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EXTENDED SHANNON ENTROPIES I

MirosLAV KATETOV, Praha

(Received October 5, 1982)

We examine functionals (called extended Shannon entropies) which are defined
for all probability spaces equipped with a measurable metric, coincide with the
Shannon entropy for finite probability spaces endowed with the metric o(x, y) = 1
for x + y, and satisfy certain natural conditions. It turns out that there do exist
functionals of this kind which, in addition, possess various reasonable properties.
An important special case of such functionals is investigated in some detail.

There are various reasons for examining extended Shannon entropies. First of all,
the following simple fact seems to be important. Suppose we consider some kind of
real situations, say, with finitely many possible outcomes (alternative cases, variants,
etc.). Suppose we want to assign to every situation a non-negative number expressing
what can be intuitively conceived as its inherent diversity or complexity or ““infor-
mational content” and so on. It is intuitively clear that the number assigned should
depend not only on the probabilities of possible outcomes, but also on the degree
of their diversity, expressed perhaps by some kind of mutual distances of possible
outcomes.

Another reason (mentioned already in [3]) stems from the fact that the entropy of
finite probability spaces, the e-entropy of metric spaces and the differential entropy
have much in common. Therefore, it seems desirable to introduce a general notion
from which all these concepts could be obtained (perhaps slightly modified) in a natu-
ral way. (We note, however, that the relationship of extended Shannon entropies to
the e-entropy and differential entropy will not be examined in the present paper.)

Finally, one of the reasons for investigating extended Shannon entropies is based
on the following fact. In some respects, e.g. in questions of human information pro-
cessing, the applications of the (Shannon) information theory have not been as
fruitful as had been expected. It is possible that a broader concept will be more ef-
ficient. However, the applications will not be touched in the present paper.

The present Part I contains only basic results concerning the properties of extended
Shannon entropies. Thus, the main result consists in introducing functionals ¢ on
the class of all metrized probability spaces (actually, on a wider class, namely that
of sets equipped with a finite measure and a measurable semimetric) such that ()
if P is a finite probability space <{1, ..., n}, u) endowed with the metric ¢ such that
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o(x,y) = 1 if x % y, then @(P) = —Y p,log p; where p; = ufi}; (II) ¢ is conti-
nuous, in a specified sense; (III) p(P) > 0 unless P is trivial, and ¢(P) < oo whenever
P is bounded in a specified, not too narrow sense; (IV) ¢ has some other convenient
properties.

It is not quite easy to construct appropriate functionals ¢, and the proof that they
do possess properties in question is rather complicated. Therefore, the proof (except
for that of (III) which will be contained in Part I} is presented, in Sections 3—5,
in the form of a rather long string of propositions, some of which are of independent
interest whereas many are of auxiliary character.

Many results contained in the present Part I and the forthcoming Part 11 have
been stated, sometimes without proof, in [3] However, this has been done for func-
tionals C* and C (see[3], 3.1) only. Now, we state the pertinent results with full proofs
for the general case of C¥ and C, (see 3.16).

To the author’s knowledge, the problem — fairly natural — of extending the
Shannon entropy has been given little attention so far. Except for two notes (and
a correction) of the author, there seems to exist only one paper [1], by B. Forte.
However, B. Forte’s approach is quite different from that presented here and concerns
real random variables with finite range only.

Relatively little attention paid to the extension problem seems to have two causes.
Firstly, there has not been too much investigation of probability spaces equipped
with an arbitrary measurable metric (this contrasts with the relatively extensive
examination of probability on e.g. Banach spaces). Secondly, the techniques employed
(at least in the present paper) in extending the Shannon entropy are often considerably
different from those commonly used in information theory — though, on the other
hand, dyadic expansions (see Section 4) are closely related to C. F. Picard’s question-
naires (see e.g. [5]).

Due to the circumstances described above, and also to the fact that all pertinent
propositions on the Shannon entropy are explicitly stated (partly also proved),
the paper contains few references.

Part I is organized as follows. In Section 1 we introduce semimetrized measure
spaces, their partitions, etc. The concept of an extended Shannon entropy is intro-
duced, after a detailed discussion, in Section 2. In Section 3 the functionals C* and C,
are introduced and examined (it will be shown later that, under certain conditions,
every C, is an extended Shannon entropy). In Section 4, dyadic expansions (see also
[3]) are considered. Section 5 contains propositions concerning continuity of C
and C,. In Section 6 we summarize the main results.

To keep the length of Part I within reasonable limits, most examples and conter-
examples are deferred to Part II.

The present paper and [3] overlap in some parts. However, the approach is dif-
ferent. In [3], two functionals, C* and C, have been defined by means of dyadic
expansions and their properties have been investigated. In the present paper, we start
from a fairly general definition of extended Shannon entropies. Then we introduce
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the functionals C) and C,. Dyadic expansions appear later, as means for expressing
(and, whenever possible, calculating) C¥ and C,, and it is shown that, for © = r,
C? and C, coincide with C* and C from [3].

Acknowledgement. The author is indebted to J. Hejeman for numerous valuable
comments which helped to avoid some mistakes and improve some parts of the text,
and for several examples and counterexamples which will be used in Part II.

In this section we first recall some basic concepts and introduce some notational
conventions. Then we present the definition of semimetrized measure spaces and of
some related notions.

1.1. A)“Mapping” will have a somewhat broader meaning than usual: the domain,
and also the range, of a mapping can be proper classes. — B) The domain of a map-
ping f is denoted by dom f. — C) If fis a mapping and 4 is a class, then f [ 4 denotes
the restriction of f to 4 ndom f, i.e. dom (f | A) = A ndom f, (f | 4)(x) = f(x)
for every x € A ndom f. — D) If f is a mapping, domf = T x T, S < T, then we
often write f | S instead of f | (S x S).

1.2. The letter N denotes the set {0, 1,2, ...,}, R denotes the set of all reals. We
put R={-w}URU{w}, R, ={xeR:x 20}, R, ={xeR:x =0}

1.3. If a,beR,, then a + b, a — b and ab are defined in the usual way; in
particular, 0. 00 = 0, ©0 — <0 is not defined. We put 0/0 = 0; a/0 = o0 if a R,
a>0;alo =0ifaeR,; o/ is not defined.

1.4. A) Finite sequences are denoted by expressions like (ao, ..., a,), (a; : i < n),
etc. However, if, e.g., (X, w) or (X, o, ,u), etc., is conceived as a set equipped with
a structure, we prefer symbols like <X, >, <X, @, u), etc. — B) Indexed sets (families)
are denoted by expressions like (x, : t € T) where T is the indexing set. Instead of
e.g. (x;: te{te T: y}), where ¥ is a formula in which ¢ occurs as a free variable, we
often write (x,: t € T, {), etc.

1.5. A mapping f of a class into R is called a function or a functional; if f(x)e R
for each x € dom f, then fis called a real-valued function or a real-valued functional.
As a rule, the word “functional” is used if dom f is a proper class or consists of sets
equipped with a structure (e.g. of semimetrized measure spaces, see below).

1.6. Convention. If f, g are functions, then f = g means that dom f = dom g
and f(x) = g(x) for every x e dom f. If f is a non-negative function, a € R, then af
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has its usual meaning. If f, g are non-negative functions, then f + ¢, fg are defined,
in the usual way, iff dom f = dom g, whereas, in accordance with 1.3, f — g and f/g
are defined, iff dom f = dom g and f(x) = g(x) = oo for no x € dom f.

1.7. Notational conventions. A) In formulas, we often omit parentheses ()
provided there is no danger of misunderstanding. Thus, e.g., if f is a mapping,
x € dom f, we often write fx instead off(x). However, as a rule, we do not abbreviate,
for instance, C(P) to CP or d(P) to dP(in the last case, the reason is that the letter d
also occurs in expressions like jfdu). — B) As usual, dots are often omitted, but
we never do it in expressions defined in 1.13 and 1.24. — C) We never omit brackets
of the form [...7], {...}, or ...}, except for one case only: instead of e.g. {q} we
sometimes write ¢; thus ,u({q}), where p is a measure, can be abbreviated to u{q}
or to u(q) or even to ug.

1.8. If X is a set, then exp X denotes the power set {Y: Yc X}, and card X denotes
the cardinality of X.

1.9. Convention. If Q is a non-void set, 4 is a g-algebra on Q and u is a o-additive
non-negative real-valued function on 4, then p is called a finite measure or simply
a measure on Q. If u is a measure on Q, then every X € dom p will be called u-
measurable or measurable with respect to u, and <{Q, u) will be called a measure
space. If uQ = 1, then {Q, u» will also be called a probability space.

Remarks. (1) Measures in the usual (broader) sense, i.e. possibly assuming an
infinite value, will be called R-measures. In this note, they seldom occur. — (2)
Measure spaces in the sense just defined are, of course, a special case of measure spaces
in the usual sense, i.e. of {Q, u> where p is an R-measure on Q.

1.10. If u, v are measures on Q, ae R, then au (see 1.6) is a measure, p + v is
a measure provided it is defined (i.e. provided dom p = dom v, see 1.6), and p — v
is a measure provided p = v (which implies, see 1.6, dom p = dom v).

1.11. A) If p is a measure on Q, then i or [1] denotes the completion of p, i.e. fi
is the measure defined as follows: dom ji consists of all sets X of the form X =
= Yu Z, where Yedom p, Z = U for some U € dom p such that uU = 0; for every
X of this form, iX = uY. — B)If i = p, we will call u complete.

1.12. Let u be a measure on Q. Let % be a o-algebra on a set T. A mapping f: Q —
— T will be called (u, )-measurable (or simply p-measurable) if f~*(B) e dom p
whenever B € 4. In particular, a function f: Q — R will be called u-measurable if
it is (u, #)-measurable where # is the o-algebra of Borel subsets of R.

1.13. A) Let u be a measure on Q. Let f be a ji-measurable function on Q. Assume
that i{ge Q : f(q) < 0} = 0 and [ofdu < co. For X e dom p, put v(X) = [xfdp.
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Then vis a measure on @, dom v = dom u. The measure v will be denoted by f . p. —
B) If puis a measure on Q and B € dom /i, then iy . u, where iy is the indicator function
of B, i.e. ig(x) = 1 for x € B, ig(x) = 0 for x € Q \ B, will be denoted by B. u. — C)
Clearly, if X e dom g, then (B . y) (X) = i(B n X).

1.14. Let p;, i = 1,2, be a measure on Q;. Then p; X u, will denote the product
of p; and p,, i.e. the measure u on Q; X Q, defined by the following conditions:
(1) dom p is the smallest g-algebra containing all X; x X,, where X; e dom y,,
(2) if X;edom p;, i = 1,2, then u(X; X X;) = u(X,). u(X,).

1.15. Definition. If Q is a set and g is a non-negative realvalued functionon Q x Q
such that g(x, y) = o(y, x) for all x,ye Q and o(x,x) = 0 for all xe Q, then ¢
will be called semimetric on Q and <Q, ¢> will be called a semimetric space.

1.16. Convention. If Q is a set and a € R, then a, (or simply a) will denote the
semimetric on Q defined as follows: ay(x, y) = a if x * y, ag(x, x) = 0 for every

xe€ Q.

1.17. Basic definition. Let Q be a non-void set. Let ¢ and p be, respectively, a semi-
metric and a measure on Q. If ¢ is [ x p]-measurable ,then P = <Q, g, u> will be
called a semimetrized measure space (a semimetrized probability space if uQ = 1)
The set Q will be called the underlying set of P and will be denoted by |P|. — Cf.

[3], 1.3.

1.18. Definition. A semimetrized measure space P = {Q, ¢, u> will be called finite
if |P| is finite, separated if {Q, u) is separated, i.e. if, for any x€ Q, y€ Q, x + y,
there exists a set X € dom p such that x € X, y non € X.

1.19. Conventions. Semimetrized measure spaces will also be called, for short,
W-spaces (sometimes simply “‘spaces”). Finite separated W-spaces will also be called
FW-spaces. The class of all W-spaces will be denoted by 2B, that of all FW-spaces
by . If Q is a finite non-void set, then MW;(Q) will denote the set of all FW-spaces
of the form <Q, g, p).

1.20. Remarks. 1) In [3], the abbreviated name for semimetrized measure spaces
was WM-spaces, the class of all WM-spaces was denoted by { WM}, etc. Here we prefer
a shorter notation. — 2) Nonseparated finite W-spaces are of minor importance and
will occur only rarely in this paper. Most propositions on FW-spaces can be easily
transformed to the corresponding propositions concerning finite W-spaces.

1.21. Examples. A) Let Q = R" be non-void bounded Lebesgue measurable.
Let ¢ be any of the usual metrics on Q. Let A be the Lebesgue measure on Q. Then
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{Q, g, Ay is a W-space. — B) Let {Q, > be a probability space. Let x be a random
variable on {(Q, 1), i.e. a ji-measurable real-valued function on Q. Put P = (R, o, v,
where ¢ is the usual metric on R, vB = ji(x~'(B)) for any Borel set B = R. Then
(R, 0, vy is a W-space. — C)If Q is a finite non-void set, g is an arbitrary semimetric
on Q, and p is a measure on Q such that dom yu = exp Q, then <Q, 0, u> is an
FW-space. — D) Let Q be a non-void set. Let a e R, a > 0. Then <Q, a, u) is a W-
space iff {(x,y)eQ x Q:x =y} is [u x p]-measurable. — E) Let Q be an
uncountable set. If X < Q is countable, put u(X) = 0;if X < Q, @\ X is countable,
put u(X) = 1. Then p is a complete measure on Q; however, u x  is not complete.
It is easy to see that {Q, 1, u) is not a W-space. On the other hand, for every x € Q,
the function y Q(x, y) is u-measurable.

1.22. Definition. If S = {Q, ¢, v), P = Q, 0, ) are W-spaces and v < p, we will
say that S is a subspace of P and write S < P. If, in additiion, there exists a set B €
e dom fisuch thatv = B. u, we will say that Sis a pure subspace of P. — Cf.[3], 1.8.

