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1. INTRODUCTION

Consider the differential equation

(L.1) Y'(x) = {4 = qx)} »(x) = 0,

where x runs over the compact interval [a, b], 1 is a complex parameter and g €
€ L[a, b] is real. The boundary conditions

(1,2) y(a)cosa + y'(a)sina =0,
(1,3) —{B1 ¥(b) = B ¥'(b)} = A{B1 y(b) — B2 ¥'(b)}
where o, B;, B2, B1, B> are all real, are imposed.
The boundary value problem thus defined has been studied extensively in recent

years. Walter [4] has given an operator-theoretic formulation of the problem, and it
has turned out to be necessary to impose the determinantal condition

By By
B2 B,
which will be assumed to hold here. C. T. Fulton [1] has carried over the methods
of Titchmarsh [3, ch. 1] to this problem, obtaining I? and pointwise convergence
results for the associated eigenfunction expansions. We shall adopt his formulation
of the theory. Various other expansion results and the theory of what is essentially
the domain of the square-root of the self-adjoint operator associated with this problem
are dealt with in the paper [2] by D. B. Hinton.

Fulton [loc. cit.] has established first-order asymptotic formulae for the first
components of the eigenfunctions and, where g has bounded variation over [a, b],
second-order asymptotic formulae for the eigenvalues. Second-order asymptotic
formulae for the eigenvalues and for both components of the eigenfunctions are
derived in section 3 of this paper, valid for any g € L[a, b]. These are used in section 4

0= >0,
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to prove a theorem (Theorem 3) relating the eigenfunction expansions to trigono-

metric expansions. Analogues of the classical Wiener-Lévy theorem are then con-
sidered.

2. THE EIGENVALUES AND EIGENFUNCTIONS

The theory of the boundary value problem is set in the Hilbert space H =
= I’[a, b] ® C of two-component elements, which has inner product defined by

b
(F, G = f F\(x) G dx + 2 F,0,
a Q

for any F(x) = (F,(x), F,), G(x) = (G, (x), G,) in H. C denotes the complex field.
As in Sturm-Liouville theory we introduce the solution ¢(x, ) of (1,1) which
satisfies

$la, 7)) =sina, ¢'(a, 1) = — cosa.

It is shown in [1, p. 296] that the eigenvalues 4,, n = 0, 1, 2, ..., are precisely the
zeros of the integral function w of A defined by

w(2) = (BiA + By) (b, 2) — (B22 + B3) ¢'(b, 2) .
These eigenvalues are real, tend to co and have no finite cluster point.

Let us write Ry(y) = By y(b) — B3 y'(b), for any differentiable function y. The
normalised eigenvectors are

V(x) = (ul(x). Ri(¥)) »

Vilx) = [ 9] 9(x. 4).
Bx) = (@(x. 2). Bib(b, Ar) = B2'(b. A)

where

and
“¢n“ = <(I)", d)n>1/2 *

The eigenvectors satisfy the orthogonality condition
V=0, m=£n,

and it should be noted that the functions , are not orthogonal in I*[a, b].
The eigenfunction expansion of F(x) = (F,(x), F,) is formally

@1) F() = 3 CF ) 1)

with
b

(22) )y = j Fy(x) o) dx +  Fy R0,
a 0

where we assume that F, € L|a, b] and F, e C.
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3. ASYMPTOTIC FORMULAE

Define s = \/A = o + it to mean
s =27"2{x J(|A| + re i) +iJ(|4] — re 2},

the plus sign being taken when 0 < arg 4 < m, the minus sign when © < arg 2 < 2m;
then s is real when 4 > 0, and ¢ = 0 always.

The following lemmas show how ¢(x, 1) behaves as |,{| — 0.

Lemma 1. If A &+ 0 we have

@(x, 1) = cos {s(x — a)} sina — s~ " sin {s(x — a)} cos o« +

+ 57! J'xsin {s(x — w)} a(w) ¢(w, 1) dw .
Proof. See 3, p. 9].

