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Czechoslovak Mathematical Journal, 37 (112) 1987, Praha 

ON A PROBLEM OF B. ZELINKA, II 

V. R. CHANDRAN, Madras 

(Received August 19, 1985) 

In [2], B. Zelinka has posed the following problem viz whether there exists 
a commutative semi-group such that each tolerance relation is compatible with its 
element set? In [1] we have given an example of such a semi-group. The purpose of 
the present paper is to give a complete characterisation of B. Zelinka's problem. For 
definitions and notation refer [2]. Now we prove the following two theorems which 
completely characterize the problem of B. Zelinka. 

Theorem 1. Let <S, *) be a commutative semi-group with a multiplicatively 
zero element. Let \S\ ^ 3. Then every tolerance relation in <S, *> is compatible 
with its element set if and only if {S, *) is a zero semi-group, i.e. the product of 
any two elements is zero. 

Proof. If pa r t . Proof is exactly the same as in the example of [1]. On ly if pa r t . 
Let a,b Ы two distinct elements in 5' different from 0. Suppose a * Ь Ф 0, then 
а * Ь = а о г а * Ь Ф а . Case i. a ^ b = a. Define a tolerance relation ^ in S as 
follows. Q = {{x,x) \xeS}u {{a, b), {b, a), (0, b), {b, 0)}. We shall show that this 
tolerance relation Q is not compatible with its element set in S. For b g a and 0 Q b 
but (b * 0, fl * 6) = (0, ûf) ^ ^, a contradiction. C a s e i i . a * b 4 = a . In this case define 
a tolerance relation T in S as follows. T = {(z, z) | z e S} u {{a, b), (b, a), (0, a), 
(a, 0)}. Now {a, b), (0, a) e T but (0 * 0, b ^ a) = {0, a ^ b) ф T. Hence T is not 
compatible yielding a contradiction. Hence the product of any two distinct elements 
is zero. Now, it remains to prove that a * a = 0 for every a e S. If a ^ a ф 0, then 
а * а = а о г а * а ф а . Since \S\ ^ 3, S contains an element b different from 0 and a. 
C a s e i i i . a ^ a = a. In this case define a tolerance relation Q' in <S, *> as follows. 
Q' = {(s, s) I s G S} u {(a, b), (b, a), (0, b), (b, 0)}. Now a Q' b, a g' 0. But (a * a, 
fe * 0) = (a, 0) Ф g\ Hence g' is not compatible. Case iv. a * a Ф a. In this case, 
define a tolerance relation V in <S, *> as follows. V = {(s, s) | s e S} u {(0, a), 
(a, 0)}. Now (a, a) e T and (0, a) e T but (a * 0, a * a) = (0, a * a) ^ T, yielding 
a contradiction. Hence the theorem is proved. 

Remark . There is meaning in taking \S\ ^ 3. For now we give an example to 
show that the theorem is not true when j^l = 2. Let S = (a, b]. The mutiplication 
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table of <5, *> is given below. 

One can easily check that every tolerance relation in <^S, *> is compatible and 
obviously {iS, *> is not a zero semi-group. 

Now, we are going to prove a theorem which is more powerful than theorem 1. 
We need the following definition. 

Defiîîition. A commutative semi-group (^S, *> is called a Zelinka semi-group if 
and only if every tolerance relation in <^S, *> is compatible with the elements of S. 

Theorem 2. Let <iS, *> be a commutative semi-group. Let \S\ ^ 3. Then S is 
a Zelinka semi-group if and only if S contains a multiplicatively zero element and 
the product of any two elements in S is zero. 

Proof. If pa r t . Follows from theorem 1. O n l y i f p a r t . It suffices to prove that 
<5, *> contains a zero element, for then the result follows from theorem 1. Let a be 
any element in S. Now the SQÎ a ^ S is either a single element set or contains more 
than one element. 

Case i. |a * S] — 1. Let a * S = {x} where x e S. Now clearly x is a zero element 
in S for X ^ S = (a ^ S) '^ S = a ^{S * S) ^ a ^ S = {x}. This implies x is a zero 
element in S and the result that the product of any two elements is zero follows 
from Theorem 1. 

Case ii. |a * S| > 1. Then a ^ S contains at least two distinct elements x, y. 
Clearly X ф у. 

Sub case a. x ф j , x, у Ф a. Since x, у E a * S, a ^ b = x, a ^ с = у for some 
b, с in S. Now, let Л be a tolerance relation defined as follows. Л = {(5, s) I s G S} u 
u [{b, c), (c, b)}. Now, since Ä is compatible, [a, a), (b, c) e Ä imphes (a * fe, a * c) = 
= [x, y) e Ä. Hence the possibilities are x = b, y = с от x = c, y = b. 

