]).

1.2. Lemma. A balanced identity w = w’ of length <6 on an algebra of quasi-
groups (Q, F) is equivalent to the general associative law iff there exists
te V(w==w') such that Z(w, t) + Z(w', 1) = 1.

Proof. Evident.

1.3. Theorem (about four quasigroups, see [1], [3]). An algebra of quasigroups
(Q, , 0,3, v) that satisfies the identity (II) is an algebra of transitive quasi-
groups all isotopic to the same group.

Proof. From (II) it follows that

boy=aox<e L] =LIJ]<L'L, = L)(L§)™",

doy=cox< Il =LIJ <L 'L, = L)L),
therefore

boy=aox and cox=doy<L;'L, = L;'L,.



The simultaneous equations bo y = a o X, ¢co X = d o y have a solution for arbitrary
three elements of the set {a, b, ¢, d}, so according to Theorem 2.1 in [5], (Q, *) is
a transitive quasigroup. For the rest of the proof see [3, p. 77].

1.4. Corollary. The transitivity of a quasigroup is an invariant of the general
associative law.

2. GENERALIZATIONS OF A THEOREM OF BELOUSOV

2.1. Lemma. Let w be a non-empty word on an algebra of quasigroups (Q, F),
let 6 be a deleting and ¢ a retraction map, both with invariant variables x, y, ... z.
Then there exists a change isotopy operation map w such that gw = wdw.

Proof. We shall proceed by induction on the length of w. Let I(w) = 1; if éw is
empty then gw = a € Q and we put wéw = a (an isotope of a 0-ary operation is
a O-ary operation); if w is non-empty, say w =.x, then 6w = x and we put o = 1.
Further, assume that the theorem is valid for all words of length <n and let
1 < I(w) = n. Then w = wy . w,, where I(w;) < n, I(w,) < n, therefore there exists
a change isotopy operation map w such that gw, = wéw,; and gw, = wdw,. Let
dw,, 6w, be non-empty words; since o(w, . w,) = ow, . gw, we define w(éw, . Sw,) =
= wdéw; . @w, (i.e. the operation (+) is not changed). Since § is an endomorphism,
oW = oWy . oW, = WOW; . WdW, = w(dwy . Sw,) = wd(w, . w,) = wSw. Now sup-
pose that dw, is empty and dw, is non-empty word. Then there exists a permutation o
of Q such that gw = ogw,. Since I(w,) < n, there exists a change isotopy operation
map o such that gw, = wéw,, where V(wéw,) = {x, y, ..., z} (therefore cwdw, =
= wdw, for every retraction map ¢ with invariant variables x, y, ..., z). If wéw, =
= W; o wy for some non-empty words wz, w, then we put o(w; o w,) = w3 V w,,
thus ow = agw, = awdw, = a(w; o w,) = w3 v w, and that is the above case.
If éw, = x, then by the induction hypothesis ow, = w'éw, = Bx, where ' is
a change isotopy operation map and f is a permutation of Q; now we put cu(a) = ofle,
where ¢ is the identity map on Q. We have gw = agw, = affix = afiex = w(ex) =
= 0éw, = wow.

2.2. Theorem. Let an algebra of quasigroups (Q, F) satisfy an identity w == w’
and let 6 be a deleting map. Let a universal property P of a quasigroup be an isotopy
invariant of Sw == éw'. Then there exists () in F such that (Q, *) has the property P.

Proof. Let ¢ be a retraction map with the same invariant variables as §. By Lemma
2.1, there exists a change isotopy operation map w such that ow = wdéw and gw’ =
= wéw’. Since w = w’, gw = ow’ and hence wéw = wdw’'. Therefore by the as-
sumption of the theorem there exists an operation - in wéw == @wdw’ such that (Q, o)
has the universal property P. Because any operation occuring in dw == éw’ is an
isotope of an operation in wéw == wéw’ and any operation occuring in dw == w’
is in F, there exists () in F that is an isotope of o. Since P is a universal property,
(Q, *) has the property P.
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2.3. Corollary. Let an algebra of quasigroups (Q, F) satisfy an identity w = w’
and let & be a deleting map. If dw == 0w’ is equivalent to the general associative
law on (Q, ZF) then there exists o in F such that (Q, o) is a transitive quasigroup.

Proof. Follows from the statement that the transitivity of a quasigroup is a uni-
versal property, from Corollary 1.4 and Theorem 2.2.

The identities w = w’ that satisfy the conditions of Corollary 2.3 include, for
example, the general medial law (see [3, p. 76]).

2.4. Theorem (of Belousov). Let w == w’ be a balanced identity on a quasigroup
(Q, *), let x . y be a subword of w' and let neither x . y nor y . x be a subword of w.
Then (Q, *) is a transitive quasigroup.

Proof. Since x . y, y . x are not subwords of w, there exist at least three variables, '
say X, y, z, in w. Let & be the deleting map with invariant variables x, y, z. Then
obviously Z(éw, z) = 0 and Z(6w’, z) = 1 so that Z(éw, z) + Z(6w’, z) = 1. Evident-
ly ow == 6w’ is a balanced identity, therefore by Lemma 1.2, the identity is equivalent
to the general associative law.