Lemma 2. Let s, > 0 be given. Then for ls| = So,
¢(x, 1) = 0(e'*"9), ¢'(x,2) = O(|5| ef*=@)
when sin o £ 0, while if sina = 0
B 2) = 05|+ &) ¢1(x, 2) = O(e"").
These results hold uniformly in x over [a, b].

Proof. See [3, p. 10].

Lemma 3. Let s, > 0 be given. Then for ]sl = So»
@(x, 1) = cos {s(x — a)} sina — s~ " sin {s(x — a)} cos & +

+ 57 'sin afxq(w) sin {s(x — w)} cos {sl'w — a)} dw + O(|4| ' e"*~)

a

when sin o + 0, and when sine = 0
P(x, 1) = —s~ ' cosasin {s(x — a)} —

= cosa [ an)sim o — )} i {sn — )} o+ Off| e ).

a

Formulae for ¢'(x, A) are obtained by formal differentiation, the new order terms

being
O(IS|-—1 el(x—n)) , O(I/{'hl et(xfa))

respectively. These results hold uniformly in x over [a, b].
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Proof. By Lemma 1,

¢(x, 1) — cos {s(x — a)} sina + s~ sin {s(x — a)} cos & =

=s! J‘x sin {s(x — w)} g(w) [sin o cos {s(w — a)} — s ' cos asin {s(w — a)i]dw +

+ 71 fxsin {s(x —w)} q(w) dijsin {s(w — u)} q(u) p(u, 2) du -

The integrand in the last term is of the order of
lq(w)| Iq(u)[ exp [t{]x - w| + Iw - ul +u—a}l] =
= la(w)| |a(u)] exp {1(x — a)}

when sin o + 0, with an additional factor lsl“ when sin o = 0, by Lemma 2- Hence
the term is of the order of exp {#(x — a)} multiplied by

A o and™ o [ T vl

respectively. This proves the formula for ¢ when sin « # 0. When sin o = 0 we also
have the term

-4 1 cosa 'r sin {s(x — w)} sin {s(w — a)} g(w) dw

a

in which the product of sines is of the order of

exp [t{|x = w| + w — a}] = exp {t(x — a)}

as before. The results for ¢’ are proved similarly, using the differentiated form of
Lemma 1. Q.E.D.

In what follows it is necessary to consider the four cases (see (1,2) and (1,3))
I: pysina % 0,
1I: sino &+ 0, g5 =0,
HI: sinae = 0, B5 + 0,
IV: sina = 5, = 0.
We also write x = b — a.

It is shown by Fulton [1, p. 300] that the eigenvalues 4, satisfy 12/% = prx~! +
+ O(n~ ') with p given by n — 1, n — 1, n — L and n respectively in the four cases.
We now extend these results.
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Theorem 1. The eigenvalues A, satisfy the following asymptotic formulae. In
case 1

22 = (n = met 4+ (1= 1) {—com ~ Bi[Bs +

a

+fﬂmwyun—nm*w-a»m}+0@”%

In case 11, 2}'? is as before, with n — 1 replaced by n — % and —B1[B5 replaced
by B,/B;. In case 111

W= - +

A {—ﬁ;/ﬁ; " j ") sin? {(n — 1) e~ - a)} dw} +0(2).

a

In case IV, A1/* is as in case 111 with n — % replaced by n and - BB replaced

by ﬁZ/ﬁ'l

Proof. Suppose that B sina # 0. The eigenvalues satisfy w(/l,,) =0 and by
Lemma 3 we have

o(2) = (B4 + B1) ¢(b, 2) — (B2 + B2) ¢'(b, 2) =

= (Bi2 + By) {sin @ cos xs — s™ 1 cos asin xs +
b
+ s !sin ocj g(w)sin {s(b — w)} cos {s(w — a)} dw + O(/lfl)} -
— (By2 + B,) {——s sin o Sin %5 — COS & COS x5 +

