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Let 2 be the class of all torsion radicals of lattice ordered groups [4] (for the defini-
tions cf. § 1 below) and let ¢ be the class of all lattice ordered groups. The class 2
is partially ordered as follows: for oy, 6, € # we put 0, < o, if 0,(G) S 0,(G) is
valid for each G € 4. Then £ is a complete lattice (in the sense that for each subclass
X of # there exist the least upper bound of X and the greatest lower bound of X
in #); moreover, the distributive law ¢ A (0, v ;) = (0 A 04) V (6 A 0,) is
fulfilled in % (cf. [4]).

In [5], Theorem 1.5 it was asserted that % is completely distributive. But in [6]
it was remarked that the proof of Thm. 1.5 in [5] was not complete. Hence the
question whether £ is completely distributive remained open.

For o, 6, € Z with o; < ¢, we denote by [0}, g,] the class of all ¢ € # such that
0, < 0 < 7,. Let 0 be the zero torsion radical (i.e., 0(G) = {0} for each Ge %). In
this paper the following results will be established:

There exists o€ A such that the interval [0, g] is not infinitely distributive;
thus Z fails to be completely distributive. Let &, be the class of all ¢ € # having
the property that [0, 6] is completely distributive. Then R, possesses the greatest
element and the class R, is a proper class. (In fact, a slightly more general result
will be obtained.) Let o € # and suppose that the torsion class corresponding to ¢
is generated by linearly ordered groups. Then [0, o] is completely distributive.

1. PRELIMINARIES

For the basic notions and notations. cf. Conrad [1] and Fuchs [2]. We recall
some definitions concerning torsion radicals that will be needed in the sequel.

For G € % let ¢(G) be the system of all convex I-subgroups of G; ¢(G) is partially
ordered by inclusion. Then ¢(G) is a complete lattice. The lattice operations in ¢(G)
are denoted by A, V.

Let ¢ be a mapping of 4 into 4 such that the following conditions are fulfilled
for each Ge ¥:
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(i) o(G) € (G);

(ii) if G, € ¢(G), then o(G,) = o(G) N Gy;

(iii) if ¢ is a homomorphism of G into a lattice ordered group G, then ¢(a(G)) =
= o((G)).
Under these assumptions ¢ is said to be a torsion radical.

A nonempty class C of lattice ordered groups is called a torsion class if it has the
following properties:

(a) GeC and G, € ¢(G) implies that G, € C;

(b) if Ge % and if {G;},; < ¢(G) n C, then V;; G; € C;

(c) the class C is closed with respect to homomo1phisms.

Let o € Z. We denote by C°(c) the class of all G € ¢ with 6(G) = G. Then C° is
a one-to-one mapping of the class # onto class Rad consisting of all radical classes;
moreover, for each pair g, 6, € # we have

(1) 0, £ 0, C%0y) = C%o,) .

Hence if we consider Rad as a partially ordered class (with respect to inclusion),
then Rad is isomorphic to #; thus, from the fact that R is a complete lattice [4] it
follows that Rad is a complete lattice as well.

Let #, = {0}, be a nonempty subclass of #. For each G € ¥ we put

0'1(G) = Vier O'i(G) s Uz(G) = Aiat o‘,-(G).

Then in the lattice Z we have o, = V;; 6, 6, = Aiy 0/(G). For each 7 e R the re-
lation

(2) TA (Visl O'i) =Via (T A o'i)

is valid. (Cf. [4].) From (2) it follows that £ is distributive.

In view of (1), the identity analogous to (2) is valid for the lattice Rad. It is easy
to verify that if {C;};; is a nonempty subclass of Rad, then A C; = Nier C-

Let A be a subclass of Rad. The intersection of all torsion classes B with 4 < B
will be said to be the torsion class generated by A and it will be denoted by T(A).
For each G € 4 we denote T({G}) = G".