1.23. Fact. Let P = {Q, o, ) be a W-space. Let v be a measure on Q, v = L.
Then {Q, g, vy is a W-space, hence a subspace of P.

Proof. It is easy to see that dom [v x v] = dom [ x u].

1.24. Remark and notation. Let P = {Q, 0, #) be a W-space. Let f be a ji-measur-
able function on Q such that f. u is defined (see 1.13). It is easy to show that <Q, g,
f. pyis a W-space. It will be denoted by f. P. — If Be dom [i, then B . P will denote
the space <Q, 0, B . u).

1.25. Fact. If <Q, 0, 1), <Q, 0, U,y are subspaces of a W-space P, then {Q, 9,
WUy + pa) is a W-space.

1.26. Definition. A) If P, =<Q,0,u;y, i =1,2, are W-spaces and there exists
a W-space P such that P, < P, P, < P, then <Q, ¢, u; + 1,> (which is a W-space,
by 1.25) will be called the sum of Py and P, and will be denoted by P, + P,. — B)
If P, =<Q,0, p), i = 1,2, are W-spaces, P, < P,. then <Q, o, sty — p,> (which is
a W-space, by 1.23) will be denoted by P, — P,. — C) If P =<Q, 0, u) is a W-
space and (P, : k € K), where P, = <Q, 0, >, is a finite indexed set of subspaces
of P, then we put Y p(P;: ke K) = <Q, 0, Y (m: keK)> if K & 0, Y o(P,: keK) =
=<Q,0,0,> (where 0, = u — p) if K =0. — D) In the case K * 0, clearly,
Y p(Py: k € K) does not depend on the choice of P, and hence we omit the subscript P
(provided, of course, that a space P satisfying P, < P for all k does exist). If K = 0,
then Y p(Py: k € K) depends on P, and the subscript P is omitted only if P is obvious
from the context. — E) If aeR, and P = {Q, 0, u) is a W-space, we put aP =
= <0, 0, ap). Expressions like Y (a,P,: ke K) are then introduced in the same
way as Y (P,: k € K) above.
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1.27. Remark. There are simple examples of W-spaces {Q, 0, u;», i = 1,2,
satisfying dom u; = dom p, and such that {Q, ¢, #; + ft) is not a W-space.

1.28.1. Notation. Let P, = {Q, 0, u;», i = 1,2, be W-spaces. If there exists a W-
space P = <Q, ¢, u) such that P, < P, P, < P, then

(1) we denote by d(P,, P,) the least a € R, such that [u; x p,] {(x,y)e Q x 0:
o(x,y) > a} = 0;

(2) we put E(P, P,) = d(P, + P,, P, + P,) if 4,0 >0, u,0 >0, and
E(Py,P,) = 0if 4;Q = 0 or u,Q = 0;

(3) we put #(Py, Py) = fouped(u; x ps), r(Py, Py) = #(Py, Py)[, Q - Q-

We note that the integral in (3) does exist, for ¢ is [1 x u]-measurable, hence
[1y x p,]-measurable.

1.28.2. Notation. If P = (Q, ¢, u) is a W-space, then we put wP = uQ, d(P) =
= d(P, P), *(P) = #(P, P), r(P) = r(P, P). The letter d will denote both the functional
(Py, Py) = d(P,, P,) introduced in 1.28.1 and the functional P — d(P) defined on 8.
Similarly, # or r will denote both (P,, P,)— #(P,, P,) and P > #(P) or, respectively,
(P, P,)— r(Py, P,)and P r(P). The letter E will denote the functional (P, P,)
— E(P,, P,).

1.29. Fact. Let {Q, ¢, u) be a W-space. Let A be an atom of the g-algebra dom p.
Then d(A . P) = 0, and if puA > 0, then o(x, y) = 0 for all x, y € A.

Proof. If ud = 0, then d(A4) = 0. Let puA > 0. Clearly, 4 x Aedom (u x p)
and if X =4 x A4, 0 +X # 4 x A, then X nonedom (pu x p). Hence, if Ye
edom [p x u], then either (4 x A)n Y=0 or A x A = Y. Since o(x,x) =0
for x € A, we get {(x, y) 1 o(x, y) = 0} o A x A, hence d(A . P) = 0.

1.30. Definition. Let P be a W-space. Let % = (U, : k€ K), where K is finite
non-void, be an indexed set of subspaces of P. If Y (U, : ke K) = P, we will say
that % is a partition of P. We will say that % is pure if U, is a pure subspace of P
for each k € K. A partition (U, : k € K) will be called binary if card K = 2. — Cf.
[3], 1.10.

1.31.1. If M is a set, then a partition of M will always mean a finite partition, i.e.
an indexed set (M, : x € X), where X is finite non-void, (M, :x€X) = M and
M, M, = 0 whenever x, ye X, x + y.

1.31.2. Definition. Let P be a W-space. Let % = (U, : ke K) and ¥ = (V,,:
: m e M) be partitions of P. We will say that % refines ¥~ (or that % is a refinement
of #7) if there exists a partition (K, : m € M) of the set K such that ) (U, : ke K,,) =
= V,, for each m e M. If, in addition, (K, : m € M) can be chosen so that, for each
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meM, keK,, U, is a pure subspace of V,,, then we will say that # is a relatively
pure refinement of ¥". If % refines ¥~ and ¥~ refines %, we will say that % and ¥~
are equivalent.

1.32. Convention. If (x, : a € A) and (y, : b € B) are indexed sets and there exists
a bijective mapping f : A — B such that, for any a € 4, x, = y,,, then we will say
that (x, : a € A) is equal to (y, : b € B) re-indexed.

1.33. Fact. Let P be a W-space. Then the relation defined by ‘U refines ¥ is
a transitive reflexive relation on the class of all partitions of P, and the relations
defined by “U is equivalent to ¥’ and “Uis equal to ¥ re-indexed” are equivalence
relations.

1.34. We shall need the Radon-Nikodym Theorem. We recall it in the following
form:

Let u,v be measures on Q. Assume that dom p = domv and that pX =0
implies vX = 0. Then there exists a i-measurable function f on Q such that v =
= f.u. If v £ u, then there exists an f which possesses the properties just described
and, in addition, satisfies 0 < f(q) < 1 for all g€ Q.

1.35. Fact. Let P = {Q, 0, 1) be a W-space and let S < P. Then there exists
a jg-measurable function f on Q such that 0 < f(q) < 1 forallqge Qandf.P = S.

1.36. Proposition. If %, " are partitions (pure partitions) of a semimetrized
measure space P, then there exists a partition (pure partition) of P which refines
both % and ¥". — Cf.[3], 2.14.

Proof. Let P = <Q, 0, u), % = (U, : keK), ¥ = (V,, : me M). By 1.35, there
exist fi-measurable functions f;, k € K, g,,, m € M, such that U, = f,,. P,V,, = g,,. P,
0<flq) <1,0=<g,(q) < lforallge Q, ke K, me M.Puthy, = f,g,,for (k, m)e
€K x M. Put Ty, = hy,, . P. It is easy to see that I = (T, : (k, m)e K x M) is
a partition of P and that J refines both % and ¥". — If % and ¥ are pure, then we
may assume that f; and g,, assume the values 0 and 1 only. This implies that all T;,,
are pure subspaces.

1.37. Similarly as for many other kinds of sets equipped with a structure, quotients
(with respect to a partition) can be introduced for W-spaces. It turns out that there is
a lot of various reasonably defined quotients associated with a given partition (cf.
Section 3). At this stage, we introduce only two kinds of quotients.

1.37.1. Definition. Let P be a W-space. Let 1 = r or 7 = E. A partition % =
= (Uy : ke K) of P will be called t-admissible if t(U;, U;) < oo for i,j€K, i * j.
If % = (U, : ke K) is a t-admissible partition of P, then the FW-space <K, o, v),
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where o(i, j) = ©(U, U;) for i,jeK,. i % j, v{k} = wU, for each keK, will be
denoted by [#],. The space [%], will be called the t-quotient of P according to U. —
Cf. [3], 1.12.

Convention. If © = r, then we sometimes write admissible instead of r-admissible
and [%] instead of [%],.

1.38. As suggested by 1.36, a filter can be formed, in a natural way, from partitions
(pure partitions) of a W-space. We now state the relevant definitions.

1.39. Notation. Let P be a W-space. Then Pt(P) or Pt*(P) will denote the class
of all partitions or, respectively, all pure partitions of the space P. If % e Pt(P),
then we put ®p (%) = {#" € PY(P): ¥ refines %}, ®p (%) = {¥" € Pt*(P): ¥ refines
U}. — Cf. [3], 2.13 (the notation in [3] is different).

1.40. Convention. Pt(P), Pt*(P), ®p (%), ®p(%) are proper classes (since any finite
non-void set K appears as the indexing set of some partition). Hence we cannot
properly speak of, e.g., the ““class of all @p(%)”. This inconvenience can be circum-
vented e.g. by choosing a fixed infinite set Q > N such that K x M < Q whenever
K e Q, M < Q are finite, and adopting the following convention: every partition
(of a W-space or of a set) is of the form (U, : k € K) where K = Q. In what follows,
we tacitly assume that a convention of this kind has been made, and we speak of the
set Pt(P), of the set of all &p(%), etc.

1.41. Fact. Let P be a W-space. Then the set of all &, (%), where % € P(P),
is a filter base on Pt(P), and the set of all Oy (%), where U € Pt*(P), is a filter base
on Pt*(P).

This follows at once from 1.36.

1.42. Definition. Let P be a W-space. The filter on Pt(P) generated by the sets
®p (%), where % € Pt(P), will be denoted by % p(P) and called the projective filter
of partitions of P. The filter on Pt*(P) generated by the sets &5,(%) where % € Pt*(P),
will be denoted by Zy,(P) and will be called the semiprojective filter of pure parti-
tions of P. — Cf. [3], 2.16.

1.43. We recall the concept of the lower limit of a function with respect to a filter,
stating it in a form somewhat broader than usual.

If # is a filter on a set 4 and g is a function (dom g can be an arbitrary class),
then the lower limit of g with respect to & is, by definition, the element sup(inf (g(a) :
:aeF ndomg):Fe %), where, of course, inf@ = co. This lower limit will be
denoted by #-limg or #-lim (g(a) : a € A) or #-lim g(a), etc., and will be also
called, e.g., the lower limit (with respect to %) of g(a) for a running through 4. —
If & is clear from the context, we sometimes write lim g instead of #-lim g, etc.
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1.44. Definition. The lower limit of a function g with respect to the projective or
semiprojective filter of partitions of P will be called the projective or, respectively,
semiprojective lower limit of g.

2

In this section we introduce the concept of an extended Shannon entropy on 2y
and on . To justify the approach presented here and to prepare the ground for
a detailed investigation (in Sections 3 through 5) of a certain important kind of
“extended entropies”, we first examine some simple properties of the (trivial) exten-
sion of the Shannon entropy to the class of all <Q, ag, u) € W, and also of some
other functions.

2.1. Notation. We write log instead of log,. We put 0.log0 = 0. If aeR,,
we put L(a) = —alog a.

2.2. Notation and definitions. A) Let K be a non-void countable set. Let o = (ay :
:keK), a,eR,, Y(a:keK) < oo. Then we put H(x) = H(a,:keK) =
= Y(La, : ke K) — LY (ay : ke K). — B) Let {Q, >u be a measure space. Let &/
denote the set of all atoms of the o-algebra dom u. If &7 is countable and Q = ()<,
then H(uA : A € o) will be called the Shannon entropy of {Q, u> and will be denoted
by H{Q, p) (or by H(y) if there is no danger of confusion).

2.3.1. Definition. If <{Q, u) is a countable separated measure space, aeR,, P =
= {Q, ag, uy, then we put H(P) = a H(u) and call H(P) the Shannon entropy
of the W-space <Q, ag, 1).

2.3.2. Notation. The class of all {Q, ay, u) € W will be denoted by Wyc. The func-
tional P+ H(P) defined on . will be denoted by H. The same symbol H will be
also used, provided there is not danger of confusion, to denote the functionals (g, :
:keK) H(ay, : ke K), <Q, uy +— H{Q, p).

2.4. We now list some elementary facts concerning the functional H as defined
in 2.2. — A) Let ¢ = (x, : k€ K) be an indexed set of reals. If H(¢) is defined, then
0 < H(¢) < oo, H(a&) = a H(¢) for every aeR,, H(&) = 0 iff x;, > 0 for at most
one index ke K. — B) Let K be a finite set, card K = n > 0. If x, e R, Y (x; :
:keK) = 1, then H(x, : ke K) < log n, and the equality holds iff x, = 1/n for all
keK. — C) Let K be countable non-void. Let « = (a; : k€ K), f = (b, : ke K),
ar€R,, byeR,, a=Y(a,:keK) <o, b=3(b :keK)< co. Then H(x) <
< H(x + B), H(a) + H(P) — H(x + B) = Y(H(a,, by) : ke K) — H(a, b). — D)
Let K, M be countable non-void sets, Kn M = 0. Let a,eR,, b,eR,, a =
=Y(a,:keK) < o, b=73(b,:meM) < oo. Then H(a,:keK) + H(b, :me
€ M) + H(a, b) = H(c;: je KU M), where ¢; = a; if j€K, ¢; = b, if je M.
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2.5. We now introduce some elementary properties which seem to be indispensable
for any functional (on some & < ) that could be considered ‘‘entropy-like”. In
particular, regularity (see 2.8) expresses, in a restricted from, the following elementary
property of a functional ¢: if a point of measure zero is omitted from a space P or
if the points of P are “‘ne-named”, then the value of ¢ P does not change. In addition,
we introduce (2.9) the concept of a strongly regular functional.