+ sin « 'rq(w) cos {s(b — w)} cos {s(w — a)} dw + O(s'-l)}

for sufficiently large positive 2. Now put 2 = 1,, s, = /,/* = %~ 1{(n — Dy o &b
where ¢, = O(n™'). We have

spsinxs, = (—1)"'s,sing, = (=1 5,6, + O(n~")
and

cos xs, = (—1)""'cose, = (—1)""" + O(n~?).
Also

cos {s,(b — w)} = cos [ {(n — I)n +¢,} (b — w)] =
=cos{(n—1)m— %" n— 1) n(w — a) + % e(b — W)} =
(1 feos b i(n — 1) — @)} cos e "e(b — W) +
+ sin {57 (n — 1) n(w — a)} sin {x""¢,(b — w)}]
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and
cos {s,(W = a)} x< cos [ H{(n=1)n+e)(w—a)]=
= cos {x~!(n < 1) n(w — a)} cos {x"'e,(w — a)} —
= sin e~ !(n _ 1) n(w — a)} sin {x""e,(w — a)} .

Clearrl)ilboth terms sin {”_len(b — w)} and sin {x"'e,(w — a)} are O(n™'), and
cos {x"'¢,(b — w)} and cos {x1e,(w — a)} are both 1 + O(n~2), all uniformly
in w. This shows that

'[ q(w) cos {s(b — w)} cos {s(w — a)} dw =

= (—1)"_IJ:Q(W) Cos? {x " '(n — I)n(w — a)} dw + O(n"1).

Since also s, ' = O(n™') and ;-1 = O(n™?) it follows from the above expression
for w(2) that

0= (B4, + p,) {—sina + O(n~1)} —

= (B2 + Pa2) {S,,s,, sina 4+ cosa — I, sino + O(n~1)},
where

I, = JbQ(W) cos’ {x '(n — 1)m(w — a)} dw .

On division by 4, we obtain
(3.1) Sy€n SN & + COs o — sin al, + (By/B3) sina = O(n™")
and so
g =n(n — 1) n= Y~ cota — B/f, + 1,} + O(n"?).
The analysis is similar in the other 3 cases. Q.E.D.
Remark. If we make the additional assumption that q has bounded variation

over [a, b] then in the above formulae for A)/? we may replace the integral in each
case by

% f :q(w) dw.

These are then the formulae obtained by Fulton [1, pp. 300—301]. (Note that the
first + sign in Fulton’s formula (4.14), should be a — sign.)

With the aid of the above formulae for the eigenvalues we can now establish for-
mulae for the eigenvectors.
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Theorem 2. (i) In case I we have

wx) = ﬂ)fjuwm{wwnm—m—

— B,(x)sin {x " '(n — 1) n(x — a)}] + O(n"2)

uniformly in x over [a, b], where

A(x) =1+ n = 1)J‘:q(w) (b — w)sin {2« Y(n — 1) n(w — a)} dw —
- 2 —T) ] g(w)sin {2~ *(n — 1) n(w — a)} dw
and

B(x) =n"'(n—-1)"* {(b — x)cota — (x — a) By/By +
+ (x — a) —rq(w) cos? {x"(n = 1) n(w — a)} dw —

. qu(w) cos? {x~(n — 1) n(w — a)) dw} .

The second component of ¥, is
[(2\ (—1)"*! ox?sina s
Ry(¥,) = = + 0o(n7?).
() \/(x) Bym*(n — 1) |sin oc! ()

(ii) In case II, y,(x) is as in (i), with n — 1 replaced throughout by n — 4 and
—Bi|B; replaced by B,|B}. The second component is

Ry(n) = JG)%W +0(n?).

(iii) In case 111 we have
Vo(x) = — \/<—2~> cos a[A,(x) sin {x~'(n — }) n(x — a)} +
%

+ B,(x)cos {x '(n — ) n(x — a)}] + O(n™?)

uniformly in x over [a b], where

Afx)=1— 2 = L) J gw) (b — w)sin (2%~ '(n — §) n(w — a)} dw +

* e )Jq@bm”x%n—%dw—@ﬁm
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and

B(x) = (n— 1) nt {—<x — Q) BB +

+ (x = a)rq(w) sin? (" '(n — $) n(w — a)} dw —

a

—x f " g(w) sin? {x=(n = 3) n(w - a)) dw} .

a

The second component is

Ry(Y) = — \/(%) cos a % +0(n ).