3. SOME CLASSES OF TRANSITIVE QUASIGROUPS

3.1. Theorem. Let w = w’ be an identity on an algebra of quasigroups (Q, F)
such that
(1) V(w=w')={x,y,z} and each variable occurs exactly twice in w=w’,
(2) w=w isnot of type x ow; = X or wyoXx = X,
(3) if a word wy of length 2 is a subword of w=w' then V(wl) consists of two
distinct variables,
(4) if a word wy of length 3 is a subword of w == w’ then V(w,) = {x, y, z},
(5) for each te{x,y,z}, {Z(w, 1), ZW', 1)} n {{1,2}, {2,3}} =0,
(6) if words wy, w, of length 2 occur in w==w as subwords then V(wy) + V(w,).

Then

(i) for every change operation map w the identity ww = ww' satisfies all con-
ditions (1)—(6),
(ii) there exists a balanced identity of length 6 on (Q, XF) equivalent to the general
associative law,
(iii) there exists a group (Q, o) such that (Q, +) is an isotope of (Q, ) for every
operation (*) in w==w'.

Proof. (i) is easy. (ii) Without loss of generality assume I(w) < 3. Obviously
there exists a variable, say x, that occurs exactly once on each side of w==w'.
Therefore, there exist A, B, C, D € Z’F and subwords r, s, t, v of w with variables y, z
such that if w == w’ is rewritten with translations of (Q, F) we get

(a) 4,Bx =x or (b) ABCx=x or (c) 4B,C,Dx = x



(Ax = x contradicts (2)). In the case (a), we have I(r) = I(s) = 2, hence r = y . z,
$ = y o z, but this contradicts (6). If (b) holds then {r,s,t} = {y, z, y.z}; first we
putr =y, s=zt=y.zthen C,x = B]'4; 'x is equivalent to (ii). If » = y . z,
s =2z, t=y then B,C)x = A;;x is equivalent to (ii). Finally, if r =y, s =y . z,
t =z then put y.z = u ie. y = ufz so that B,C,x = A, x is equivalent to (ii).
(iii) follows from Theorem 1.3.

3.2. Corollary. A balanced identity w=w" of length <6 on an algebra of
quasigroups satisfies all conditions (1)—(6) of Theorem 3.1 iff there exists te
€ V(w = w') such that Z(w, t) + Z(w', f) = 1.

Proof. Easy. :

The identities that satisfy the conditions (1)—(6) of Theorem 3.1 and that
are not balanced include, for example, the following identities (see [3, p. 59]):
VX .XZ = yz, X .2X = Yz, XZ . Xy = Yz, X . z(yx)—yz x(yz.yx) =z (yox).

(zox)=yaz,(xoy).(yoz)=xvz

3.3. Theorem. Let w == w' be an identity on an algebra of quasigroups (Q, F)
such that the conditions (1), (2) and (3) of Theorem 3.1 hold. Then there exists
a balanced identity on (Q, XF) equivalent to w == w'.

Proof. (i) Let a word w, of length 3 be a subword of w and let V(w,) = {x, y},
i.e. (4) of Theorem 3.1 be not valid. Then w; = x o (x 0 y) for some convenient
operations o, 0 in F.If w, is expressed from w == w’ then we get w, == w,, where
w, = z.(z v y) for some -, v € IF. Further w, == w, is rewritten with tranlations,
so LIJy = L.L]y whence L;'L,y = L{(LJ)"'y is equivalent to (I). (ii) Let
Z(w, x) e {{1, 2}, {2, 3}} i.e. (5) of Theorem 3.1 is not valid. If Z(w, x) = {1, 2} then
w==w’ is equivalent to x.(xo(y0z))=yvz and xo(yoz)=x\(yaz).
If Z(w, x) = {2, 3} then w==w’ is equivalent to x.(xo(y 0 (y v z))) = z whence
Z(w, y) = {0, 1}, that is (i). (iii) Let xoy, xoy be subwords of w==w’. Then
w == w’is equivalent to (z v (x 0 y)).(x 0 y) = z as wellas z v (x o y) = z/(x O y).
Finally, let (i) —(iii) be not valid. Then the statements (1)—(6) of Theorem 3.1 hold
and therefore we can use the theorem.

3.4. Theorem. Let W==W’ be an identity on an algebra of quasigroups (Q, F)
and let there exist variables x, y, z € V(W == W') such that if § is the deleting map
with invariant variables x, y, z and OW = w, W' = w’ then w = w’' is an identity
which satisfies conditions (1)—(6) of Theorem 3.1. Then there exists a group (Q, o)
such that for every operation () in w ==w' (Q, *) is an isotope of (Q, o).

Proof. Follows from Corollary 2.3 and Theorem 3.1.

3.5. Theorem. Let w be a word on an algebra of quasigroups (Q, F), V(w)
= {x,y}, A, Be T" and let 5 be the deleting map with invariant variables x, y, z.
If W= W' is an identity on (Q, F) such that OW ==06W' is at least one of the

6



identities

(7 A(Bx.y)=w

(8) Afx.By)=w

then there exists a group(Q, +) such that for every operation(+)in W ==35W",(Q,*)
is an isotope of (Q, +).

Proof. Let us denote w = X0y, zv x = B,x, A7t = zo t for all x, y, t. Then
from (7) we have -
(i) (zvx).y=zo(x.y).

Since (o) = (+)®=142) (Q, o) is a quasigroup. Thus (i) is the general associative law.
The rest of the proof is similar.

Among identities of type (7) belongs the identity z(xz.y) = x.xy (see [4]).
From theorem 3.5 directly follows that a quasigroup which satisfies this identity
is a transitive quasigroup.
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