2.6. Definition (cf. [3], 2.1). A non-negative functional ¢ defined on a class
Z < W will be called a hypoentropy (sometimes abbreviated HE) if
(HE 1) if <Q,0,nye%, a,beR,, {Q,ag, buy € Z, then ¢<Q, ag, buy =
= abp<{Q, 0, 1y;
(HE2) if €Q,0, m> e %, i = 1,2, and ¢; = @,, then ¢<Q, 01, ) 2 ¢<Q, €2, 1);
(HE 3) if P = {{qy, 42}, 0, > € Wy, then Pe X, oP < H(uqy, uq;) o(41, 42);
(HE 4) if P e Z is finite, then ¢P < oo. '

Remarks. A) Hypoentropies were called semi-subentropies in [3], 2.1. Since
the term ‘‘subentropy” will not occur in the present paper, we prefer a shorter
name. — B) The role of hypoentropies is purely auxiliary. In fact, they serve mainly
as means for introducing the functionals C, and C¥, see Section 3.

2.7. Definition. Let P; = {Q;, 0;, i;», i = 1,2, be FW-spaces. Let a mapping
f: Q. — Q, satisfy the following conditions:

(Cs 1) uaq = py(f~'q) for each g € Q,,

(Cs2) if x, ye Qq, ux > 0, uy > 0, then ¢(x, y) = ¢,(fx, fy). Then we will say
that f: Q, » Q, is conservative with respect to P, and P, or that f: P, — P, is
conservative.

2.8. Definition. Let ¢ be a functional, dom ¢ = 2. Let the following condition
hold:

(R) if Py, P, € W n dom ¢, and there exists an injective conservative mapping
f:P; - P,, then ¢P; = @P,.

Then we will say that the functional ¢ is regular.

2.9. Definition. Let ¢ be a functional, dom ¢ <= 2. Let the following condition
hold:

(SR) if Py, P, e W n dom ¢ and there exists a conservative mapping f: P, —
— P,, then ¢P; = ¢P,.

Then we will say that ¢ is strongly regular.

2.10. Tt is easy to see the functional H on Wy, is continuous in the following
sense: if P, = (Q, a3, u,»> € Wee, P = {Q, ag, py € W, a™ — a, and p,q — pq
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for n > oo and any g € Q, then lim H(P,) = H(P). It is natural to require that an
“entropy-like” functional on 2 or on W should be also continuous in some (perhaps
weaker) sense. Therefore we introduce various kinds of continuity of functionals ¢
defined on some Z < . (In fact, we are now interested only in the behavior of ¢
on MW, n dom ¢, hence only in what will be called “finite continuity”, and in its
various modifications.)

2.11. Notation. A) Let Q be a non-void set. If ¢ is a semimetric on Q, then
“IB(Q, 0, +) will denote the set of all <Q, 0, u> € W. If u is a measure on Q, then
W(Q, -, ) will denote the set of all (Q, ¢, u) € W. — B) Let Q be a finite non-void
set. If P; = <Q, 0;, iy € W(Q), i = 1, 2, then dist (P, P,) will denote the number
(g — 124 : g € Q) + max ([o,(x, ¥) — ez(x, ¥)] 1 x, y€ Q). The function
(Py, P,) > dist (P, P,) defined on W(Q) x W,(Q) is clearly a metric on W(Q).
It will be denoted by dist, or simply by dist. — C) Let Q be a finite non-void set.
W,(Q) (which, by 1.19, denotes the set of all <Q, ¢, u) € W) will also denote (1)
the metric space (2W(Q), disty), (2) the set W;(Q) equipped with the topology in-
duced by the metric dist,.

2.12. Definition. Let Q be a finite non-void set. If f is a function, dom f < QBF(Q),
then f will be called (1) feebly continuous if it is continuous on every subspace of
W(Q) of the form W(Q, -, u) N dom f or {<Q, ¢, u) € W(Q, @, *) : g > 0 for all
g € Q} ndom f; (2) separately continuous if it is continuous on every (Q, -, p) N
n dom f and every W(Q, o, +) n dom f; (3) continuous if it is continuous with respect
to the metric dist,.

2.13. Definition. Let ¢ be a functional, dom ¢ < . If, for any finite non-void
set Q, ¢ | W(Q) is feebly continuous (separately continuous, continuous), then ¢
will be called finitely feebly continuous (finitely separately continuous, finitely
continuous).

2.14. Fact. The functional H defined on Wy is a finitely continuous strongly
regular hypoentropy.

Proof. By straightforward verification of conditions (HE 1)—(HE 4), (SR), and
of the condition from 2.13.

2.15. We now present two examples of hypoentropies defined on 2, which co-
incide with H on W, and possess some, though not all, properties introduced in
2.8, 2.9, 2.13, and an example of a finitely continuous strongly regular hypoentropy
(on W) whose restriction to W is very far from coinciding with H.

2.151. (A) If PeW,, P ={Q, 0, 1), put P = H(u)d(P). — (B) If P =

=<0, 0, W €Wy, put y,P = #P)H(W)|/(wP)* — Y((rg)*: qe Q). — (C) If
P e W, put oP = 2 #(P)[wP.
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2.15.2. Fact. The functional Y, coincides with H on Wg¢ and is a finitely feebly
continuous regular hypoentropy. It is not finitely separately continuous.

Proof. The first assertion is obvious. It is easy to see (using 2.4.A) that y, is
a hypoentropy, and it is clear that v, is regular. If P, = <{Q, g,, 1>, P = {Q, 0, 1)
are FW-spaces and ¢, = ¢ (i.e. ¢,(x,y) = o(x,y) for all (x,y)e Q x Q), then,
clearly, Y, P, = Y, P. If S, = <Q, 0, u,y, S = <Q, ¢, p> are FW-spaces and uq > 0
for all g € Q, then it is easy to see that, for all sufficiently large n, d(S,) = d(S),
hence S, — y;S. We have shown that v, is finitely feebly continuous. — Let
Q ={1,2,3}. Let P, = <Q, 0, 1,», n€ N, P = <Q, 0, u) be FW-spaces, o(1,2) =
= o(1,3) = 0.0(2.3) = 1, w,{1} = u{1} = {2} = ul2} = 1, {3} = Un.uf3) -
= 0. Then y,(P,) = H(L, 1, 1/n) > 2, §,(P) = 0. Hence y ,is not finitely separately
continuous.

2.15.3. Fact. The functional , coincides with H on Wy and is a finitely conti-
nuous regular hypoentropy.

Proof. Clearly, ¥, is a regular hypoentropy. If P = (Q, a, u) € Wk, then #(P) =
=a)(ux.py:x€Q, yeQ, x + y) = a((nQ)* — Y((uq)* : g € Q)), hence ¥,P =
= a H(u) = H(P).

Let T be an arbitrary non-void finite set. Assume that P = (T, ¢, uy, P, =
= (T, Qu ty> n = 1,2, ..., are FW-spaces and that P, — P in Wx(T). If (uT)*> >
> Y ((ut)? : t e T), then it is easy to see that y,P, — /,P. Consider the case (uT)* =
=Y((ut)? : te T). Then, clearly, uty = uT for some t,e T, H(u) =0, hence
H(w,) - 0. Clearly, for any S = (T, g, v> € Wy, ¥,S < H(v) max (Jo(x, y)| : x, y
e T). Since g,(x, ) = o(x, y) for all x, y e T, the set of all g,(x, y), e(x, ), where
x, y € T, is bounded. Since H(u,) - 0, we get y,P, — 0. Obviously, /,P = 0.

2.15.4. The functionals i, and v, are not strongly regular. — Let P = ({1, 2}, 1,
wy where u{1} = 1, u{2} = 2. Let S = <{1, 2, 3}, 0, v) where (1, 2) = ¢(1,3) = 1,
0(2,3) = 0,v{1} = v{2} = v{3} = L. Let f(1) = 1,£(2) = /(3) = 2. Then f: S > P
is conservative. However, ¥,P = y,P = H(l,2) = log (27/4), ¥S > ¥,S =
= (2/3) H(1,1,1) = log9.

2.16. To prove that the functional ¢ from 2.15.1C is a hypoentropy, we shall
need the following simple lemma.

2.16.1. Lemma. Let x, y be positive reals. Then H(x, y) = 4xy|(x + y), and the
equality holds if and only if x = y.

Since I have not found this elementary fact in current textbooks, a proof is given,
although it does not require more than elementary calculus. Clearly, it is sufficient
to prove that putting F(z) = Hl 4+ z, 1 —z) = 2(1 + z)(1 — z) for 0 £ z £ 1,
we have F(z) > 0 for 0 <z < 1. If 0 £ z < 1, we have F'(z) = —log(l + z) +
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+log (1 = z) + 4z, F'(z) = —2log(e/(1 — z%)) + 4. Clearly, F"(0) >0, F" is
decreasing in [0, 1), F'(z) > —oo for z — 1. Hence there is exactly one number
a such that 0 < a < 1, F'(a) = 0. We have F'(z) > 0if 0 < z < a, F(z) < 0 if
a < z < 1, and therefore F’ is increasing in [0, a), decreasing in [a, 1). Since F'(0) =
=0, F'(z) > — oo for z — 1, there exists exactly one b such that 0 < b < 1, F'(b) =
= 0. Clearly, F' is positive in (0, b), negative in (b, 1). Since F(0) = F(1) = 0, we
get F(z) > 0 for all z from the interval (0, 1).

2.17. Fact. The functional ¢ = 2#|w defined on W (see 2.15.1C) is a finitely

continuous strongly regular hypoentropy. Its restriction to Wy does not coincide
with H.

Proof. Clearly, ¢ satisfies conditions (HE 1), (HE 2), (HE 4) from 2.5. If P =
= {{a, b}, 0, py € Wy, then @P = 4g(a, b). pa . pb[(na + pb), hence, by 2.16.1,
@P < o(a, b) H(pa, ub) and therefore condition (HE 3) from 2.6 is also satisfied.
Hence ¢ is a hypoentropy. — It is easy to see that ¢ is strongly regular. Let P, =
=<0, 0 t,y, neN, P=<Q,9, ) be FW-spaces, P, — P in QBF(Q). Clearly,
#(P,) > #(P), wP, - wP, hence if wP > 0, then @P, — @P.If wP = 0, then wP, — 0
and since #(P,) < d(P,)(wP,)*, we get ¢(P,) < 2d(P,)wP, and therefore, the
sequence (d(P,)) being bounded, ¢P, — 0. Hence ¢ is finitely continuous.

If P={{a,b},1,)eW;, wP =1, then @P = dua.pb, H(P)= H(ua, pub),
hence, by 2.16.1, H(P) > @P except if ua = pb or ua = 0 or ub = 0.

2.18. If we want to have a fairly broad concept of an “‘extended Shannon entropy**
on Wy, it seems appropriate (in view of 2.15.2) to require, beside the natural con-
dition that the functional in question should be a regular hypoentropy, only a weak
version of continuity; an additional condition is the strong regularity.

2.19. Definition. A functional ¢ on W, will be called an extended Shannon

semientropy (abbreviation: e.S. semientropy) on ;. if the following conditions are
satisfied:

(E1) ¢ is a regular hypoentropy,
(E2) P = H(P) for any P = <Q, ag, p) € W,
(E3) ¢ is finitely feebly continuous.

If, in addition,
(E4) ¢ is strongly regular,

then ¢ will be called an extended Shannon entropy (abbreviation: e.S. entropy)
on Wy

2.20. Fact. The functional {, from 2.15.1A is an extended Shannon semi-

entropy on M. The functional Y, from 2.15.1B is a finitely continuous extended
Shannon semientropy on MWp.
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This is, in fact, a paraphrase of part of 2.15.2, 2.15.3.

2.21. Remark. There are exactly exp N, extended Shannon semientropies on 2.
We give only an outline of proof. If ¢.S. semientropies ¢y, ¢, coincide on every
PeW; of the form P = (K,, o, uy, where ne N, n > 0, K, = {i:ien} and all
o(i, j), u{i} are rational, then ¢, = ¢,; hence there are at most exp N, e.S. semi-
entropies. On the other hand, every a ¥, + a,¥,, where ¥4, ¥, are functionals from
2.15.1A,Band a; =20, a, = 0, a; + a, = 1, is an e.S. semientropy.

2.22, The question now arises whether there exist e.S. entropies or even finitely
continuous e.S. entropies on MW;. An affirmative answer will be given later (in Section
5 and, for finitely continuous e.S. entropies, in Part IT). However, two examples will
be presented below (2.24) without proof. To prepare the ground for the examples
we state and prove some simple propositions on the Shannon entropy (we shall
need some of these propositions also later ofl).

2.23.1. Fact. For x,yeR, x >0, y >0, put V(x, y) = H(x, y)/xy. Then
V(xy, y1) < V(2. y5) whenever x; = x, >0, y; =y, > 0, (xq, y,) * (X2, ¥2)-
Proof. The partial derivatives of V,

v 1 av 1 X
—(x,y) = — log Y , —(x,p) = — log ,
0x x x+y 0y y X+ y

are always negative.

2.23.2. Lemma. Let (a, : ke K), (b, : ke K) be countable non-void families of
non-negative numbers. Put a = Z(a,, tkeK), b =Y (b,: keK). Assume a < oo,
b < 0. Then

H((a, + b,) :keK) < H(a, : keK) + H(b, : ke K) +
+ H(a, b) (1 — Y(ayb, : k e K)/ab).

Proof. It is easy to see that it is sufficient to prove the assertion for the case of
a finite K. By 2.23.1, H(a, b). aybifab < H(ay, by) for each k € K, hence H(a, b).
(1 = Y(ayby : k € K)Jab) = H(a, b) — Y (H(a, by) : k € K). Since, clearly,
H((ay + by) : keK) — H(a, : ke K) — H(b, : ke K) = H(a, b) — Y(H(a,, b)) : k e
€ K), the assertion is proved.

2.23.3. Proposition. [f P = {Q, ag, uy € W, P, + P, = P, then H(P) < H(P,) +
+ H(P,) + H(wPy, wP,) r(Py, P,).

This follows at once from 2.23.2, since if P; = <Q, aq, u;», then clearly r(P,, P,) =
=a - aZ(ﬂlq- 12q 1 q € Q)[WPy . WP,
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2.23.4. Proposition. If P = {Q, ap, 1y € W, Py + P, = P, then H(P) < H(P,) +
+ H(P,) + H[(P,, P,)].

