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I. INTRODUCTION

Some problems gave rise to the notions of elevation and coelevation of a graph,
which were introduced in [1]. The elevation of a graph with regard to the crossing
numbers of a certain infinite class of graphs was studied in [2]. The purpose of this
paper is to determine the coelevation for certain classes of giaphs and to investigate
some of its basic properties.

Throughout this paper, by a graph we mean a loopless undirected graph without
multiple edges. The concepts undefined here are used in the sense of the mono-
graph [3].

1I. DEFINITIONS AND SOME KNOWN RESULTS

Let us recall definitions of the elevation and coelevation of a graph.

To every one-to-one labeling f : V(G) — {1,2, ..., n} one can assign the number
e(G)= ¥ lf(”i) - f(vj)| ’
(vi,vj)eG i
where V(G) = {0y, v3, ..., v,} is the vertex set of a graph G. Then the number

¢(G) = min &,(G)
!
is called the elevation of G, and the number ‘
&(G) = max ¢,(G)
!

is known as the coelevation of G.
We list some of the known results (see [1]), which will be used in what follows:
1) Let K, be a complete graph with n vertices. Then

«(K,) = 8(K,) = (” N l).

3
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2) Let G be an n-vertex graph and G its complement. Then
&(G) + §G) = ¢(K,) -

3) Let G be a graph and G = G, U G,. Then
e(G) = &(Gy) + ¢(G,) -

4) Let G be a graph and G, i = 1,2,..., k, its disjoint factors (i.e. subgraphs
of G with the same vertex set set as G), theunion of which covers G. If there exists
a labeling f with the property

eG) =¢G), i=12 ..k,
then
e(G) = ¢G) .

III. MAIN RESULTS
First, in contrast to 3) of Section II, we present

Theorem 1. Let G be a graph of the form G = G, U G, with at least one edge.
Then
&G) > &G,) + &G,) -
Proof. Let V(G,) = {vy, v, ..., 0,} and V(G,) = {uy, u,, ..., u,}. Suppose
that f, and f, are arbitrary maximal labelings of G, and G,, respectively. It means

¢;,(Gy) = &G,) and &.,(G,) = &G,).
Without loss of generality, we can assume that G, is not a complete graph. Let
v; € V(G,) be such a vertex for which f(v;) = n. Then degv; = 1 (otherwise,

/1 would not be the maximal labeling of G,). Further, let u; € V(G,) be such a vertex
for which fz(uj) = 1. Take the following labeling f of G:

f(v) = filv), if k=i,
flu) = fo(w) +n, if k+j, and
flv)) =n+1, f(u;)=n.
Then
e(G) = &,,(Gy) + degv; + &,,(G,) + degu, > &,(G,) + £,,(G>) -
Because é(G) = &/(G), Theorem 1 is proved.
As an analogue to 4) of Section II, we obtain

Theorem 2. Let G be a graph, and G, i = 1, 2, ..., k, its disjoint factors, the union
of which covers G. If there exists a labeling f with the property

6{G)=&Gy), i=1,2...k,
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then
£(G) = 0).

Proof. The proof follows immediately from the inequalities

6) = 3.6/(6) = $.i(G) 2 (),

&G) = ¢4(G).

Now we concentrate our attention on the coelevation of certain classes of graphs.

Proposition 1. Let Rl(n) be a regular graph of degree one with n = 2 vertices.
Then

§(Ry(n)) = "{ .

Proof. Let V(R,(n)) = {vy,v5,...,v,} and n = 2k, k = 1. For any labeling /°
of R,(n) we get
2k k nZ
gR(m) = X [flo) =)= X i- Yi=k =,
(vi,vj)eR 1 (n) i=k+1 i=1 4
because in the sum every number of the set {1, 2, ..., 2k} occurs exactly once.

Suppose that R,(n) consists of k edges (v;, v;44), i = 1,2, ..., k. It is sufficient to
take the labeling f : f(v;) = j, to complete the proof.

Corollary 1. Let R,_,(n) be a regular graph of degree n — 2 with n = 2 vertices.
Then
—2)n(2 1
&(R,_»(n)) = (n=2)n(2n + 1)
12
Proof. If we put G = R,_,(n), then G = Ry(n). Clearly, 1), 2) and Proposition 1
imply the statement.

Proposition 2. Let Rz(n) be a regular graph of degree two with n = 3 vertices.

Then
2

&(Ry(n)) < % if nis even,,

NZ

— lifnisodd.