Sub case a — i. x = b, j^ = с Now we have a * b = b, a*c = c. Let Б be a toler­
ance relation in <S, *> defined as follows: В = {(s, 5) | seS} u {(a, e), (c, a), (a, b), 
(b, a)}. We shall show that В is not compatible. Now (a, c) e В and (b, a) e B. But 
(a '^ b, с * a) = (b, c) Ф В yielding a contradiction. The next possibihty is x = с 
and у = b. 

Sub case a — n.x = c,y = b. Now we have a * с = b and a ^ b = с Let С be 
a tolerance relation in (S , *> defined as follows. С = {(s, s) | 5 e S"} u {(a, 6), 
(b, a)} u {(a, c), (c, a)}. Now (a, b), (c, a)e С but (a * c, b * a) = (b, c) ф С, since 
X = с, y = b and X Ф y and x, y Ф a. Hence, С is not compatible, a contradiction. 

Sub case b. x ф 3; and at least one of x, у equals a. W.l.O.g. assume that x = a, 
у Ф a. Now a * Ь = a and a ^ с = y. Let D be a tolerance relation defined in <S', *> 
as follows, D = {(s, s) I s G S} u {(a, b), (b, a), ((7, c), (c, a)}. By assumption D is 
compatible. Hence, (a, b), (c, a) e D imphes {a t c, b ^ a) = (y, a) e D. Since y Ф a, 
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the possibilities SLTQ y = b от y = с. We shall show that both these possibilities are 
impossible. 

Sub case b — i. у = b. Then we have a * у = a and a * с = y. Since у =¥ a, 
clearly у Ф с for у = с implies a* у = a * с which implies a = у which is a contra­
diction. Let E be a tolerance relation defined in S as follows. E = {(s, s) | s G S} u 
u {(y, c), [c, y)}. Since E is compatible (a, a) e E, (y, c)€ E impHes (a * y, a * c) = 
= [a, y) e E which impHes y = a or с = a. Clearly у Ф a. Hence, other possibility 
is с = a. We shall show that this is also impossible. Let с = a. Now we have a •* у = 
= a and a * a = y. Since |S| ^ 3, there exists an element d distinct from a and y. 
Now by assumption a, y, d are three distinct elements in S. Let F be a tolerance 
relation defined in <(5, *> as follows. F = {(s, s) j s G S} u {(y, d), (d, y)}. Now, 
(a, a), [y, d) e F and since F is compatible {a ^ y, a * d) = (a, a ^ d) e F which 
implies a -^ d = a. We shall show that a ^ d = a is also not possible. For let G be 
a tolerance relation defined in {S, *> as follows. G = {(s, s) | s G S} u {(a, d), (d, a)}. 
We shall show that G is not compatible. Now (a, a), (a, d) e G. But (a * a, a * d) = 
= (y, a) Ф G yielding a contradiction. 

Sub case h — ii. y = c. Then we have a * b = a and a ^ y = y. Let Я be a toler­
ance relation defined as follows. Я = {(s, s) I s G S} u {(b, y), {y, b)}. Since Я is 
compatible, (a, a), (y, b) e В impHes (a * j ; , a * b) = (y, a) e H. The possibilities 
3iYQ y = a от y = b от b = a. Since y ф a, b = y от b = a. Since x ф y, x = b 
and j ; = с we have y Ф b. Hence the remaining possibihty is Ь = a. In this case, 
a ^ a = a and a ^ у = y. Since \S\ ^ 3, and a Ф y, there exist an element d dif­
ferent from a and y. Now let / be a tolerance relation defined in ^S, *> as follows. 
/ = {(5, s) I s G iS} u {{a, d), ( i , a)]. Since / is compatible {a, a), {a, d)el imphes 
(a * a, a * J) = (fl, a * J) G / . Hence a * d = a от d. We shall show that both the 
possibilities are impossible. Suppose a * d = a. Now define a tolerance relation J 
in {S, *> as follows. {J = (s, s) | s G 5} u {{d, y), {y, d)}. Now, (a, a), {y, d) e J. 
But (a * j ; , a * d) = (j;, a) ф J showing that J is not compatible, a contradiction. 
Next possibihty is a ^ d = d. Let К be a tolerance relation defined in <5, *> as fol­
lows. К = {(s, s) I s G S} u {{a, y), {y, a), (ß, d), (J, a)}. Now (a, y), {d, a) e K. But 
{a * J, 3.' * a) = (d, j ) Ф K, since a, y, d are distinct elements thus yielding a contra­
diction. 

All these contradictions show that a ^ S contains only one element say x. So by 
case (i), x is a zero element of <(5, *>. Now by theorem 1, (^S, *> is a zero semi­
group. (Q.E.D.). 

Finally, I wish to express my thanks to the refereree. 
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