This is a paraphrase of 2.23.3.

2.23.5. The property of H expresssd by 2.23.4 seems to be fairly important, as well
as the weaker one obtained by considering pure partitions (Py, P,) only. Properties
of this type will be considered in Sections 3 and 4.

2.24. Let v = r or T = E. For any P € Wy, let ¢ (P) or ¢}(P) be the supremum of
all P, where  is a regular hypoentropy on 2 satisfying

US S YS; + S, + ‘/’[(51, Sz)]r

for every S e W, and every t-admissible partition or, respectively, pure partition
(Sy, S;) of S. It can be shown (this will be done in Sections 3 through 5 for fairly
general case including that of T = r and t = E) that ¢} are e.S. semientropies on W
and ¢, are e.S. entropies on 2.

2.25. We now turn to concepts expressing the general idea of an extension of the
Shannon entropy to the whole class 2. Clearly, such concepts should be compatible
with those introduced for functionals on 2. Therefore, the following approach
suggests itself (and, moreover, scems to be the simplest and the broadest one).

2.26. Definition. A hypoentropy ¢ on 2 such that ¢ | W, is an e.S. semientropy
on W will be called an extended (in the broad sense) Shannon semientropy on I,
abbreviated e. (b.s.) S. semientropy on W. — If, in addition, ¢ | Wy is an e.S.
entropy, then ¢ will be called an extended (in the broad sense) Shannon entropy
on MW, abbreviated e. (b.s.) S. entropy on W.

2.27. Convention. In the names and abbreviations introduced in 2.19, 2.26, expres-
sions “‘on W, ““on W, ““(in the broad sense)”, and “(b.s.)”, will be often omitted
provided there is no danger of confusion.

2.28. Fact. Let a,, a, be non-negative reals, a; + a, = 1. Then, for any e.S.

semientropies @, ¢, on Wg (on W), ¢ = a;¢, + a,p, is also an e.S. semientropy
on Wy, (on W).

Proof. Follows at once from definitions.
2.29. Remark. The definition 2.26 is very broad. For instance, if  is any e.S.
semientropy on M and if we put (1) 9P = Y P if P € W, (2) P = 0if P e W\ Wy,

then ¢ is an e. (b.s.) S. semientropy. Therefore, it seems worth-while to look for
concepts not so broad as those in 2.26 but still wide enough to include e.g. the
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functionals CF and C, examined in the following sections, We will return to this
question in Section 5.

2.30. Having introduced a fairly broad concept of extended Shannon entropies, we
now have to answer, in particular, the following questions, and to exhibit, when-
ever possible, specified functionals with properties required.

I) Do there exist (a) e.S. entropies on B, (b) finitely continuous e.S. entropies
on MW? — II) If so, how many functionals of this kind are there? — III) Do there
exist (finitely continuous) e.S. entropies or semientropies ¢ on I such that P > 0
except for the trivial cases and ¢ P < oo whenever P is bounded, in a sense to be
specified? IV —VI) Questions I—1III under additional conditions such as some kind
of projectivity (see Section 3), etc. — VII) Is there, for some suitable e.S. semientropies
@, a clearly described procedure for calculating, at least approximately, P for P e
€ W or perhaps also for some infinite P € W?

For IVa, hence also for Ia, and for VII (partia]ly), this will be done in Sections
3—5. The remaining questions will be answered (some of them only partially) in
Part II.

3

3.1. Fort = rort = E, let ¢¥ be the functional defined in 2.24 and let C* and C,
be functionals on W defined as follows: C}(P) = Zp3(P)lim ¢;[%]., C(P) =
= Fp(P)lim ¢;[%].. We intend to show that C and C, are extended Shannon
semientropies (entropies) possessing, in addition, various convenient properties.
However, (1) in this setting, we should have to perform all proofs twice, for 7 = r
and for t = E, (2) there are many other functionals (see below) with propercies
similar to those of r, and E, for instance, the functionals r, and d defined as follows.

3.2. Notation. We denote by r,, where 0 < ¢t < oo, and by d the following
functionals defined on the class of all (P;, P,) e T x W such that P, < P, P, < P
for some P e 2B:

if P, =<0Q,0, >, i =1,2, then

(1) r{Py, Py) = (fo' d(uy x p)/wPy . wP,)"* for 0 < t < o0;

(2) ro(Py, Py) = d(Py, Py).

3.3. For reasons mentioned in 3.1, we are going to examine CX and C, not only
for © = r, E, but for a fairly general case, namely, for arbitrary gauge functionals t
(see 3.4). — We note that the definition of a gauge functional, and even more that of
a normal gauge functional (see 3.7), is rather involved. In a sense, this is natural:
we extract those properties which r,, E, etc., have in common and which are suf-
ficient for the corresponding functionals C; and C, to behave reasonably. One can
hardly expect such properties to be simple. On the other hand, we wish to stress that

580



most proofs concerning C; and C,, where t is any (normal) gauge functional, are
only slightly more involved than those concerning only the case t = r.

3.4. Definition. A functional 7 defined on the class of all (P, P,) e 2 x W such
that P, £ P, P, < P for some P e 3B will be called a gauge functional (abbreviation:
GF) if, for any (P,, P,) edom t,

(GF1) ©(Py, P,) = «(P,, P;) = 0;

(GF2) ©(Py, P,) £ d(P, + P,);

(GF3) if wP, =0 or wP, = 0, then 7(P,, P,) = 0;

(GF4) if P, =<Q,0 p;», i =12, a, by, b,eR,, by >0, b, >0, then
T((Q: ag, by, <0, ag, b2ﬂ2>) = aT(Pla PZ);

(GF5) if P; =<Q,0 ), S; =<0, 0,1, i =1,2, (P, P,)edomr, (S, S,)e
edomt, ¢ =0, then t(Py, P,) = ©(Sy, S5);

(GF6) if d(Py, P,) = r(Py, P,), d(P;) < d(Py, P,), i =1,2, then t(P;, P,) =
= d(Py, P,);

(GF7) if P,S are FW-spaces, f: P — S is conservative, P; = (Q, 0, u;> < P,
S;={(T,0,v;)£S, i=1,2, and, for any teT, p(f *t)=vit, i =1,2, then
Sy, S3) = 1Py, Py).

3.5. Fact. The functionals r,, 0 <t < o0, r,, = d, E are gauge functionals.

We omit the proof since it consists in a straightforward, though lengthy verification
of (GF1)—(GF7).

3.6. Definition. Let © be a gauge functional. Let P be a W-space. A partition
% = (U,: keK) of P is called t-admissible if, for any i,jeK, i # j, we have
(U, U;) < o0. If % = (U, : keK) is 1-admissible, then the FW-space <K, g, v),
where o(i, j) = 1(U;, U;) for i # j, v{k} = wU, for every k € K, will be denoted by
[%]. and will be called the t-quotient of P according to %. — We note that, due to
3.5, the definition 1.37.1 is a special case of 3.6.

3.7. Definition. A gauge functional t will be called normal (abbreviation: NGF)
if the following conditions are satisfied:

(NGF1) if % = (U, :keK) is a t-admissible partition of a W-space P, S =
=(K,0,v) = [%].,S1 £ 8,5, £85,8; =K, 0,v),i =12 and v{k}. v,{k} =
= 0 whenever k € K, d(U,) > 0, then ©(S}, S,) = 1} (ay, U, : ke K), Y (auU, : ke
€K)), where a; = vi{k}/v{k} for i = 1,2, keK; ,

(NGF2) if (P,,P,)edom=z, S; <P, i=1,2, then wS;.wS,.t(S,,S,) =
< WP, . wP, . t(Py, P,);

(NGF3) if S; = <Q, 0, 4>, P; = Q, 0, i, i = 1,2,(Sy, S,) edom, (P, P,) e
edomt, aeR,, and o(x,y) < o(x, y) + a for all x, ye Q, then (S, S,) <
< (P, P,) + a.
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3.8. Proposition. The functionals r, 1 £t < oo, r, = d, E are normal gauge
Sfunctionals.
For similar reasons as in 3.5 we omit the proof.

3.9.1. Fact. Let P,, P, be W-spaces. Assume that there exists a W-space P such
that Py £ P, P, < P. Then 1 £t <u £ oo implies r(Py, P;) < r(Py, P,), and
r(Py, Py) = d(Py, P,) if t > .

This follows at once from the fact that r(Py, P,), where 1 <¢ < o0, P; =
= (0, 0, u;, is equal to the norm of the function g in the space L(T), where T is
the measure space <Q x Q, u; X py>.

3.9.2. Fact. If 7 is a gauge functional, then © £ E. — This is an obvious con-
sequence of (GF2), (GF3).

3.10. Definition. Let 7 be a gauge functional. Let ¢ be a non-negative functional,
dom ¢ < W. If, for any P € dom ¢ and any t-admissible partition or pure partition
(P, P,) of P such that P, edom ¢, P,edom ¢, we have [(Py, P,)].€dom o,
P < @P; + @P, + ¢[(P;, P,)]., then ¢ will be called t-projective or, respectively,
t-semiprojective. — Cf. [3], 2.3.

3.11. Proposition. Let o, T be gauge functionals, ¢ < t. Then (1) any t-admissible
partition of a W-space is o-admissible, (2) if a hypoentropy ¢ on a class & < D is
o-projective (a-semiprojective), then ¢ is also t-projective (r-semiprojective).

Proof. Assertion (1) is obvious. Let % = (P, P,) be a t-admissible partition of
PeZ and let P, € ¥, P, € Z. Then % is o-admissible, hence pP < @P; + @P, +
+ @[], Clearly, [%], = {1, 2}, a, v), [%]. = <{1, 2}, b, v> where a = o(Py, P5),
b = «(Py, P,). Since ¢ < 7, we have a < b, hence, by (HE2), o[%], < ¢[%]., and
therefore pP < @P, + @P, + @[%]..

3.12. Fact. The functional H defined on Wy is r-projective.
Proof. Follows from 2.23.4.

3.13.1. Proposition. Let © be a gauge functional. Let & = W or & = Wp.
Let ¢ be a t-semiprojective or t-projective hypoentropy on %. Let Pe % and let
U = (U, : keK) be a pure partition or, respectively, any partition of P.If U, = 0
for each ke K, then oP < d(P) H(wU, : k € K).

Proof. We consider the case of a t-projective ¢ and an arbitrary partition; the
other case is completely analogous. It card K = 1, then ¢P = 0. Let n > 1 and
assume that the inequality in question holds whenever card K < n. Let % =
= (Uy:keK)ePt(P), cardK = n. Choose jeK and put K' = K\{j}, S =
=Y (U :keK'). Clearly, (U :keK’)ePi(S), hence (1) ¢S < d(S)HwWU, : ke
€ K'). Since ¢ is a t-projective hypoentropy, we have pP < ¢S + oU; + o[(S, Uj)],,
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hence, by 3.9.2 and (HE3), (2) 9P < ¢S + U, + d(P) H(wS, wU,)- From (1) and
(2) we get, by 2.4D, ¢P < d(P) H(wU, : k € K).

3.13.2. Fact. If ¢ is a regular hypoentropy on MW and P = <Q, 0, u> is an
FW-space, then ¢(q . P) = 0 for any q € Q.

Proof. Let S = <{1}, 0, v) e Wy, v{1} = pu{q}. By (HE3), ¢S = 0. Put f(1) = q.
Then f: S — g . P is conservative injective, hence ¢(q . P) = ¢(S) = 0.

3.14. Proposition. Let © be a gauge functional. For any S € Wy, let ¢} (S) be the
supremum of all S, where \y is a t-semiprojective regular hypoentropy on W.
Then (1) the functional S+ c}(S) is a t-semiprojective regular hypoentropy
on Wy, (2) for any FW-space P = {Q, 0, uy, ci(P) < d(P) H(uq : q € Q).

Proof. Clearly, the functional S+ ¢}(S) is regular and satisfies conditions
(HE1)—(HE3) from 2.6. By 3.13.1 and 3.13.2, assertion (2) holds; hence (HE4) is
satisfied. If % = (P,, P,) is a pure partition of an FW-space P, then, for any t-
semiprojective HE  on Wy, we have YyP < YP, + YPy + Y[%],, hence ¢P <
< cf(Po) + cf(Py) + cf[%].. This proves the t-semiprojectivity of S > c¥(S).

3.15. Notation. Let © be a gauge functional. If  : W3 — R, then, for any W-
space P, we put [y]; (P) = Zp(P)lim y[%], [Y](P)= Fpclim y[%],; the
functionals P [y]¥(P) and P+ [y],(P) will be denoted by [¢]* and [¢].,
respectively.

3.16. Proposition. Let © be a gauge functional. If  : W — R, is regular, then
[V]F 183 =y

Proof. Let P =<Q,0, pp e W;. If wP >0, put ¥ =(q.P:qeQ, ug > 0);
if wP =0, put ¥~ = (P). It is easy to see that, for every % € ®5,(¥"), there exists
a conservative injective mapping f: [¥7], > [%].. and therefore y[¥], = y[%]..
Condition (GF6) implies that if ¢, € Q, g, € Q, ug; > 0, uq, > 0, g, * g,, then
©(qy - P, q5 . P) = 0(41, q5). Therefore, if wP > 0, then the identity mapping of
[“i/]t into P is conservative. Obviously, if wP = 0, then there exists a conservative
injective mapping of [#], into P. Hence y[¥"], = P, and therefore y[%], = yP
for every % € &y, (¥"). The definition of [y]¥ now implies [y] (P) = yP.

3.17. Definition. Let t be a gauge functional. Let ¢ denote the functional S — ¢}(S)
described in 3.14. Then the functionals [¢;]; and [¢}], will be denoted by C; and C,,
respectively. Instead of C; and C, we will often write C* and C. We will call C}(P)
the CJ-semientropy of P, and C(P) the C-entropy of P.