&R,(n)) 5

Proof. Take an arbitrary labeling f : f(v;)) = x; of the vertices vy, v, ..., v, of
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R,(n). Compute:

SR) = 1) = S = 2. - S,

(va,vp)eR2(n)

Among all numbers x;, x;,, every number of the set {I,2,...,n} occurs exactly
twice. Hence, for any k = 2 we have

e(Ry(n)) < 2 Z 1—221=2k =% if n=2k,
i=k+1 p4
2%-1 k-1 2
af(Rz(n))<2 %11—2Zz~2k2—2k~ if n=2k—1

Since f was an arbitrary labeling, it follows that

2
&R,(n)) < %— if niseven,
~

2 —
éR,(n)) < %J if nis odd .

The upper bounds are attained for a cycle C, with n = 3 vertices. As a maximal
labeling f of C, for both n = 2k and n = 2k — | we can take the following one:

faic)) =i, flop)=n—(i—1), i=12 ..k,

where the vertices vy, v,, ..., v, are denoted in cylic order. This completes the proof.
Proposition 2 yields schral consequences.

Corollary 2. For the cycle C, we have

nZ
ic,) = 5 if nis even,

2 —
4C) = "= it uisodd.
2

Proof. If we take the labeling of C, used in the proof of Proposition 2, the proof
of Corollary 2 follows immediately.

Corollary 3. Let P, be a path with n vertices. Then

if niseven,

if nisodd.

ip) ="
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Proof. To get a maximal labeling of P,, it is sufficient to take the labeling of C,
used in the proof of Proposition 2, and to remove the edge which represents the dif-
ference of value one. With regard to Corollary 2, the statement is proved.

Corollary 4. Let R,_(n) be a regular graph of degree n — 3 with n = 3 vertices.
Then

3 a2
e(R,_3(n)) 2 2—3:_’1 if niseven,

e(R,-3(n)) = &%-(—n—_i) if nis odd .

The lower bounds are attained if R,_s(n) = C,.
Proof. Let us put G = R,_3(n). Then G = R,(n), and 1) and 2) with respzct
to Proposition 2 and Corollary 2 prove the above statement.

Proposition 3. Let K, U K, be a graph consisting of two disjoint copies of K,

é(K,,uK,,)=4(n *3' 1).

Proof. Let us have an arbitrary labeling f of K, U K,. Denote the values of the
vertices in the form of increasing sequences

n = 2. Then

X <X, < ... <X,
Vi <V2<...<Dy,

for each graph K, separately. Suppose that n is an even number. We compute

GKaUK) = Y (,=x)+ Y (- 1) =

p>r p>r
r=1,p=2 r=1,p=2

=:§(n = 2i + 1) . (x,-i41 — X,) +:§(n =2+ 1) (Vpmivs — i) =
n/2
=i;(n =20+ 1) [(Xpmivr + Vamivr) — (x: + ¥)]-
If we use the obvious inequalities
4i—1sx;+y; S2i+n if

2i+n=x;+y;=4i—1 if
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we obtain

edX, VvK,) §:§(n —2i4+1).[(4n —4i+3)—(4i—1)] =

n/2
=4y (n—2i+ 1)224(’1+ Y
i=1 3 }
Because f was an arbitrary labeling of K, U K, we have

#K,UK,) <4 (" : 1) .

For n odd the proof is analogous, therefore it is omitted. As a maximal labeling f
of K, u K, we can take

fix;=2i—1, y;=2i, i=12,..,n.

Hence, the proposition is proved.

Corollary 5. Let K, , be a complete bipartite graph. Then
n.(2n* + 1)
—

Proof. Let us put G = K, . Then G = K, U K,, and 1), 2) and Proposition 3
imply the Corollary.

In the end, we state one property of an arbitrary maximal labeling of a graph.

&(K,,) =

Theorem 3. Let G be a graph with n vertices and let f be one of its maximal
labelings. Then for a vertex v such that f(v) = n we have

k n
Y f(x) = E.degv ,
i1

where the vertices X, X, ..., X; are incident with the vertex v.

Proof. We do it indirectly. Assume that

k
Y f(x) > " degu.
i=1 2
Compute the sum
k k k
i—z1 [f(v) = f(x;))] = n.degv —i_zlf(x,-) <i;f(x,-) .
If we use the following labeling g:

gu) =f(u) + 1 if u=*v,
g(v) = 1,
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then

6= T lala) — a0 + X o) ~ o(0)] =

= 311 =10l + 1) >
> 3 @) = 10) + Z 6 = 1] = 540)

yields a contradiction.
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