(iv) In case 1V, y,(x) is as in (iii), with n — % replaced throughout by n and

~PB1|By replaced by B,|By. The second component is
Ry(¥,) = — \/(%> cos o (= 1) Bax + 0(n?).
P nmn

Proof. In case I, we have

d(x, 2,) = sina cos {s,(x — a)} — s, ! cosasin {s,(x — a)} +

+ s, ! sin xf g(w) sin {s,(x — w)} cos {s,(w — a)} dw + O(n"?),
and, with obvious abbreviations,
ss=x'n—Drn+m—=17"(c+J,)+ O(n ) =sx"'(n—=1)m+3,.

Next
cos {s,(x — a)} = cos [{»7'(n — 1) = + 5,} (x — a)] =

=cos {x'(n — ) n(x — a)} — d,(x — a)sin {x~'(n — 1) n(x — a)} + o(n~?)
=cos{x '(n—n(x —a)} —(n—1)""(x —a).
e+ J,)sin{x"(n — 1) n(x — a)} + O(n™?)

and

sin {s,(x — a)} = sin {~}(n — 1) n(x — a)j + O(n™").
Hence
(3:2) o(x, 2,) = sin afcos {x~'(n — n(x —a)} —

—(n = 1) (x = a)(c + Jp)sin {x"'(n = ) n(x = a)f] -
— %(n — 1) n~tcosasin {x(n — 1) n(x — a)} +
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+ %(n — 1) ™' sin afxq(w) sin {7 !(n — 1) n(x — w)} .
.cos {x " '(n — 1)m(w — a)} dw + O(n"?).
The next step is to obtain an asymptotic formula for |®,| !, where
o2 = [0t ) ax 2 Biot0.2) = B (e, 2}
It follows from Lemma 3 that

b
J $*(x, ) dx = Lsin® ax + 45! sin 2xs) —

a

b
— 357! sin? ocJ‘ g(w) (b — w) sin {2s(w — a)} dw + O(A 1)
if 2 > 0 and so, as sin 2xs, = O(n"'), we have

5
I ¢*(x, A,) dx = b sin? o —

b
— Jun”}(n — 1)" ' sin? aJ q(w) (b — w)sin 2%~ (n — 1) n(w — a)} dw + O(n~?),

a

since 4, = O(n~?). Now from the boundary conditions (1,3) we have

(3.3) Bid(b, 2,) — B29'(b, ) = =2, {B1 (b, 2) — B2db'(b, 2)}

where we again use Lemma 3 to obtain ¢(b, 4,) = O(1) and ¢'(b, 4,) = O(n); it then
follows that the expression (3,3) is O(n~'). Hence we obtain the result

(@7 = 4x sin®« {1 - 1)

.J‘bq(w) (b — w)sin {2 ' n(n — 1) (w — a)} dw} + 0(n™?),

a

whence

(3.4) [, 7" = (2 ) [eosec a] {1 i — 1)t

. qu(wsf) (b — w)sin {2%~'n(n — 1) (w — a)} dw} + 0(n?).

a
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Accordingly,
Ux) = @] 7 (x. 2,) =

J(2x% ') sin o |cosec o {cos {(x 'n(n - 1)(x —a)} -

Il

(1= 1) (= @) (e + 1) sin - wln — 1) (v — @)} —

—xn Y (n— 1) cotaf{sinx ' n(n — 1)(x — a)} +

o — ])AIJ‘:q(W) sin {1 n(n — 1) (x — )} .
Ccos [~ n(n — 1) (w — a)} dw + dn-(n — 1)°* cos (= n(n — 1) (x — a)} .
.rq(w) (b — w)sin (2% n{n — 1) (w — a)} dw} +o(n ).

a

and the stated formula for ,(x) in case I follows from this.
The second component of the eigenfunction ¥, is

|2, 7" {B1(b, 4) — B2/ (b, 7,)} -

(b, 4,) = —(—1)'sina + O(n" ")

from ( 3:2), and from Lemma 3 we deduce that

Now

¢'(b, 2,) = —s, sin a sin xs, — cos a cos xs, +

b
+ sin oc'[ g(w) cos {s,(b — w)} cos {s,(w — a)} dw + O(n™ 1) =

b
= (—1)y {s,,s,, sino 4+ cos a — sin aj q(w)cos? {x ! n(n — 1) (w — a)} dw}» +

+ 0(n~") = —(~1) Bisinoff + O(n"").

where we use results established and notation used in the proof of Theorem 1 (in
particular the result (3,1)). Thus

(3,5)  Bip(b, A,) — Bap'(b, 2,) = (—1)'sina( =By + B,B1[B3) + O(n™ ") =

= (—1)yosina/f; + O(n~').
Also,

() = = e = 1) 0 =
=x'n *n—1)"%+ 0n*).
The formula for the second component, Ry(y,), of ¥, in case 1 is now obtained from

(3,3)—(3.6).
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The analysis is similar in the other three cases. Note that in cases II and 1V one
obtains the formulae for Ry(y,) directly from those for y,(x), since then Ry(,) =

= B, Y (b). QE.D.

Lemma 4. In all four cases we have y,(x) = O(n), uniformly in x over [a, b].

Proof. This follows readily from Lemma 2 and the proof of Theorem 2. In the
proof of the latter it is seen that ||®,] ~* = O(1) in case I; this is also true in case II,
while in cases 11T and 1V one establishes similarly that |®,| ' = O(n). Q.E.D.

4. RELATIONS WITH TRIGONOMETRIC SERIES

In sections 3 and 5 of [1], Fulton examines the convergence of the eigenfunction
expansion (2,1) and also equiconvergence with Fourier series. Here we consider
results analogous to those in sections 1 and 2 of this author’s paper [5] on Sturm-
Liouville theory. We shall be dealing with functions F(x) = (F,(x), F,) in the fol-
lowing Wiener-type space

W = {F|F,eLla,b] and Y |f,| < 0},
n=0
where

b
(4.1) o= J Fy(x) ¢,(x) dx .
Functions in % have the following property.

Lemma 5. If F € W (F, being arbitrary) then almost everywhere we have

o

F(x) =Y <F, %> ¥,(x)

n=

and

Fix) = f Juthl2)-

» @
Proof. Since Y |f,| < o we have Y |f,|* < co.
n=0

n=0

fn

Also Y |o™F, Ri,)
n=0
from (2.2),

> < oo, since Ry(,) = O(n~') by Theorem 2. Hence,

LIF P S 23 IA[ + 23 o s R < oo
n= n=0 n=0
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Thus F € I’[a, b] ® C and so by the Proof of Corollary 1.1 of [1]

(42) Fi®) = 3 {fa + 0 Fa R} )

holds, with convergence in the I’[a, b] norm. Since ). |f,| < o it follows from
n=0

Theorem 2 of [1] that the series (4,2) converges pointwise almost everywhere. Hence
:he sum of the series is equal almost everywhere to F,(x). This deals with the first
component of the eigenfunction expansion (2,1); the convergence of the second
component to F, follows from (3.29) and (3.31) of [1], since F, € L’[a, b]. Again

using Theorem 2 of [1] we obtain Fy(x) = ) f, ¥,(x) almost everywhere. Q.E.D.
n=0

Now we relate the coefficients (4,1) to trigonometric coefficients. From Theorem 2
we obtain for the first component of the eigenfunction ¥, the formula

Yo(x) = ¢ T(x) + O(n™")

uniformly in x, where ¢ = +1 and
2
T) = > alprei(x - a))
%

with A(y) = cos y (cases I and 1I) or sin y (cases I1I and IV) and p given in the four
cases by n — I, n — 4, n — % and n respectively. We introduce the trigonometric
coefficients

b
(4.3) 0y = J’ Fi(x) Tx)dx, n=1,
for any F, € L[a, b].

The argument of [5, section 2] may now be applied to establish the following
result, making use of Theorems | and 2 and Lemmas 4 and 5.

Theorem 3. For any F, e L[a, b] the series Y, |f,,| and Z |a,,[ converge and
n=0 n=1
diverge together, where f, and a, are given by (4,1) and (4,3) respectively.

It may now be shown that in cases I and IV, in which i, is asymptotically like
a cosine or sine, there is an analogue of the trigonometric Wiener-Lévy theorem (see
[6], p- 245, Theorem 5.2), as follows. To make available the notions of oddness
and even-ness, we let [a, b] be [0, ].

Theorem 4. If Fe W and ‘cf(z) is a function of the complex variable z which is
analytic in a set

(44) U {z] ]z = F()] <9}

xe[0,n]
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for some y > 0, then in case 1Ge W, where G(x) = (G,(x), G,), G,(x) = &(F,(x))
and G, is arbitrary. In case 1V the same is true, provided also that ¢ is an odd
Sfunction.

@0
Proof. Let Fe #". Then as ) |f,| < oo and (by Theorem 2) the functions y, are
n=0

uniformly bounded, the series Y f, ,(x) is uniformly and absolutely convergent to
n=0

a continuous sum. We have seen that this sum is equal almost everywhere to F,(x)
(cf. Lemma 5). If we re-define F,(x), if necessary, to be the sum of this series then
the set (4,4) has a meaning.

Suppose that case I applies. Then

a = \/@ J:F,(x) cos (n — 1) x dx

@
and, by the previous theorem, Y [a,| < co. Give Fy(x) an even extension to the
n=1

interval [ —m, 7] and let

Cp = ij Fy(x)e " dx

2n ) .
for any integer n. (These are of course the classical Fourier coefficients of F.) It is

easily seen that ) |c,| < oo (because F, is even) and so by the Wiener-Lévy

n=-—o

0
theorem we have Y |d,| < oo, where

h=—0o

d, = 1 E(Fy(x)) e ™™ dx.
2n ) _,
Again using the even-ness of F; we see that ) ]e,,| < o0, where
n=1

_ \/(%) ﬂg(pl(x)) cos (n — 1) x dx

and so G € %, by Theorem 3.
The method is very similar in case IV. Now we have

0 = \/(%) J :Fl(x) sin nx dx

and we g1ve F,(x) an odd extensmn to [—m, n]. With ¢, and d, as before one has

again < o0, since ¢ is odd. At this point we use

n=-—oaw
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the oddness of both F; and ¢ to obtain ),

n=1

Gy = \/(%) J :§(F1(x)) sin nx dx

and we may now apply Theorem 3 to obtain Ge #". Q.E.D.

g,,! < oo, where

Remark. If F(x) = (F,(x), F,) and F, € L[a, b] then by (2,2) and (4.1)
CF, ¥, = [, + ¢ 'Fy Ry(Y,).
If B3 = 0 (cases I and 1V) and F, =+ 0 it follows from the asymptotic formulae for
Ry(,) (cf. Theorem 2) that if niol(F, ¥,>| < oo then ni[f,,l must diverge, and so

the series Y, ]a,,[ diverges, by Theorem 3. Thus, the above definition of #" is preferable

n=1

to the use of the set

{F|F,eLla,b] and Y |<F, ¥,>| < o},
n=0

since if we used this instead of #” we would lose the case 1V version of Theorem 4.
In cases I and III however (f; + 0), we have R;(},) = O(n™?) and so the con-

0
ditions )" |f,
n=0

< oo and )| ](F, ‘P,,)I < oo are equivalent.
n=0

The above comments notwithstanding, in all four cases if F, € L[a. b] and

:)V_:!(F, ¥,>| < oo then F(x) = i(F, ¥,> ¥,(x) and F,(x) =
n=0 n=0

S (x) still hold
0

almost everywhere. To see this, let G(x) = Y (F, ¥,> ¥,(x). (The series converges
n=0

uniformly and absolutely because of the asymptotic formulae in Theorem 2.) Then
for any p we have

b o ©
G, ¥,) = ;)(F s Yul(X) Yy(x) dx + 071 ;)(F > Ry(W) Ry(Wr,) =

= i(F, L “ Y(x) ¥, (x) dx + o7 * Ry(¥,) R,’,(%)} =(F,¥,)>.

and so G(x) = F(x) almost everywhere. The inversion above is justified by the uni-
form boundedness of the functions v,,. It then follows that Fy(x) = Y f, ,(x) almost

n=0
everywhere because of Theorem 2 of [1].
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