Remark. The names C;-semientropy, C,-entropy anticipate the fact, to be proved

later, that C} and C, are extended Shannon semientropies (entropies) provided 7 is
an NGF, 7 > r.
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3.18. Fact. Let © be a GF. Let P, Se W, and let f: P~ S be conservative
injective. For each U =<Q,0,uy <P, let fiU =(T,o0, vy < S, where vt =
= u(f~'5) for any te T. For any % = (U, : ke K) e Pt(P), put f,% = (fU; : ke
€K). Then f, : Pt(P) - PU(S) is bijective, U refines ¥~ iff /,% refines f,¥", and
[#]. = [f,%]. for any % € Pt(P).

Proof. By (GF7), «(U, V) = 1(f,U, f,V) for any U,V = P. The rest is easy.

3.19. Proposition. Let © be a gauge functional. Then C¥ and C, are regular
hypoentropies, and C¥ | W is the greatest t-semiprojective regular hypoentropy
on Wy

Proof. The assertion concerning CF | 9, and the regularity of C¥ follows directly
from 3.14 and 3.16. It is easy to see (directly from the definition) that C} and C,
satisfy (HE1)—(HE3). The regularity of C, follows easily from 3.18. We are
going to show that C, satisfies (HE4); for C¥, the proof is analogous. Let P =
= {0, 0, 1ty be a finite W-space. Let o/ be the set of all atoms of the g-algebra
dom p. Clearly, %, = (A.P: Ae o) is a partition of P. Let % = (U, : keK)e
€ Pt(P). By 1.36, there exists a ¥~ = (V,, : m € M) € Pt(P) refining both % and %,.
Since ¥ refines %,,, there exists a partition (M, : A € /) of M such that ) (V,,: me
eEM,)=A.Pforall Ae o/. Put S = (M, 0,v) = [¥].. By (GF2), d(S) < d(P).
For Ae o/, put S, = M, . S. By (GF2) and 1.29, d(S,) = 0 for all A € «. Hence,
by 3.16 and 3.14, C}(S,) = 0 for any A € /. By 3.13.1, we get C¥[7"], = C¥(S) <
< d(P)H(uA : Ae ). This implies C(P) < d(P)H(uA : A€ o).
<C.

o = T

3.20. Proposition. Let o, © be gauge functionals, ¢ < t. Then Cff < Cf, C

Proof. By 3.19 and 3.11, C¥ | 8, is t-semiprojective, hence C¥ | W, < C* | W;.
If PeW and % e Pt(P) is t-admissible, then, by (HE2), Ci[#], < C}[%].- By
3.17 and 3.15, this proves the proposition. The proof of C, < C, is analogous.

3.21. Proposition. Let © be a gauge functional. If P, S are FW-spaces and there
exists a conservative mapping f : S — P, then C(S) < C}(P).

Proof. I. For any P € Wy, let ¥(P) be the class of all Te W such that there exists
a conservative mapping f: T— P. Put P = sup {C(T) : Te ¥(P)}. Clearly, the
functional ¢, defined on ¥y, satisfies (HE1)—(HE2). If Te ¥(P) and g : T—> P is
conservative, then d(g~'q.P) = 0 for each g€ |P1, and therefore, by 3.19, 3.14
and 3.13.1, we get C}(T)< d(P)H(uq : qe€|P|). Hence ¢ satisfies (HE3) and
(HE4). Clearly, ¢ is regular. We have shown that ¢ is a regular hypoentropy.

II. We are going to prove that ¢ is -semiprojective. Let P € Wy and let (Py,P,)
be a t-admissible pure partition of P. Let (B,, B;) be a partition of |P| such that
P,=B;.P, i =0,1. For an arbitrary Te ‘I’(P) choose a conservative mapping
f:T—P.PutA; = f~1B,, T, = A;. T. Itis easy to see that, fori = 0,1,f: T— P;
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is conservative. Hence, T; € ¥(P;), and therefore CXT) £ oP: Since C; is T-semi-
projective, we have

CXT) < ¢Py + oP, + C{[To; 7). -

By (GF7), we get 1(Ty, Ty) = ©(P,, P,), hence CH(Ty, TY)]: = C:;[(P(,, P =
< ¢[(Py, P,)].- Thus, we have, for any Te ¥(P),

C::(T) é (pPO + (DPI + (P[(PO’ Pl)]r H
and therefore
@P < @Py + ¢P; + ¢[(Po, P1)]. -

We have shown that ¢ is 7-semiprojective.
III. By 3.19, we now have P < C¥(P) for any P €, hence C}(S) < C}(P)
for any S e ¥(P).

3.22. Proposition. Let © be a gauge functional. Then, for any FW-space P =
= (Q, 0, 1), C{P) is equal to the infimum of all C}[%], where % is a partition
of P finer than (q . P : q € Q).

Proof. Let a denote the infimum in question. By the definition of C(P), we have
a < C(P). Let ¢ > 0. There exists a partition ¥, finer than ¥y = (¢. P:q€ Q)
and such that CJ[7"], < a + . Let % be any partition of P. By 1.36, there exists
a partition ¥, finer than ¥”; and %. It is easy to see that (since ¥", refines "y, 7",
refines ¥°y) ¥°y and ¥°, are of the following form: ¥"; = (V, : k € K), where V; =
= ayqy . P), a,eR,, g€ Q, V5, = (V,, : me M), where V,, = b,(q,,. P), b,eR,,
gm€ Q, and there exists a partition (M, : k€ K) of M such that, for any k€K,
m € M,, we have q,, = q;, Y.(b,, : m € M;) = a,. Define f : M — K by the condition
m € M . Then, by (GF2) and (GF4), f : [7",]. - [#",]. is a conservative maping.
Hence, by 3.21, CI[7",]. < CI[#",].- We have shown that there exists a parti-
tion ¥, finer than % and satisfying C/[#",]. < a + &. This proves C(P) < a + .
Since ¢ > 0 was arbitrary, we get C,(P) < a.

3.23. Proposition. Let © be a gauge functional. Let P be an FW-space. Then
C(P) is equal to the infimum of all C}(S) where S is an FW-space such that there
exists a conservative mapping f:S — P.

Proof. If S € W, f : S — P is conservative, then, for any t € |S|, put 4, = (1),
a, = w(t.S)w(A,.S), U, = aft.P). It is easy to se¢ that % = (U, :t€|S|) is
a partition of P refining %, = (q .P:qe IPI) and that the identity mapping i :
: [#], - S is conservative injective. Hence, by the regularity of C}, C}[%], = C}(S),
and foi:[%], — P is conservative. On the other hand, if % is a partition of P
refining %, then, clearly, there exists a conservative g : [#], — P. By 3.22, this proves
the proposition.
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3.24. Proposition. Let © be a gauge functional. If P, S are FW-spaces and there
exists a conservative mapping f: S — P, then C(S) = C(P).

Proof. From 3.23 it follows at once that C(S) = C,(P). We shall suppose C(S) >
> C/(P) and derive a contradiction. — There exists (see the proof of 3.23) a parti-
tion % of P refining (¢ . P: q € |P|) and such that there is a conservative injective
f:[#%]. > S. Now, if a partition ¥ refines %, then clearly (see the proof of 3.23)
there exists a conservative mapping g : [¥], » [#]., hence, by 3.23, C}[7]. =
C(S) > C/(P). This is a contradiction, for C(P) = #p(P) — lim C;[¥]..

3.25. Proposition. If t is a gauge functional, then C, is strongly regular.
This is a paraphrase of 3.24.

3.26. Proposition. Let © be a gauge functional. Then, for any FW-space P,
C(P) = C(P).

Proof. Follows at once from 3.23.

4

In this section, we introduce (see 4.3) dyadic expansions 2 of W-spaces. For any
gauge functional v and any 2, we define the 7-value, F,(L@), of 2. It turns out (see
4.29) that if 7 is normal, then, for any W-space P, C(P) and C;(P) can be obtained
as certain limits (see 4.9) of I'(%). We recall that C and C* (i.e., C, and C; with
T = r) have been defined, in [3], in the way just mentioned. Thus, in particular,
C* and C as defined here coincide with C* and C from [3].

Dyadic expansions have been defined in [3] (for FW-spaces, already in [2]).
However, we re-state all relevant definitions.

4.1. Notation. Let x = (x;:i <m), y = (y;:j < n), where m, ne N, be finite
sequences. We write x < yif m <nand x; =y, fori <m,and xyif x <y
or x = y. We denote by x . y the concatenation of x and y, i.e. the sequence (z; : k <
<m+ n), where z; = x; for i < m, z,,,; = y; for j < n. Instead of x . y we some-
times write xy. We often write x . b or xb instead of x . (b), and a . x or ax instead
of (a) . x. The void sequence is denoted by 0.

4.2, Notation. We denote by 4 the collection of all finite non-void sets D <
= U({0, 1}" : n e N) (i.e. of all finite non-void sets of finite sequences, including the
void one, of elements 0 and 1) such that (1) if xe D,y < x,then ye D, (2) if xe D,
then either {x0, x1} = D or {x0, x1} " D = 0.If D€ 4, we put D’ = {x € D: x0 € D},
D"=D\D.IfDed, X = D, we put D(X) = {ye D: x Xy for some x € X}.
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4.3. Definition. Let P be a W-space. An indexed set # = (P, : x € D), where D € 4,
will be called a (pure) dyadic expansion of P if (1) every P,, x € D, is a (pure) sub-
space of P, (2) Py = P, (3) P,y + P,y = P, foreach xe D'

4.4. Notation. If # = (P, : x € D) is a dyadic expansion, then 2" denotes the in-
dexed set (P, : x e D").

4.5. Fact. If 2 is a dyadic expansion of a W-space P, then 2" is a partition of P,
and 2" is pure iff P is.

4.6.1. Fact. Let ne N, n > 0. Let (U, : k < n) be a partition of a W-space P.
Let D, € A4 be the set of all sequences (a;:i < j) such that (1) j <n, (2) a; =1 if
0<i<j—1.PutPy=P IfxeD, x=(a;:i<j)withj>0, put P, = U;_,
if aj-y =0, and P, =% U;:j<i<n) if ajo; =1. Then ? = (P,:xeD,)
is a dyadic expansion of P and 2" is equal to U re-indexed.

Proof. Clearly, 2 is a dyadic expansion of P, D) = {(a;:i < j)eED,ta;_y =0
or j=n —1}. For any x = (a;:i < j)e D,, put f(x) = Y(a;:i <j). Then f:
: Dy > {0, ...,n — 1} is bijective and P, = Uy, for each x € D.

4.6.2. Proposition. If % is a partition of a W-space P, then there exists a dyadic
expansion & of P such that 2" is equal to U re-indexed.

4.7. Notation. Let P be a W-space. Then the set of all dyadic (all pure dyadic)
expansions of P will be denoted by De(P) (by De*(P)). If % € Pt(P), then the set of
all 2 € De(P) (all 2 € De*(P)) such that 2" refines % will be denoted by ®p, (%)
(by ®p()). — Cf. [3], 2.13.

4.8. Fact. Let P be a W-space. Then the collection of all ®p (%), where % € Pt(P),
is a filter base on De(P), and the collection of all ®f (%), where % € Pt*(P), is a filter
base on De*(P).

Proof. Follows at once from 1.36 and 4.6.1.

4.9. Definition. Let P be a W-space. The filter on De(P) (on De*(P)) generated
by all &p (%), where % € Pt(P) (respectively, by all &5 (%), where % e Pt*(P)),will
be denoted by #p,(P) (by Zp.(P)) and will be called the projective (semiprojective)
filter of dyadic expansions (pure dyadic expansions) of P. The lower limit (see 1.43)
of a function g with respect to Fp.(P) (to Fp(P)) will also be called the projective
(Eemiprojective) lower limit of g. (Cf. 1.44. The danger of confusion is negligible.)

4.10. Definition. Let 7 be a gauge functional. Then, for any (P,, Pl) e dom 7, we
put I'(Py, P,) = H(wP,, wP,) t(P,, P;). If # = (P, : x € D) is a dyadic expansion
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of a W-space P, then we put I'(2) = Y (I'(Pyo, Pyy) : X € D’) and call I'(%) the
t-value of 2.

4.11. Notation. For any gauge functional 7, the functionals P+ %, (P)-lim I' (%)
and P — Z} -lim I'(2) will be denoted, respectively, by y, and y;. — Remark. It
will be proved (4.29) that if 7 is normal, then y, = C,, ¥} = C}. In view of this fact,
the symbols y, and y* will seldom appear in the subsequent sections.

4.12. To prove (see 4.14) that y¥, y, are regular hypoentropies, we need some
simple facts.

4.12.1. Fact. Let (K,, : m € M) be a partition of a finite non-void set K. Let all K,
be non-void. For each ke K, let x,€R,. Then H(x,:keK) =Y (H(x,: keK,):
:meM) + HQ (x,: keK,): meM).

4.12.2. Fact. Let © be a gauge functional. Let # = (P, :x¢€ D) be a dyadic
expansion of a W-space P = {Q, ¢, ). Then ' (?) < d(P) H(wP,, : x € D"), and if P
is a FW-space and 2 is pure, then I'(2?) < d(P) H(uq : q € Q).

Proof. Clearly, I'(?)= Y(I'(Pso, Py1):x€ D) < d(P)Y.(H(WPyo, WP,;) : x €
€ D). From the definition of H, it is easy to see that ) (H(wP,o, WP,;) : x€ D') =
= HwP,:xeD"). If PeW;, # is pure, then 2" = (B,.P:xe D"), where
(B, :x€e D) is a partition of Q. We have I'(#) < d(P) H(uB, : xe D", B, + 0) <
< d(P)H(uq : g € Q), by 4.12.1.

4.12.3. Fact. Let ? = (P, : x € D) be a dyadic expansion of a W-space P. For
every xe D" let D, € 4, and let 7, = (T, : y € D,) be a dyadic expansion of P,.
Let D=Du{x.y:xeD’, yeD }.If zeD', let S, = P,; if z=x.y, xeD",
yeD,, let S, =T,, Then ¥ =(S,:z¢€ D) is a dyadic expansion of P, and &
is pure iff # and all T, are pure. If © is a gauge functional, then T'(¥) = I'(®) +
+ Y(I(7,) : xe D).

4.12.4. Fact. Let  be a gauge functional. Let P be a W-space. Let ? = (Px IXE D)
be a dyadic expansion of P such that d(P,) = 0 for each x € D". Let % be a partition
of P. Then there exists a dyadic expansion & of P such that (1) & = (S, : xe D),
D < D, S, = P, for xe D, (2) &" refines U, (3) T'(¥) = I'(?); (4) if ? and %
are pure, then & is pure.

Proof. Let P =<Q,0, 0>, % = (Uk keK) By 1.34, there exist j- measurable
functions f, such that P, = f, . P for x € D. For each x € D" there exists, by 4.6. 2
a dyadic expansion I, = (T, : y € D,) of P, such that 7 is equal to (f,.U,:
: k € K) re-indexed. Now let & be the dyadic expansion described in 4.12.3. Clearly,
(1) is satisfied. It is easy to see that (2) is also satisfied. Since d(P,) = 0 for x € D",
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we have, by 4.12.2 and 4.12.3, I' (¥) = I'(?). Clearly, if % and 2 are pure, then so
is &.

4.12.5. Fact. Let © be a gauge functional. Let P = {Q, o, u) be a finite W-space.
Let o/ be the set of all atoms of the algebra dom pu. Let % be a partition of P.
Then there exists a dyadic expansion & of P such that " refines U, I'(¥) <
< d(P)H(uA : Ae o), and & is pure if U is pure.

Proof. Clearly, (A.P:Ae o)ePt*(P). By 4.6.2, there exists a £ e De*(P)
such that 2" is equal to (4. P : A€ ) re-indexed. Since, by 1.29, d(4.P) =0
for all A € o7, there exists a dyadic expansion & = (S, : x € D) with the properties
described in4.12.4. Since I'(¥) = I' (%), we get, by 4.12.2, I'(¥) < d(P) H(nA : A€ ).

4.13. To prove (see 4.14) that y; is t-semiprojective and y, is t-projective (provided
T 2 r), we need some further simple facts.

4.13.1. Fact.If tisa GF, P = ({a, b}, ¢, u) € Wy, then y}(P) = H(ua, ub) o(a, b).

4.13.2. Lemma. Let © be a GF. Let £ < I and assume that Pe 2, Py < P
imply P, € Z. Let ¢ be a non-negative functional on Z. Assume that ¢ is t-pro-
jective (t-semiprojective), and ¢P < H(ua, pb) o(a, b) if P = {{a, b}, 0, n) € Wy
Then, for any dyadic expansion (pure dyadic expansion) ? = (P,:xe D) of
a W-space P € &, we have P < I'(?) + Y (P, :x€ D") < d(P) HWwP, : xe D") +
+ Y(¢P, : x € D").1If, in addition, ¢S = 0 for any S € & n Wy such that w(q . S) >
> 0 for at most one q € ISI, then @P < y(P) (respectively, P < y¥(P)) for any
PeZ nWg.

Proof. We consider only the case of a T-projective ¢ and an arbitrary 2 e De(P),
since the other case is analogous. Let (P, P,) be a partition of P. Let us prove

(*) ¢P§¢Po+¢P1+Fr(Po,P1)-

Indeed, if t(P,, P,) = o, then (%) is obvious. If 7(P,, P;) < oo, then, since ¢ is
t-projective, pP < @Py + Py + ¢[(Py, P;)].., hence (x) holds.

From (x), the first inequality follows by induction. The second inequality follows
from 4.12.2.

Now assume that ¢S = 0 whenever S€ Z n W, and w(g . S) > 0 for at most
one ge|S|. Let Pe & n W If 2 = (P, :x e D) is a dyadic expansion of P such
that 2" refines (q . P : g € |P|), then P < I'(?) + Y(¢P, : x € D") = I'(%). This
implies P < y,(P).

4.13.3. Lemma. Let t© be a gauge functional. Let ¢ be a regular hypoentropy
and let P be an FW-space. If ¢ is t-semiprojective, then P < y;(P). If ¢ is 1-
projective, then oP < y,(P).
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This is, in fact, a special case of 4.13.2 (since ¢ is regular); see also 3.13.2.

4.13.4. Fact. For any P e Wyc, H(P) < 9¥(P), H(P) < 7,(P).
Proof. Follows from 3.12, 2.14 and 4.13.2.

4.13.5. Fact. If o and © are gauge functionals and ¢ < 7, then y¥ < y¥, y, < Yo

4.13.6. Fact. If © is a gauge functional, © = r, P = ({a, b}, 0, u) € Wy, then
7(P) = H(ua, ub) o(a, b).
Proof. Follows from 4.13.4, 4.13.5 and 4.12.5.

4.14. Proposition. Let © be a gauge functional. Then.y} and v, are regular hypo-
entropies, y is t-semiprojective, and if T = r, then y, is t-projective.

Proof. L. It is clear that y) and y, satisfy (HE1) and (HE2). By 4.12.5, they also
satisfy (HE3) and (HE4). Hence y; and y, are hypoentropies. — II. We are going to
prove that y and y, are regular. Let P, S be FW-spaces and let f: P — S be a con-
servative injective mapping. For any U < P, define f,U as in 3.18. Clearly, U < P
is pure iff f;U < S is pure, and 2 = (P, :x e D) is a dyadic expansion of P iff
(f1Ps : x € D) is a dyadic expansion of S. By (GF7), we have (U, V) = «(f,U, f,V)
for any U, V < P. Hence, for any 2 = (P, :xe D)eDe(P), we have I'(f,P, :
: x € D) = I' (). This, together with 3.18, implies y;(P) = 7¥(S), y(P) = y.(S). —
ITI. We are going to prove that if ¢ = r, then y, is 7-projective. Let P € 2 and let
(P, P;) be a t-admissible partition of P. Let beR, y(P,) + 7/(P;) +
+ 7[(Po, P1)] < b. Then, by 4.13.6, we have y,(P,) + 7(P;) + H(wPy, wP,).
.7(Pg, Py) < b. Let ¥~ be a partition of P. By 1.36, there exists a partition # =
= (U, : k e K) which refines both ¥ and (P, P,). Choose a partition (K,, K,) of K
such that ) (U, :keK;)= P, i =0,1. Since (U, :keK,) is a partition of P,
there exists, for i = 0, 1, a dyadic expansion &; = (P;,:x¢€ D;) of P; such that
2] refines (U, : ke K;) and T'(P,) + I'(2,) + H(wPy, wP,) t(Py, P;) < b. Let D
consist of @ and of all (z) .x, where i = 0, 1 and x € D,. Clearly, D e 4. Put Py = P;
if i =0,1, xe D;, put P;,, = P; .. Then 2 = (P, :z€ D) is a dyadic expansion
of P. Clearly, 2" refines % and I' (2) = H(wP,, wP,) t(Po, P;) + I'(2,) + I'(?)),
hence I'(#) < b. This shows that y(P) < b. Hence, y(P) < 7,(P,) + I'(Py) +
+ 7 (Po, Py)].- — IV. The proof of t-semiprojectivity of y; is analogous. However,
instead of 4.13.5, we use 4.13.1 and therefore the assumption T = r can be omitted.

4.15. Proposition. Let T be a gauge functional. Then, for any FW-space P,
Ci(P) = y{(P).

Proof. By 3.17, 3.16, 3.14 and 4.14, y¥(P) < C}(P) for any FW-space P. By
4.13.3, if P is an FW-space, then, for any 7-semiprojective regular hypoentropy ¢,
we have ¢P < y}(P), which implies C}(P) < y}(P).
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4.16. Definition. Let B be a set. An indexed set (Bx IX€E D) such that De 4,
B, = B and, for any x e D', B, = B,, U B, B,y 0 B,; = 0 will be called a dyadic
expansion of the set B. — The set of all dyadic expansions of a set B will be denoted
by De*(B).

4.17. Fact. Let P = <Q, o, p)> be a W-space. If (B, : x € D) is a dyadic expansion
of Q and all B, are i-measurable, then (B, , P : x € D) is a pure dyadic expansion
of P. If (P,:xe D) is a pure dyadic expansion of P, then there exists a dyadic
expansion (B, : x € D) of Q such that all B, are fi-measurable and P, = B, . P for
all x e D.

4.18. Lemma. Let P be a W-space, wP > 0. Let ? = (P, :x € D) be a dyadic
expansion of P. Then there exists a dyadic expansion & = (S,:ye€ D) of P such
that (1) wS, > 0 for each y € D, (2) " is equal to (P, : x € D", wP,. > 0) re-indexed,
(3) for any gauge functional ©, I' (¥) = I'(2), (4) if 2 is pure, then & is also pure.

Proof. Put m = card {xe D :wP, = 0}. If m =0, we put & = 2. If m > 0,
then wP, = 0 for some u € D". Clearly, u = v. (k), where ve D', k =0or k = 1.
Put D =(D\D()u{v.y:v.(k).yeD}, where k =1 — k. It is easy to see
that De d. For xe D\ D(v) put P, = P, for x =v.y, where v.(k).yeD,
put P, = P, 4 . It is casy to show that 2 = (P, : x € D) is a dyadic expansion of P
and that card {x e D : wP, = 0} < m. Clearly, there exists a bijective f:{xe D" :
:wP, > 0} > {yeD":wP, >0} such that P, = P, It is also easy to see that,
for any gauge functional 7, I'(#?) = I'(%).

Clearly, proceeding in this way we obtain, after at most m steps, a dyadic expan-
sion & with properties (1)—(4).

4.19. Fact. If © is a gauge functional and P is an FW-space, then the set of all
I'(P), where 2 € De*(P), is finite.

Proof. For any 2 e De*(P) there exists an % = (S, : x € D) € De*(P) with the
properties described in 4.18; in particular, I' (%) = I'(#) and wS, > 0 for each
x € D. By 4.17, there exists a dyadic expansion (B, : x € D) of |P| such that S, = B, .
. P for each x € D. Since wS, > 0, we have B, + 0 for all x € D. Since, for any finite
set Q, the set of all dyadic expansions (B, : x € D) of Q such that all B, are non-void
is finite, the assertion is proved.

4.20. Proposition. Let © be a gauge functional. Let P = {Q, 0, ) be an FW-
space. Then CX(P) is equal to the least of all T'(2) where P = (B..P:xeD),
(B, : xe D) e De*(Q), card B, = 1 for all xe D". If wP > 0, then CI(P) is also
equal to the least of all (%) where 2 = (B,.P:x¢eD), (B,:x€D)eDe*{qe
€ Q:pugq > 0}, card B, = 1 for all xe D".
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Proof. Put ¥" = (q . P : g € Q). Then &} (¥") is the least set in the filter #5.(P).
Hence, by 4.15, C}(P) is equal to the infimum of all I'(#) where 2 € ®5(¥"). In
particular, C}(P) < I'(B,.P:xeD) for all (B,:xe D)eDe*(Q) of the form
described in the proposition. First we prove the second assertion. By 4.19, there
exists a 2e ®p (7)) such that C}(P) = I'(#). Let & = (S,:ye D)eDe*(P)
possess the properties described in 4.18. We have I'(¥) = I'(2) = CJ(P). By 4.17,
there is an 4 = (M, :ye D)eDe*(Q) such that S, = M,.P for each yeD.
Put B, = {geM :uq > 0}. Clearly, S,=B,.P for each ye D, (B,:yeD)e
eDe*{qge Q :pug > 0} and card B, = 1 for each y e D".

The first assertion is obvious if wP = 0. Let wP > 0. We have already shown that
there is a 2 € De*(P) such that C;(P) = I'(#) and that £ is of the form (B, . P : x €
€ D) described in the second assertion. Put B ={qe Q:puq >0}, A= Q\B.
We may assume A =+ 0. Let (4, :ze D)e De*(4), card A, = 1 for each ze D".
Let D consist of @, of all (0) . x, x € D, and all(1) . z, ze D. PutK; = Q,K(o,.. = B,,
K().. = A;. Then (Ky 1ye 13) has all the properties required.

4.21. By 4.20, for any gauge functional t and any FW-space P, it is possible to
calculate Cf(P) in a finite number of steps. This is an important fact. Nonetheless,
the number of steps can be quite large. A trivial estimate is, roughly, the number of
dyadic expansions (Bz A D), with all B, non-void, of a set of n elements. I do not
know whether it is possible to give a substantially better estimate. The following
question also remains open: given an ¢ > 0, to find an estimate for the number of
steps necessary to find, for an FW-space P, a 2 € De*(P) such that |I" (%) — C¥(P)| <
<e

4.22. Proposition. Let © be a gauge functional. Let P be an FW-space. Then
C(P) = y(P).

Proof. I. Let b e R, C(P) < b. Let % € Pt(P). Then, by 1.36, there exists a ¥~ =
= (Vi : ke K) € Py(P) refining both % and (¢ . P: q € |P|) and such that C}[¥], <
< b.Put S = [¥],. By 4.20, there exists an & = (S, : x € D) € De*(S) such that &
is equal to (k.S :keK) re-indexed and that I'(¥) = C}(S). Let f: D" —» K be
bijective, S, = f(x). S for all xe D". For x€ D, put P, = Y (V,,: ye D(x) n D").
Since ¥ refines (¢. P:qe IPD, it is easy to see that there exists a conservative
g:S— P. From (GF7) it follows easily that I'(#?) = I'(¥), hence I'(?) < b.
Clearly, 2" refines %. Since % € Py(P) was arbitrary, this proves y,(P) < b, hence
7{(P) £ C(P). — 1L Let beR, y(P)<b. Let #ePt(P). Then there exists
a? = (P,:xeD)eDe(P) such that I'(#) < b and 2" refines both # and
(q.P:qe|P|). Put S =[2"].. For xe D, put S, = (D(x) n D").S. Then & =
= (S, :xe D) is a dyadic expansion of S and #" = (t.S:1e|S|). It is easy to
show, using (GF7), that I' (%) = I'(&¥). Hence, I'(¥) < b and therefore, by 4.20,
Ci[2"]. = C¥(S) < b. Since % € P(P) was arbitrary, this proves C(P) < b, hence
C,(P ) = )’r(P ).
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4.23. Proposition. Let t be a gauge functional, © = r. Then C, | W is the greatest
T-projective regular hypoentropy on Wp.