2. THE LATTICE ORDERED GROUP H

In this section it will be shown that the relation analogous to the dual of (2) does
not hold in general in the lattice Rad. _
Let A be a nonempty class of lattice ordered groups. Suppose that 4 is closed with

respect to isomorphisms. Let us denote by
S/(A4) — the class of all lattice ordered groups H' such that H' is a convex [-sub-
group of some lattice ordered group belonging to A;

549



H(A) — the class of all homumorphic images of lattice ordered groups belonging
to 4;

I(A) — the class of all lattice ordered groups H’ that can be expressed as H' =
= Ui Hi, where {H,};; < ¢(H) and the system {H,},, (partially ordered by in-
clusion) is a chain;

u(A) — the class of all lattice ordered groups H' that can be written as H' =
= Vi H;, where {H;},.; = ¢(H) n A.

2.1. Proposition. (Cf. [3], 2/4.) Let A + 0 be a class of lattice ordered groups.
Then T(A) = u(H(S(4))).

2.2. Proposition. (Cf. [3], Thm. 2.6.) Let A + 0 be a class of linearly ordered
groups. Let Ge %. Then the following conditions are equivalent:

() Ge T(4),

(B) G can be expressed as G = Y ,.; G;, where each G; belongs to I(H(S.(A))).

Let N° and Q be the additive group of all integers or of all rationals, respectively
(under the natural linear order). Let N be the set of all positive integers and for each
neN let G, be an I-subgroup of Q such that (i) G, fails to be isomorphic to G,
whenever n and m are distinct positive integers, (ii) 1 € G, for each neN, and (iii)
G, = N° (Such a system {G,},.y obviously does exist.) Put G, = [],n G,. Let
go € Gy with go(n) = 1 for each n € N. Further, let H be the subgroup of the group G,
generated by the set {go} U (Y ey G,)- Under the induced partial order, H is an
I-subgroup of G,.

For neN let B,={geH :g(m)=0 for each m < n}. Put Ay =) ,5G,
Then A, and B, (n = 1,2,...) are convex [-subgroups of H. For each ne N we
have A, v B, = H. This implies

Ay v By = H" foreach neN,
hence
(3) AneN (A(;\ v B':\) =H".

Let neN be fixed. Put N, = {meN :m > n}, {B,} = A. The lattice ordered
group B, is a direct factor of H; let g, = g [B,] be the component of g, in B, (thus
g,(k) = 1 for k > n and g,(k) = 0 otherwise). Then g, is a strong unit of B,. For
a convex [-subgroup X of B, we put

N(X) = {keN :thereis xe X with x(k) & 0} .

From the definition of B, we immediately infer:

2.3. Lemma. Let X € ¢(B,).If g, € X, then X = B,.If g, ¢ X, then X =Y, vx) G
(If M + 0, then ) ,..;r G,, is understood to be the zero group {0}.)
As a consequence of 2.3 we obtain:

550



2.4. Lemma. Let X € ¢(B,) and let K be an I-ideal in X with X|K # {0}. Then
one of the following possibilities holds: (ii) X|K is isomorphic with the subgroup
of H generated by the set {g,} U (Y mencxywix) Gm) (under the induced partial
order), or (i) XK is isomorphic with Y ,.exxywk) Gm-

2.4.1. Remark. If we put X = B,, K =), v G,, then X/K is isomorphic to G,.

2.5. Corollary. Let {0} + Ye H(S(A)). Assume that Y fails to be isomorphic
with G,. Then (i) there exist Y' € ¢(Y) and m € N, such that Y’ is isomorphic with G,,
and (ii) if ke N\N,, k > 1, then no convex I-subgroup of Y is isomorphic with G,.

2.6. Lemma. Let Z € u(H(S/(A))). Assume that Z is not isomorphic with G,.
There exists Z' € ¢(Z) and m € N, such that Z' is isomorphic to G,. If ke N, 1 <
< k < n, then no convex l-subgroup of Z is isomorphic with G,.

Proof. The first assertion immediately follows from 2.5. