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ON TOPOLOGIES OF FREE GROUPS

M. G. TKACENKO, Balakovo

(Received September 10, 1982

All spaces are assumed to be Tychonoff.

Let X be a topological space, F(X) the free algebraic group over a set X. Then
Fy(X), the free topological group over X in the sense of A. A. Markov, is the set
F(X) equipped with the topology having the following properties:

1) X is a subspace of Fy(X);
2) each continuous mapping from X to an arbitrary topological group G extends
to a continuous homomorphism from Fp(X) to G.

Indeed, this is a very nice short characterization of the topology of Fy(X) using
category terms. Unfortunately, this characterization says nothing about the construc-
tive form of open sets in F M(X) Consequently, one cannot answer many questions
on the topological properties of the group Fy(X). So we need an intrinsic description
of the topology of free Markov group over X. This will be done in the first part of
the paper.

In the second part, we define a new group topology ¢ on F(X), resulting to a topo-
logical group F,(X), and investigate its properties. The group F,(X) is rather similar
to Fy(X), and may be characterized categorically replacing 2) above by

2') each continuous mapping f from X to an arbitrary topological group G such
that the image f[X] is thin in G, extends to a continuous homomorphism from
F(X) to G.

We shall show among others that for a pseudocompact space X, Fy(X) = F,(X),
and use this result to estimate the Souslin number of F,,(X). Further, we shall prove
that the group F,(X) is Weil-complete iff X is Dieudonné-complete.

1. THE TOPOLOGY OF THE GROUP Fy(X)
Let N* be the set of all positive integers. Let ~! be some homeomorphism of the
space X onto its copy X " !, denote X the topological sum X @ X~ !. Foreveryne N™*
let i,: X" —» F,(X) be the natural map of X" onto the set F,(X) consisting of all
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words in the alphabet X of length <n. Next, let j, X?" — F, (X) be defined by the
rule ji,(x, ) = i,(x) . (i,(y))"* for every x, y € X".

For each n e N*, denote by %, the universal (i.e. the finest inducing the same topo-
logy) uniformity on the topological space X". Let # be the family of all sequences
E ={U,:neN"} such that U, € %, whenever ne N*.

IfEe#,E={U,;:neN*}andifne N*,let us define V,(E) = U{jr)[Urty] - - --

oo JrwUsm]: ™€ S,}, where S, is the permutation group of the set {1, ..., n

Finally, put V(E) = U V,(E).

neN+

Theorem 1.1. The family X* = {V(E): E€ %} is a neighborhood base of the
unity in the group Fy(X).

Our proof of this theorem heavily depends on the following lemmas.

Lemma 1.1. Let m, neN*, Ue%
jn(VU) S jn+m(U)'

Lemma 1.2. Let m,neN*, ge F,(X) and U € U, ,,,. Then there exists a Vy € U,
such that g . j,(Vy) - 97" S josm(U).

It is easily seen that Lemma 1.1 is a partial case of Lemma 1.2. As for the proof,
since g € F,(X), g = i,(x) for some x € X™. Define V, = {(v, w) e X" x X": ((v, x),
(w, x)) e U}. We shall omit the straightforward verification that this works.

wi+m- Then there exists a Vye U, such that

Lemma 1.3. Let H be a group with unity e and let {V,:ne N} be a sequence of

subsets of H such thatee V, and V), < V, foreachneN.Let ke N, p, ky, ..., k, €
p
+ —k; ~k

eN™ be such thati;2 <275 . ThenVy, ..... V;, € Vi

Proof of Theorem 1.1. The proot will be divided into two sections. First we shall
show that 2* generates some group topology  * on F(X) whose trace on X coincides
with the original topology of X. Second we prove that J * is finer than the topology
of Fy(X). This implies that J* is indeed the the Markov topology, because the
Markov topology is the finest group topology for F(X) extending the topology of X.

1. The system 2* has the following properties:

(a) {e} = NZ*%;

(b) for every pair U, Ve 2* there is some We Z* such that W< U n V

(c¢) for every U € Z* there is some Ve Z* with V. V™' < U;

(d) for every U € 2* and g € U there is some Ve 2* with V. g < U;

(e) for every U e X* and g € F(X) there is some Ve X* withg™" . V.g < U.

We shall show (c); (d) and (e), since (a) and (b) are trivial.

Let Ue 2*, U = V(E), E = {U,: ne N*}. We may and shall assume that each U,
is symmetrical. Using Lemma 1.1, choose symmetrical W, € %, satisfying i W,,) c
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S jons1(Uzns1) 0 J2u(Us,) for each n e N*; denote £ = {W,:neN*}. Since each W,
is symmetrical, V(E)™! = V(£), moreover, V(E). V(E) = V(E). Indeed, let , g € S,,,
let 0 € S,, be defined by o(i) = 2n(i) for i < n, o(i) = 20(i — n) — 1 forn + 1 <
S i £ 21 Then Jay(Weqw) - - - Jnon(Ween) - Jos(Wan)) - -+ + Jotn(Wowm) S

S Jo)Usy) - - - Jazn(Us(am) S VauE). Now since n and ¢ were arbitrary, we
have V,(E). V,(E) € V,,(E), therefore V(E). V(E)™" < V(E), which shows (c).

To show (d), let E={U,,neN*}e®, geV(E). Then for some ke N* and
7€ Sty 9 €Jnty(Unty) - -+ - Ju(Ungy)- With help of Lemma 1.1 find a sequence
E={V,:neN*} with j(V,) < j,1(Uysr). Then V(E).g < V(E): Let meN™,
o€ S, Define g € S5 by 0(i) = o(i) + k for i < m, o(i) = n(i — m)form < i £
<m+ k. We have: j,,(Vocy) - o+ - Jotm(Vaem) - 9 S Jocy(Vacry) - -+ - J atm(Voem) -
Ty (Un) - -+ - Jx(Uno) S Jaty(Ueaw) - -+ - Jom+io(Ugim+n) E V(E).

The proof of (e) is similar. Let E = {U,:ne N*} € #, g € V(E). Then g € Fi(X)
for some ke N*. For each ne N, there is some symmetrical V, e %, with g~*.
uV2) - 9 S Jusi(Unss) by Lemma 1.2. Let E'= {V,:neN*}. Theng™*. V(E). g <
c V(E): If neN™ and o€S,, then g7 ' . j,;,(Voer)) - v - Joa(Voww) -9 S 971
'ja(l)(Va(l)) .g.97" 'ja(Z)(V(r(Z)) g.....g”h ju’(n)(VU(n)) -9 s ja(1)+k(Ua(1)+k)'
coe i Toty+6Ustm k) Sdaty +ilUsy+1) - -+ - Jomy +t(Usimy ) - J1(U1) « - . jil(Ux) € V(E).

It is well-known that the validity of (a)—(e) is equivalent to the existence of an
admissible group topology 7 * for F(X).

Let VeJ*, O =XnV, xe0. Then there is some E€ % and g e F(X) with
xe V(E).g < V. Hence for some E = {U,: ne N*}, we have V(E).x < V(E).g.
Put W(x) = {y e X: (y,x)e U,}. Then x € W(x) = X and W(x) is a neighbourhood
of x in X. Moreover, W(x) < j;(U,).x = V(E).x = V(E).g. Thus X n Vis open
in X, hence the restriction of  * to X coincides with the original topology of X.

II. 7* is finer than the topology of Fj(X). Let ¥ be an open neighborhood of
unity in Fp(X), put ¥, = Vand let {V,: ne N*} be a sequence of neighborhoods of
unity in Fp(X) satisfying V) < V,_; for each ne N*.

Put U, = {(x,y): x, ye X" and i,(x) . (i,(y))"* = V,}. Since every i, is continuous,
we have U, € %, Now clearly the sequence E = {U,:ne€N™"} belongs to # and
VE) € Vo = Vforeach n e N* by Lemma 1.3. Thus V(E) < ¥, too.

Theorem 1.2. Let X be a closed subspace of a space Y and suppose that Y" is para-
compact for each n € N*. Then Fy(X) embeds into Fy(Y) as a closed topological
subgroup.

Sketch of the proof. We have to show that the natural isomorphism ¢ between
Fy(X) and the subgroup A(X) = Fy(Y) algebraically generated by X, is a homeo-
morphism. The continuity of ¢ is obvious. In order to show the continuity of ¢ 1
we need the following: For each E e %y there is an E'e #y with V(E) n A(X) =
< ¢(V(E)), the meaning of %y and 2y is clear. The last statement can be proved
using the forthcoming two well-known assertions.
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Assertion 1.1. Let Z be paracompact. Then the family of all open neighborhoods
of the diagonal in Z? is a base for the universal uniformity %, of Z.

Assertion 1.2. Let T be a closed subspace of a collectionwise normal (in particular,
paracompact) space Z. Then (T, Uz) is a uniform subspace of (Z, Uy).

2. THE NEW GROUP TOPOLOGY ¢ ON F(X) AND ITS RELATION
TO MARKOV FREE TOPOLOGY

In this part, we equip the free algebraic group F(X) over a topological space X
by a group topology o, which is coarser than the free Markov topology, but still
similar to. The resulting space will be denoted by F,(X).

Let d be an arbitrary continuous pseudometric on X, let G be the set of all elements
of F(X) which have even length. For g € G, we shall define a real number [g|, as
follows. |e[4 = O for the unity e of F(X). |x.y ', = [x".p|s= d(x, y) and
[x.»]a=|x".»"']s=1for each x, y € X. Thus we have defined ||g|, for every
g€G of length 2. Let ne N* and suppose ||g|, has been defined for each g € G of

length <2n. For every g€ G, g = X; . ... . Xpp42 With X;, ..., X3,4,€X = X @
@® X, let Hg”,, be the minimum of the numbers ”x1 . ....x2i]]d + ”le-ﬂ e
oo Xopaalls 1 ST = n, and [xg . Xgpuofla + 2% oo Xoped o

Let 2 be the set of all continuous pseudometrics on X. For every de 9 let V, =
= {geG: |g|s < 1}. Clearly, |||, is a pseudonorm on G for each d € 2, i.. the
following is valid:

1) Jefa =0,

2) |g7 "« = ||g|a for each g€ G,
3) llg-hlla £ |lg|a + |h]|a for each g, heG.

Theorem 2.1. The family {V,:d e @} is a neighborhood base of unity in some
group topology @ .on F(X). The topology @ induces the original topology on X.
Moreover, the set F,(X) is closed in F(X) for every ne N* and

(%) for each Vwith e € Ve g there is some Wwith ee We g such thatx . W.x™' <
< V for each x € X.

The proof of this theorem is very similar to the part I of the proof of Theorem
1.1. Therefore we shall verify only that (*) holds. Fix a continuous pseudometric d
on X such that ee V; = V. Then by the definition of ||-||, |x.g.x7|s = 2|9g].
for each g € G and x € X. Hence it suffices to put d = 2d in order to obtain x . V; .
xtev, '

Recall that a topological group H has a quasi-invariant basis iff for every open
neighborhoood V of the unity there is a countable family y consisting of open neigh-
borhoods of unity such that for each g € H there is some Wey withg . W.g~ ! = V.

By (*), the group F,(X) has a quasi-invariant basis. Thus F,(X) is embeddable as
a subgroup into some product of metrizable groups [2]. So we have the following
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Proposition 2.1. For each space X the group FX) is topologically isomorphic to
a subgroup of a product of metrizable groups.

Now let Y be a subspace of X and let %y, %y be the universal uniformities on Y
and X respectively.

Proposition 2.2. Let Y be a subspace of X. Then (Y, %y) is a uniform subspace
of (X, Ux) if and only if F(Y) is naturally embeddable into F(X).

Proof. The natural monomorphism ¢: F,(Y) — F,(X) is continuous. To prove the
continuity of ¢!, fix any continuous pseudometric d on Y and let ¥, be the cor-
responding open neighborhood of unity, ¥, < F,(Y). We may suppose that d(x, y) <
< 1 for each x, y € Y. Since (Y, %y) is a uniform subspace of (X, %), there is a con-

tinuous pseudometric d on X extending d. One can easily check that o [Vin
N ¢[F,(Y)]] = ¥,, which shows that ¢ =" is continuous.

Now suppose F,(Y) naturally embeds into F,(X) Let d be an arbitrary continuous
pseudometric on Y, U, € %y, U, = {(x, y) € Y*:d(x, y) < 1}. Then V; = {g: |g], <
< 1} is a neighborhood of unity in F,(Y). Since F(Y) = F,(X), there is some con-
tinuous pseudometric d on X with V3 n F(Y) < V,. Now the set U; = {(x, y)e
€ X?: d(x, y) < 1} belongs to %y and U;n Y? < U,. Thus (Y, %y) is a uniform
subspace of (X, %y).

Corollary 2.1. Let Y be a closed subspace of a paracompact space X. Then F(Y)
is naturally embeddable into F(X) as a closed topological subgroup.

The importance of the next definition will be exhibited in Theorems 2.2, 2.3.

Definition 2.1. A subset X of a topological group H with the unity e is called thin
in H provided that for each ¥ open in H with e € V there is an open W = H such

that ee Wand x . W.x~ ! < Vfor every x € X.
Let us note that by (*) in Theorem 2.1, X is thin in F (X).

Theorem 2.2. Let X be a topological space and let T be any group topology
on F(X) which extends the topology of X.If X is thin in Fz(X), then the topology ¢
is finer than .

Before giving the proof of this main result, we need the following

Definition 2.2. An element g € G is decomposable with respect to a pseudometric d
on X provided that there exist elements g, ..., g, € G such that

1)g=9gi. G
2) |g]la =i;l”gi”d’
3) I(g;) < I(g) foreach i =1,...,n,
where [(g) denote the length of an element g € F(X).
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Proof of Theorem 2.2. Let Ve J be an arbitrary neighborhood of e. We need
to find a continuous pseudometric d on X such that V; < V.

Let ¥, = V. There exists a sequence & = {V,: ne N*} such that for each ne N*,
eeV,, V,' =V, V) <V, (for 7 is a group topology on F(X)) and for each
xeX,x.V,.x ' <V, (for X as well as X is thin in F,(X)). For each ne N*,
put U, = {(x,y)e X*: x~'. y e V,,}. Then U, is an open entourage of the diagonal
inX xXandU,,;cU,,{0U,,; < U,. Thus there is a continuous pseudometric d
on X such that {(x,y)eX? d(x,y) <27"} =< U,. Put d =4d. We claim that
VeV

It suffices to show the following: If ge G, ne N* and ||g|, < 27", then g € V3, ».

Induction on the length of g:

Ifg =x.y ', thend(x,y) < 27" hence x.y '€ V,,
Suppose g = X; ..... Xy, With p > 1.

If g is not decomposable, then for some g; € G and x, ye X, g = x.g, .y and
lglla = |x. ylla + 2]|g1]s Since |g]s <27" and neN*, we have |x.y[s <1,
thus either g=x.g, .z ' wherex,ze X org =t"'.g, .y where t, y e X. Assume
the first possibility. Clearly |g,[, < 27"~* (otherwise |g||, = 27"), thus by the in-
ductive assumption, g, € V,,. Further, x.z '€ V,, for |x.z7'|, <27" Thus

x.g;,.x'eV,_y and x.g,.z7 ' =x.g;,.x . x.z7 e Vo1 . Vs, S Vauo.
If g is decomposable, theng = g, . .... g, for some g, ..., g, € G with [(g;) < l(g)
and |gls = [|gufla + --- + [ge]a < 2 ", We may and shall assume that no g; i
decomposable. Pick mtegers i;(j=1,...,k) in such a way that 27~ < |lg;[la <
k

< 27%. Then by the inductive assumption, each g; belongs to Vai;—2 and ) 270 <
< 2-n+ 1. =

k k
Assume first i; 2 n + 1 for all j = 1,...,k. Then } 272U*? < Z —igmntl
- - j=1 i=
< 272"*2 According to Lemma 1.3, g€ V,,_,.

If i, =n for some meN*, 1 <m<k, then [gy.....0mfa <27}
lgmes - gifla <27"7'. By the inductive assumption, g .....gn—y € Vau
Imi1---- -9 € Vo, and g, € V,,_; . V,, since g, is not decomposable. Thus g €

€Van - Va1 Van - Vo € Voo . Va1 - Va1 E Voo

The next result is closely related to Theorem 2.2.

Theorem 2.3. Let f: X — H be a continuous mapping from a topological space X
to a topological group H. Suppose f[X] to be thin in H. Then there exists a con-
tinuous homomorphism f: F(X) — H which extends f.

Proof. Let f be the algebraical extension of f with the domain F(X). Set # =
={Unf7'[V]: U is open in F(X), V open in H}. Then 2 is a base for some
group topology  on F(X), which is obviously finer than ¢ and which coincides
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with ¢ on X. Since X is thin in F(X) and f[X] is thin in H, X is thin in F-(X),
too. By Theorem 2.2, = p, which was to be proved.

Corollary 2.1. Let X, Y be topological spaces, f: X — Y continuous. Then there
is a continuous homomorphism of : F,(X) — F,(Y) extending f.

This corollary may be proved independently of Theorem 2.3. Indeed, let of be an
algebraic extension of f. Let ¥, be an open neighborhood of unity in F,(Y) cor-
responding to some continuous pseudometric d on Y. If we define for x,ye X,
d(x,y) = d(f(x),f(»)), then ¢f(Vs) < V,, as can be easily checked. Thus of is
continuous.

Theorem 2.4. The group F,(X) is Weil-complete if and only if the space X is
Dieudonné-complete.

Sketch of the proof. The “only if”” part follows by the fact that the left uniformity
%, of the group F,(X) induces the universal uniformity %y of X and X is closed in
F(X).

The “if” part is more difficult. First we note that the closed subspace F,(X) =
=X U X! € F(X) is homeomorphic to the topological sum X @ X', hence
the space F,(X) is Dieudonné-complete. Since the universal uniformity %p,x, of the
space F,(X) is induced by the left uniformity %, of F,(X), the space (F(X), %, x))
is a complete subspace of the uniform space (Fy(X), %,). Further, procecding by
induction, we obtain that (F,(X), ¥,) is complete for each n € N*; here ¥°, denotes
the uniformity on F,(X) induced by %,.

This fact together with the property () implies the completeness of the uniform
space (F,(X), %), i.e. Weil-completeness of F,(X). For showing this we need
a modified Graev’s construction ([5], Theorem 6).

The next result follows from Theorem 2.4 using the continuity of the maps
i X" - F(X).

Corollary 2.2. Let X be a Dieudonné-complete space. Then the uniform space
(FAX), w,) is complete for each ne N*. (Here #", is the uniformity on F,(X)
induced by the left uniformity of the group Fy(X).)

Preblem 2.1. Suppose the space X to be Dieudonné-complete. Is then the group
F (X)) Weil-complete? Raikov-complete?

Let us denote Tops, the category of all Tychonoff spaces and their continuous
mappings. Let Hom be the category of all topological groups and their continuous
homomorphisms. We define the functor ¢: Tops; — Hom by o(X) = F(X) for
objects, Q(f) = of for morphisms. It is easily seen that ¢ is already a functor.

Let u: Tops, — Topsy be the functor of Dieudonné-completion, and R: Hom —
— Hom the functor of Raikov-completion (as for the definition, see [4], 8.5.8,
8.5.13 and [6]).

Theorem 2.5. The functors ¢ o p and R o ¢ are naturally equivalent.
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Proof. First we show the equality 9 - # = R . g for objects.

Let X be a topological space. The group RFQ(X) is complete in its two-sided
uniformity ¥". The group F,(uX) is Weil-complete because the space uX is Dieudonné-
complete; hence the group F g(uX) is complete in its two-sided uniformity %. Let i
be the embedding of X into uX and let ¢ be its extension to a topological mono-
morphism, ¢: F(X) — F,(uX) (see Prop. 2.2). Let #", be the two-sided uniformity
of the group F,(X). Since (F(X), #',) is a uniform subspace of (RF,(X),?") and
since F(X) is dense in RF(X), the uniform continuity of ¢ and the completeness
of (F,(uX), %) imply that ¢ can be extended to a continuous mapping ¥,: RF(X) -
- F(uX).

Let #°, be the uniformity of the group ¢(F, (X)) < F,(1uX) induced by %. Then
the map ¢~ ': (@(F(X)), #°2) > (R F(X),¥") is uniformly continuous. The com-
pleteness of the space (RF/(X), ¥") implies that there exists a continuous extension

F(uX) » RF(X) of ¢~'. Obviously ¥ oy, maps ¢(F,(X)) identically onto
itself and /5 o ¥, is an identity on F,(X). But F,(X) is dense in RF,(X) and ¢(F (X))
is dense in F g(uX) hence ¥ o Y/, is an identity mapping from F, ,_,(uX) onto itself,
¥, o ¥, is an identity mapping from RF(X) onto itself. Therefore ¥, is a topological
isomorphism between RF,(X) and F (uX).

Now let f: X — Y be a continuous mapping. Then the equality R(ef) = o(¢f)
follows by the equality RF,(X) = F,(uX) which has just been proved and by the
fact that o(uf) and R(ef) agree on a dense subset F(X).

Let X be a subspace of a topological group H and let ¥~ be the umformlty on X
induced by the right uniformity %, of the group H.

Lemma 2.1. If the uniform space (X, ¥") is totally bounded then X is thin in H.

The routine proof may be left to the reader.
It is well-known that every pseudocompact space X is totally bounded in its uni-
versal uniformity %y. Thus Theorem 2.2 together with Lemma 2.1 give us immediately

Theorem 2.6. F(X) = F\[X) for every pseudocompact space X.

The remaining part of the paper gives bounds for the Souslin number of topological
groups. We shall start with F,(X) for a pseudocompact space X.

Theorem 2.7. Let X be a pseudocompact space. Then the Souslin number of the
group Fy(X) is countable.

For the proof, we shall need one combinatorial fact.

Lemma 2.2. Let X be a set, myneN" and let {(x;1,...,X;mv;): i€} be an
infinite family of ordered (m + 1)-tuples such that x; 4, ..., x; » € X and y; is a cover
of X with !y,-l < n foreachicl.

Then there exists an infinite J < I such that for each i,je J, if i % j, then
St(x; 4 75) O St(x; 0 7)) F O for k=1,...m

The lemma follows easily by m-tuple application of Ramsey theorem @ — ().
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Proof of Theorem 2.7. Let {0,: « < w,} be a family of open non-empty subsets
of Fy(X). We have to find distinct o, f < w, wWith 0, " O, = 0.

For each a < w, choose a point g, € 0,. By Theorem 2.6, there is a continuous
pseudometric d, on X such that g,. V, < O, and V,_.g, = O,. Since each g, is of
finite length, we may assume I(ga) = m for all « < w,;. Each element g, can be

written in the form g, = x' . X7 . ... x5 With X, 4, ..., X, € X and &, 4, ...
ees €am€{—1, +1}. Again we may and shall assume that for one particular m-tuple
(€1 - &) and for all a« < @y, g, = X5y ... X7,

Put g, = 2"*1 . d, for « < w,. Since X is pseudocompact, for every o < w, there
is a finite subset K, < X such that X < {x .V, :xeK,}. Denotey, = {X nx.V,:
x € K,}. Then y, is a finite cover of X and we may and shall for the last time assume
that for somene N¥, |ya| = nforalla < w,. Consider the family {(X,,1, -+ > Xz,m» ¥a)"
® < w,}. By Lemma 2.2 there are distinct o, § such that St(x,, y5) N St(Xsk 7,) F
% @ for k = 1,2, ..., m. We claim that 0, Oy is non-void for these particular «, .

It suffices to show that g, .V, 1 V,, . g; + 0. To this end, pick a, € St(Xg 0 75) O
N St(xg 7,) and let a = a,* .....a7". Then g,.a.g,€g,. Vi, 0 Vi, - gp, e
la.gyls, <1 and ||g,.al,, < 1. We shall show the first inequality only. By the

.

definition of

o la-gsle. £ Y2775 d(ay, xp). Since ay € St(xy 4, 7,) for every
k=1

k < m, there is a point x, € K, such that {a,, x; ,} = x; . V,,. Therefore ¢,(x;, a;) < 1
as well as g,(x;, Xz) < 1, consequently 0,(ay, X;,) < 2. Thus dy(ay, X)) = 27" 1.
. {ay xpx) < 27™ Since the last inequality holds for all k < m, we have ”a . g,,”,,a <
<2m. Yok <l.
k=1
Remark. A stronger version of Lemma 2.2 can be used to improve Theorem 2.7
as follows:

If © is a regular uncountable cardinal and v is a family of open non-void subsets
of FM(X), M = 1, then there exists a subfamily p < y of cardinality © such that
UnV#0foreachU,Vepu (X is assumed to be pseudocompact).

Problem 2.2. Can one choose a subfamily u < y of cardinality © to be centered?
Corollary 2.3. If a topological group H is algebraically generated by its pseudo-
compact subspace, then c(H) = N,.

Proof. Denote by X the pseudocompact subspace, let ¢: Fy(X) - H continuously
extend the identity i: X — X. Apply Theorem 2.7.
The following definition is due to I. Guran.

Definition 2.3. Let 7 be a cardinal number. A topological group H is t-bounded
if for every open neighborhood V of the unity there exists a subset K < H such that
|[K| <tand H=K.V.
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It is known [ 7] that any group with a dense Lindel6f subspace must be Xo-bounded
as well as any group H with c(H) =< N,.

Theorem 2.8. Let © be an infinite cardinal, let H be a t-bounded group. Then
oH) <2~

We shall need the following lemma, which may be compared with Lemma 2.2.

Lemma 2.3. Let H be a set, © an infinite cardinal, ) = (2°)* and let {(x,, 7,): a <2}
be a family of pairs such that x, € H, y, is a cover of H, [y,l < 7 for each o < A.
Then there exist distinct o, B < A such that St(x,, v5) 0 St(xs, 7,) + 0.

Proof. Enumerate y, = {A,,: k < 1} for « < A. For {a, B} € [A]* with a < f8
choose a pair (k,m)et x t with x,€ Ay, and x; € A, ,; this defines a mapping
¢:[4]* > © x 1. By Erdés-Radé theorem (2°)* — (¢*)? there is a pair (k,m)e
et x 1t and I = A with II[ = 1% such that ¢({«, B}) = (k, m) for each a < B,
o, fel.

Let a <& < f, a,0,Bel. Then x,€ Ay, and x,€ A, for o({a, B}) = (k, m),
similarly x, € A;;, and x5 € Ay, X5 € Ag , and xz € A4; ..

Thus St(x,, 75) N St(x4, 7.) is non-void, because x,€ Agi N Aym S St(x, 75) O
0 S(xg, 7,)-

Proof of Theorem 2.8. Let {O,: a < .} be an arbitrary family of open non-empty
subsets of H, A = (2°)*. For each « < 1 choose a point x, € O, and an open neigh-
borhood U, of the unity such that x,. U, < 0, and U, . x, € O,. Let ¥, be an open
neighborhood of unity satisfying V> < U,, V,! = V,. By t-boundedness of H,
there is a subset K, = H such that |K,| < tand H=K,.V,. Set L, = K, UK.
Then L,.V,=H=V,.L,. Let y,={x.V:xeL,}ju{V,.x:xeL,}. Clearly
72| < 7. hence Lemma 2.3 applies: There are o < f < 4 with P = St(x,, y,) N
N St(xg, 7,) #+ 0. Pick a point x € P. Then for some a, be H, {x,, x} < a.V,; and
{xp,x} = V,.b; hence a = x,.u; and b = u,.x, for some uye V, and u,eV,.
Consequently x e x,.uy. V; 0V, . u, . x, thence x,.V; NV} . x; =% 0. Since the
last is equivalent to V2. x, n x,. V7 + 0 and V2 .x, S O, x;. V] < Op, we have
0, 0, * 0, which was to be proved.

Let 7 be an infinite cardinal. Recall that a space X is said to be pseudo-t-compact,
if each open family of cardinality =7 has a cluster point.

The following notion was introduced by I. I. Guran.

Definition 2.4. A uniform space (X, %) is t-bounded provided that for each member
U e % there is a subset K = X such that |K| <tand X = U B(x U), where
B(x,U) = {yeX:(x,y)eU}.

A. V. Archangel$kij noted that a space X with the universal uniformity %y is
t-bounded iff X is pseudo-t*-compact. It is known [8] that the group Fy(X) is
7-bounded iff the uniform space (X, %) is t-bounded. Combining Theorem 2.8
with the facts just mentioned we obtain the following result.
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Corollary 2.4. If X is pseudo-t™-compact, then the Souslin number of the group
F(X) does not exceed 2°.

Example. There is a Lindelof group H with ¢(H) > N,.

Let T be an uncountable set, let X = T U {*} be a one-point Lindeléfication of 7,
i.e. each point 7 € T'is isolated and the family {{*} U (T — K): |K| < N,} is an open
base of . Then X is a Lindelof P-space, i.e. the intersection of any countable family
of open sets is open. Moreover, X" is Lindelof for each ne N*, hence Fy(X) is
Lindeldf, too. Further, Fy(X) is a P-space. Obviously the pseudocharacter of X is
uncountable, and the same holds for Fy(X). Summarizing, Fy,(X) is a regular P-space
of an uncountable pseudocharacter, which in turn implies ¢(Fy(X)) > N,.

Problem 2.3. Is it true that ¢(H) £ N, for every Lindeldf (N,-bounded, resp.)
group H?

Added in proof. Problem 2.1 was recently partially solved by V. Uspenskij. He proved the
following.

Suppose X to be an Ny-bounded (or, equivalently, pseudo- ¥ ;-compact) Dieudonné complete
space. Then the free topological group Fy(X) is complete.

We have proved in [11] that there exists an No-bounded group H with ¢(H) = 2o, This is a
partial answer to Problem 2.3. The group H in question is not Lindel6f.
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