Proof. Follows from 4.22, 4.14 and 4.13.3.

4.24. Proposition. Let T be a gauge functional, © = r. Then, for any FW-space P,
C/(P) is equal to the infimum of all I'(#), where 2 is a dyadic expansion of P
such that 2" refines (q . P : q € |P)).

Proof. Let b denote the infimum in question. Clearly, y(P) = b, hence, by 4.22,
C,(P) > b. By 4.23, C, | Wy is t-projective. Since C, is a regular hypoentropy,
C{q.P) =0 for any g€ |P|. Hence, by 4.13.2, C(P) < I'(?) for any 2 e De(P)
such that 2" refines (q . P : g € |P|), and therefore C,(P) < b.

4.25. Proposition. Let © be a gauge functional, t© = r. Then for any P =
= <Q, ag, ) € Wy, C;(P) and C(P) are equal to H(P) = a H(u), the Shannon
entropy of P. — For t = r, cf. [3], 3.2 and 3.5.

Proof. By 3.12 and 4.13.2, H(P) < I'(#) whenever 2 € De(P) and 2" refines
(q.P:qe|P|). Hence H(P) < y}(P), H(P) £ y(P). By 4.12.5, we get y¥(P) <
< d(P) H(p), y(P) < d(P) H(u). By 4.15, 4.22 and 3.20, this proves the proposition.

4.26. In the rest of this section, and also in Section 5, we shall need some assump-
tions on gauge functionals 7, namely some (or all) of the (NGF1)—(NGF3). To be
precise: I do not know whether these assumptions are always necessary; however,
the proofs presented here do not work unless some of the (NGFi), i = 1,2, 3, are
assumed. — To simplify the statements, we will assume, as a rule, that 7 is an NGF,
even if (GF1)—(GF7) plus some specified (NGFi) are sufficient.

4.27.1. Fact. Let © be a normal gauge functional. Let ? = (P, : x € D) be a dyadic
expasion of a W-space P. Assume that the partition ?" is t-admissible. Put S =
=[2"]., T. = D" D(x), S, =T,.S for any xe D, & = (S,:x€ D). Then &
is a pure dyadic expansion of S, I'(¥) = I'(?) =2 C[2"]..

Proof.If x € D', then T,y N Ty = 0. By (NGF1), we get 1(Syo, Sy1) = ©(Pyos Pyy)s
hence I'y(Sy0» Sx1) = I'(Pyo, Py;) and therefore I'(¥) = I'(#). The inequality
(%) = C¥(S) follows from 4.20.

4.27.2. Fact. Let T be a normal gauge functional.” Let 2 be a dyadic expansion
of a W-space P. If #" is not t-admissible, then T (P) = 0.

Proof. Let # = (P, : x € D). Since 2" is not t-admissible, there exist x, y € D"
such that x + y, ©(P,, P,) = c0.Put Z = {u e D :u < x, u < y}. Choose a maximal
(with respect to <) element z € Z. Clearly, we have zi < x, zj = y for appropriate
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i,j=0,1, i #j. Since t(P,, P,) = o, we have, by (GF3), wP, > 0, wP, > 0,
hence wP,; > 0, wP,; > 0. By (NGF2), we get wP, . wP, . 7(P,, P,) < wP,;. wP
. (P, P.;), hence ©(P,;, P.;) = o0, ['(P,;, P,;) = o0, I'(?) = oo.

zj "

4.28. Proposition. Let © be a normal gauge functional. Let % be a t-admissible
partition of a W-space P. Then there exists a dyadic expansion & of P such that 2"
is equal to U re-indexed, I' (?) = C[%]..

Proof. Let % = (U, : ke K). By the regularity of C¥, we may assume that
wU, > 0for all k e K. By 4.20. there exists a pure dyadic expansion & = (S, : x € D)
of S = [%], such that I'(¥) = CJ(S) and &” is equal to (k. S : K € K) re-indexed.
Let f: D" - K be bijective, S, = fz . S for each z e D". For each x € D, put P, =
=3(U;, :yeD(x)n D"). Then # = (P,:xe D) is a dyadic expansion of P,
?" = (U,, : ze D"), hence 2" is equal to % re-indexed. By (NGF1), we get I' (%) =
— I (#) = ¢x(5) = €[], |

4.29. Proposition. Let © be a normal gauge functional. Let P be a semimetrized
measure space. Then C}(P) = y}(P), C(P) = y(P).

Proof. Both assertions are proved in an analogous way. Therefore we prove only
the latter. First, we will prove C(P) < #-lim I'(P), where % stands for % (P).
We can assume Z-lim I'(#) < . Now, let beR, b > F-lim I'(#). Let ¥~ be
an arbitrary partition of P. Then there exists a dyadic expansion £ of P such that 2”
refines 7" and I',(#) < b. By 4.27.2, 2" is t-admissible; by 4.27.1 we have I'(?) =
= C,[2"].. This implies b = C(P). Hence #-lim I (#) = C(P).

We now prove Z-lim I'(#) < C,(P). We can assume C(P) < co. Choose b € R,
b > C(P). Let ¥~ be an arbitrary partition of P. Then there exists a t-admissible
partition % finer than ¥ and such that C;[%], < b. By 4.28, there exists a dyadic
expansion 2 of P such that 2" is equal to % re-indexed and I' (%) = C}[%]., hence
I'(#) < b. This implies #-lim I'(#) < b. Hence Z-lim I'(?) < C,(P).

5

In this section we prove some propositions concerning continuity of C¥ and C..
These propositions and the results of Section 3 and 4 immediately yield the main
theorems (see Section 6) of the present Part I. We add some observations concerning
certain fairly mild conditions fulfilled by all C and C, (where T is a normal gauge
functional and 7 = r) but strong enough to exclude some ‘‘bad” e.S. semientropies,
e.g. those equal to oo for every infinite W-space.

5.1. Proposition. Let © be a normal gauge functional. Let P; = {Q, ¢;, u) € W,
i =1,2. Then |C}(P,) — C}(P,)| < disty (Py, P,). H(ug : q € Q).

504



Proof. Put a = dist (P, P,). Clearly, ¢; < 0, + ag, 02 S ¢ + do hence, by
(NGF3), forany v' < 1, v" < p, we have [((<Q, ¢1, V'3, <@: €1 v'y) — 1<Q, 02, '),
{Q, 05, v"))| < a. It is now easy to see that if 2 = (P,:xeD), ¥ =(S.:xeD)
are pure dyadic expansions of P, and P,, respectively, if 2" refines (¢9-P,:qe0),
" refines (q . P : g € Q), and if P, = {Q, 01, fey> Sx = {Q, 02, x> for all x e D,
then |[I(?) — I'(¥)| < a Y(H(pzo» Q. 11 Q) : x€ D) = a H(ugq : g € Q)- By 4.20,
this proves the proposition.

5.2. Fact. Let © be an NGF. Let P, = {Q, 0,, iy, n€ N, P = {0, 0, up be FW-
spaces. If P, — P, then C}(P,) — C(P).

Proof. Follows at once from 5.1.

5.3. Lemma. Let © be a normal gauge functional. Let P =<Q,0,pu), S =
=4<0,0,v), P, =<Q, 04 1), Sy, =<Q, 0 V), n€N, be FW-spaces. Let P, — P,
S, — S. Then 1(P,, S,) - (P, S).

Proof. Clearly, for any p, 0 < p < 1, we have, for all sufficiently large n, ¢, = po,
hence t(P,, S,) = pt(P, S). On the other hand, if a > 0, then for all sufficiently
large n we have ¢, < ¢ + a, hence, by (NGF3), (P, S,) < (P, S) + a. This
implies im ©(P,, S,) < ©(P, S) and proves the lemma.

5.4. Preposition. Let T be a normal gauge functional. Let P, = {Q, ¢,, 1), n € N,
P = (Q, ¢, ) be FW-spaces. If P, — P, then C(P,) — C,(P).

Proof. For any t, 0 < t < 1, we have, for all sufficiently large n, ¢, = to, hence
C(P,) = t C(P). This implies lim C(P,) = C(P). If C/(P)= o, this proves
C/(P,) > C(P). Hence we consider only the case C(P) < co. Let b be an arbitrary
number greater than C(P). By 3.22, there exists a partition % = (U, : k€ K) of P
such that %" refines (q.P:qe Q) and CJ[#%], < b. Put U, = {Q, ¢, ). For
neN, keK, put U,, =<0Q,0,w>, U, = U,,:keK), [%,]. =<K, 0, v,
[%]t = (K, g, v). Clearly, v, = v for all ne N. Since, for i,jeK, i £ j, we have
o(i,j) = «(U, U, ;) o(i.j) = «(U;, U;), we get, by 5.3, o, > ¢. Hence, by 5.2,
Ci#,]. - CH[#]. and therefore C;[%,]. < b for all sufficiently large n. Since,
by 3.22, C(P,) £ C¥[%,].. we have Tim C,(P,) < b, hence Tim C(P,) < C/(P).
This proves the proposition.

5.5. Lemma. Let t© be a normal gauge functional. Let P = {Q, 0, t), S =
=<0,0,v), P, =<Q,0, 1t,», S, =<Q,0,v,>, neN,; be FW-spaces. If P, — P,
S, = S, then lim ©(P,, S,) = ©(P, S). If, in addition, for any q € Q and any p < 1°
g < u.pg, vg < u.vq for all sufficiently large n (in particular, if ng > 0,
vq > 0 for all g€ Q), then ©(P,, S,) — ©(P, S).

Proof. We can assume wP > 0, wS > 0. Let 0 < ¢ < 1. Then, for all sufficiently
large n, P, 2 tP, S, = 1S, hence, by (NGF2), wP, . wS, . (P,, S,) = w(tP).w(tS) .
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. o(tP, 1S) = t*wP . wS . o(P, S). Since wP, . wS, — wP . wS > 0, the first assertion
is proved. — To prove the second assertion, let u > 1. Then, for all sufficiently large
n, we have P, < uP, S, < uS, hence, by (NGF2), wP,.wS, . 2(P,, S,)| < w(uP),
w(uS) . ((uP, uS) = u* . wP . wS..t(P, S). Since wP,.wS, —» wS.wP > 0, we get
Iim ©(P,. S,)| < «(P, S).

5.6. Lemma. Let © be a normal gauge functional. Let P = {Q, 0, ), P, =
= <{Q, 0, 1>, where ne N, be FW-spaces. If P, — P, then lim C}(P,) = C}(P).
If, in addition, all uq > 0 for all g € Q, then C}(P,) —» C/(P).

Proof. Suppose lim C}(P,) = b < C¥(P). Then it is easy to see (using 4.20) that
there exists a subsequence (P, : m € N) of (P,) and a dyadic expansion (B, : z € D)
of Q such that card B, = 1 whenever ze D" and I'(2,)— b where 2, = (B.
. Py 1 2€ D). By 5.5, we now get I'(#) < b, where # = (B, . P :ze D), which
contradicts b < CJ(P).

Let all ug > 0 for all g € Q. By 4.20, there exists a dyadic expansion (B, : z € D)
of Q such that card B, = 1 for ze D" and I'(B,.P :ze D)= C}(P). Since
w(B, . P) > 0, w(B, . P,) > 0 for all z € D and all sufficiently large n, we get, by 5.5
(second assertion), I'(B,y.P, B, .P,)—>I'(B,.P, B, .P) for each ze D"
Now, C¥P,) < TI(B..P,:zeD), which proves @im C}(P,) £ C/(P), hence
Ci(p,) — CX(P).

5.7. Proposition. Let T be a normal gauge functional. Then C¥ is finitely con-
tinuous.

Proof. Let Q be a non-void finite set. Let ¢ be a semimetric on Q. We are going
to prove that CF¥ is continuous on W(Q, 0, *) N Wy. Let P=<Q,0,u, P, =
=<0, 0,11,y be FW-spaces and let g, — pu. By 5.6, lim C¥(P,) = C;(P). Put
B={qeQ:uq >0}, A= Q\B, S,=B.P, T,=A.P, Since C; is regular,
we get, by 5.6, CX(S,) > Ci(P). Since C is t-semiprojective, C;(P,) < CX(S,) +
+ CX(T,) + H(wS,, wT,) d(P,). Since wT, - 0, we get im C3(P,) < lim CX(S,) =
= C(P).

Now let P = <Q, 0, u>, P, = <Q, 0., it,», n € N, be FW-spaces, and let P, — P.
Clearly, there exists a number b such that H(ug : qe Q) < b, H(u,q : g€ Q) <
for all ne N. For ne N, put S, = {Q, 0, u,>. By 5.1, we have |C (S,) — C*(P)]
< b.dist(S,, P,). Clearly, dist (P,, S,) < dist (P,,, P), hence |C¥(S,) — C¥(P,)| - 0
for n — 0. Since, as already shown, C;(S,) - C¥(P), we get C¥(P,) » CX(P).

5.8. Lemma. Let © be a gauge functional. Let ¢ be a t-projective regular hypo-
entropy on Wp. Let P, = <Q, 0, u,», P =<Q, 0, up be FW-spaces and let uqg > 0
forall ge Q. If P, — P, then ¢P, — @P.

Proof. I Let t > 1, P = {Q, o, tu). Then, for all sufficiently large n, we have
P, < P, hence, ¢ being t-projective, tpP = P < P, + (P — P,) + H(wP,
w(P ~ P,))«(P,, P — P,)). By 3.13.1 and 3.132, (P — P,) < d(P)H(r . uq —
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— u,q:q€ Q). Clearly, (P, P —P,)<d(P). If n— oo, then H(tpg — p,q :
:qeQ)— (t —1)H(ug : g€ Q), H(wP,, w(P — P,)) > H(wP, (t — 1) wP) = wP .
.H(1,t — 1). Hence we have lim P, = toP — (t — 1)d(P)H(uq : g€ Q) — wP.
.d(P)H(1, t — 1). Since ¢ > 1 was arbitrary, we get lim P, = ¢P.

II Let 0 <u <1, P=<0Q,0,und. Then, for all sufficiently large n, P < P,
hence ¢P, < ¢P + (P, — P) + H(wP, w(P, — P))«(P, P, — P). By 3.13.1 and
3.13.2, o(P, — P) = d(P)H(u,q — upq : q € Q), hence Tim o(P, — P) < (1 — u).
.d(P)H(uq : g€ Q). Clearly, Tim H(wP, w(P, — P)) (P, P, — P) < wP[d(P) .
.H(1,1 — u). Thus, we get Tim ¢P, < P + (1 — u)d(P)H(uq : g Q) + wP.
.d(P)H(1,1 — u). Since u < 1 is arbitrary, we have Iim P, < @P. This proves
the lemma.

5.9. Proposition. Let © be a normal gauge functional. Then C_ is finitely feebly
continuous. — This follows from 5.4 and 5.8.

5.10. The functionals C* and C,, where tis an NGF and t > r, are, in fact, a rather
special case of e.S. semientropies on M. There is a lot of other e.S. semientropies (and
even e.S. entropies) on W. Some of these possess fairly reasonable properties, whereas
some are not nice at all and do not seem to be useful. We now present some examples.

5.11.1. Notation. If f, g are functionals, dom f = dom g, then min (f, g) and
max (f, g) denote the functionals x > min (fx, fg) and x — max (fx, gx), respec-
tively.

5.11.2. Fact. Let & = W or & = W. Let Y, and Y, be e.S. semientropies
(entropies) on %. Then min (4, /), max (Y1, Y,) and a, ¥y + ayr,, where ay, a, €
eR,,ay + a, =1, are e.S. semientropies (entropies) on Z.

5.11.3. Let a >0, b > 0, a + b = 1. Then the e.S. semientropy (on Ql‘s) ¢ =
=aCF + bC, is not of the sort described in 5.10. Moreover, if tisa GFand 7 = r,
then there are FW-spaces P and S such that ¢P < Cf(P), @S + C(S). — This
follows from the fact (which will be proved in Part II) that there exists an F W-space P
such that C(P) < Cy(P). Indeed, clearly, a C}(P) + b C/(P) < C;(P), hence, by
3.20, 9P < C}(P). By 3.23, for some FW-space S such that there exists a conservative
mapping f:S — P, we have C;(S) < C}(P). Now, clearly, either P > C/(P),
or ¢P £ C(P) and therefore, C, and C, being strongly regular, ¢S = aC;(S) +
+ b C(S) < C(S).

5.12.1. Let  be an e.S. semientropy or an entropy on W, We define 4, as
follows: (1) if P e W is finite, then n,(P) = [Y]f (P), (2) if P e W is infinite, then
n,(P) = . By 3.16, n, | W, = , and it is easy to prove that [y]; (P) is finite
if P is finite. Hence 5, is an e.S. semientropy or, respectively, an entropy on 2. —
It is clear that the functionals #, are of little interest (except as counterexamples):
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for all y and all infinite P € B, 11,,(P) has the same value, whereas #,, coincides with
on Wp. '

5.12.2. The functionals #, are not of the kind described in 5.10. — This assertion,
intuitively fairly clear, is a consequence of 5.12.5 below.

5.12.3. Fact. Let y be an e.S. semientropy on W such that (SR') if Pe W,
S € Wpe and there exists a conservative mapping f: P — S, then YyP = /S. Let
P = (N, 1,1 eW, dompu = exp N, H(u) < . Then. for any partition U of P
and any real a > H(u), there exists a partition ¥ such that Y[V |z < a and ¥
is a relatively pure refinement of %.

Proof. Choose ¢ > 0 such that H(u) + ¢ < a. Let % = (U, : k € K) be a partition
of P. We can assume that K n N = 0. Put m = card K. Choose § > 0 such that
dlogm < g2 and H(wP, 5) < ¢/2. Choose pe N such that u{p,p + 1,...} <.
Put B={p,p+1,...}. For keK, ieN, i <p, put V,, = {i}.U,; for keK,
put V,, = B.U,. Put ¥ =(V,,:keK, i < p). Clearly, 7" is a relatively pure
refinement of %. Put [¥7]; = <(Q, 0, v). Clearly, o(x, y) < 1 for all x,ye Q and
a(x, y) = 0 whenever x = (i, k,), y = (i, k,), i < p. Define a semimetric 6 on Q
as follows: (1) 6(x, y) = 0if x = yorx = (i, k,), y = (i, k), i < p, (2) 6(x,y) = 1
otherwise. Put T = {i :i < p} U K. Let v' be the measure on T defined as follows:
vi{i} = u{i} for i < p, v{k} = w(B.U,) for keK. Clearly, S = (T, 1,v') is an
FW-space. For (i, k)e Q, put f(i, k) =i if i < p and f(p, k) = k for any keK.
It is easy to show that f is a conservative mapping of <Q, &, v)> onto T, 1,v').
Since y satisfies (SR’), we have y{Q, &, v) = S, hence Y[7 |z = Y<Q,0,v) =
< ¥S. Now, since ¥ is an e.S. semientropy, we get (see 4.12.1, 2.4) S = H(v't :
:teT) < H(u{i} :i < p) + Hw(B.U,) : ke K) + HQ.(n{i} : i < p), uB) <
< H(u) + 6logm + H(wP, 8) < H(n) + e.

5.12.4. Fact. If © is a GF, © = r, then C} satisfies (SR") from 5.12.3.

Proof follows at once from 4.25, 3.21 and 3.23.

5.12.5. Fact. Let |y be an e.S. semientropy on Wy satisfying (SR’) from 5.12.3.
LetP = (N, 1, 1) € W,dom pu = exp N, H(i) < co. Then, for any gauge functional
« [V17 (P) = H(w). [v]. (P) < H(u).

Proof. By 5.12.3, we have [y]; (P) < H(n), [y]:(P) < H(u).

5.13.1. As shown by the preceding considerations, the functionals C* and C,
(where 7 is a normal gauge functional, v = r) represent a very important, but rela-
tively special sort of e.S. semientropies. Therefore we are interested in finding a sort

(or sorts) of e.S. semientropies defined in a not too involved way and (A) including
all C} and C,, where 7 is an NGF, t = r, (B) not including “‘bad” semientropies such
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as 1,. In addition, the sort we are looking for should (C) include the functionals
[¥]%, [¥]. possibly subject to some conditions on ¥ and 7, and (D) every e.S.
semientropy @ of the sort we want to introduce should be obtainable from some e.S.
semientropy ¥ on W in the sense that ¢ is either equal to some [y]7 or [y/], or, at
least, “‘encircled” by these, which means that, for any P e W, @P belongs to the
smallest interval containing all values [np]f (P), [¥]. (P). Finally, the following requi-
rement seems to be reasonable, though not indispensable: (E) if ¢, and ¢, are of the
sort to be introduced, then so are min ((pl, ¢,), max ((p,, q02) and all convex combi-
nations a,@; + a,@,.

5.13.2. Consider e.g. all e.S. semientropies ¢ on 2B such that for some e.S. semi-
entropy ¥ on Wy, ¢ is “‘encircled” (see 5.13.1, (D)) by [y ], [¢]., where 7 is a GF,
© = r. Then, (D), hence also (C) and (A), are satisfied. However, it can be shown
that the functionals #, are not excluded. Therefore, with regard to 5.12.5, we will
admit only those ¥ which satisfy (SR’). Thus, we introduce the following definitions.

5.14.1. Definition. An e.S. semientropy ¢ on I will be called simply germinated
if there exists an e.S. semientropy ¥ on W such that (1) if P € W, S € Wy and there
exists a conservative f: P — S, then yP = yS, (2) for any Pe W, ¢P belongs to
the smallest interval containing the following values: [y/] (P), [v], (P). [¥]% (P) and

[V]e (P)-

5.14.2. Definition. An e.S. semientropy ¢ on M will be called finitely germinated
if it can be obtained from simply germinated e.S. semientropies by applying, finitely
many times, the transitions from ¢, and ¢, to min (¢, ¢,) or to max (¢, ¢,) or
to some a,@; + a,p,, where a;,a,eR,, a; + a, = 1.

5.15.1. Fact. If 7 is an NGF, t = r, then CF or C, is a simply germinated e.S.
semientropy or, respectively, entropy.

5.15.2. Fact. If 7 is a GF and  is an e.S. semientropy on W satisfying (SR’),
then (1) [y ] is a simply germinated e.S. semientropy on W, (2) if [¥], is an e.S.
semientropy, then it is simply germinated.

Proof. The first assertion is a consequence of 3.16 and of the following fact (the
proof of which is similar to that of 3.16): for any finite W-space P = {Q, 0, 1),
[v]F (P) is equal to Y[A. P : Ae /], where o is the set of atoms of dom p. The
second assertion is evident.

Remark. I do not know whether there exists an e.S. semientropy ¥ on 2, and
a gauge functional 7 such that [y/], is not finitely feebly continuous.

5.15.3. Fact. The e.S. semientropies n, described in 5.12.1 are not finitely
germinated.

5.15.4. Fact. If ¢ and ¢, are finitely germinated e.S. semientropies (entropies),
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then min (@1, @), max (¢1, ¢2) and a, ¢y + a,¢,, where ay, a, e Ry, a; + a, = 1,
are finitely germinated e.S. semientropies (entropies).

6

We now sum up the main results of the preceding section in the form of eight
propositions, four of which (the more important ones) are labelled as theorems.

Proposition 6.1. Let © be a gauge functional. Then (1) C} and C, are regular
hypoentropies, (2) C¥ restricted to the class Wy of all finite separated W-spaces is
the greatest t-semiprojective regular hypoentropy on Wy, (3) if © = r, then C,
restricted to Wy, is the greatest t-projective regular hypoentropy on W, (4) for any
Pe W, C(P) = Ci(P).

Proof. See 3.19, 3.26 and 4.23.

Proposition 6.2. If ¢ and © are gauge functionals, ¢ < 1, then CX < C¥, C, £ C,.

Proof. See 3.20.

Proposition 6.3. Let T be a gauge functional, © = r. Then, for any finite W-space P
of the form P = {Q, 1, uy, C}(P) and C(P) are equal to the Shannon entropy

of <Q, .

Proof. Follows from 4.25 and the obvious fact that any <Q, 1, u)> € W is a sep-
arated space.

Proposition 6.4. Let  be a normal gauge functional. Then C7 is finitely continuous,
and C. is finitely feebly continuous.

Proof. See 5.7 and 5.9.

Theorem L If 7 is a normal gauge functional, t = r, then CY is a t-semiprojective
finitely continuous extended (in the broad sense) Shannon semientropy. In par-
ticular, C* = C} is an r-semiprojective finitely continuous extended (in the broad
sense) Shannon semientropy.

Theorem 1I. If © is a normal gauge functional, © = r, then C, is a t-projective
extended (b.s.) Shannon entropy. In particular, C = C, is an r-projective extended
(b.s.) Shannon entropy.

Proof. Both Theorem I and Theorem II follow from 4.29, 4.14, Proposition 6.3
and Proposition 6.4.

Remark. The fact that, for an NGF v satisfying = = r, C¥ is t-semiprojective
and C, is 7-projective can also be proved directly, without using 4.29.
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Theorem IIL. Let © be a normal gauge functional. Then, for any W-space P,
CI(P) is equal to the lower semiprojective limit, 3 (P)-lim I'(#), of the 1-
values of pure daydic expansions of P, and C(P)is equal to the lower projective limit,
Fpo(PYlim I'(2), of the t-values of dyadic expansions of P.

Proof. See 4.29.

Theorem IV. Let t be a gauge functional. Let P be an FW-space. Then (1) C}(P)
is equal to the minimum of the t-values, I'(%), of all pure daydic expansions P
of P such that 2" refines the partition (q. P :qe|P|), (2) if © = r, then C(P) is
equal to the infimum of the t-values, I'(2), of all dyadic expansions 2 of P such
that 2" refines (9. P:qe IPI)

Proof. See 4.20 and 4.24.

Remarks. — (1) InPart ITit will be proved that the e.(b.s.)S. entropies C,, where ©
is an NGF, 7 = r, are finitely continuous. — (2) I do not know under what con-
ditions weaker than P € Wy, C;(P) = C,(P) holds for all normal gauge functionals
satisfying T = r or, at least, for ¢ = r. In particular, I do not know whether there
exists an FW-space <Q, ¢, u> such that g is a metric and C,(P) < C;(P). — (3) After
the existence of e.S. entropies has been established and some e.S. entropies have
been exhibited, various lines of investigation are open. We can examine properties
common to some fairly broad kind of e.S. entropies (semientropies), e.g. to the
functionals C, (respectively, ck ) where 7 is an NGF, © = r. We can also investigate
some particular e.S. entropies (or semientropies). Now the question arises which e.S.
entropies are the most important and/or interesting ones. Intuitively, one would
guess that C = C, and its counterpart, C* = Cy, are fairly important (for various
reasons, e.g. since r is a quite natural gauge functional). Thus, the problem appears
whether C, is a “privileged”, in some precise sense, e.S. entropy, e.g. whether C, < ¢
for all e.S. entropies ¢, perhaps satisfying some additional conditions. Some other
e.S. entropies may also be “‘privileged”, in a different sense. For instance, I do not
know whether ¢ < Cj of rall e.S. entropies ¢.
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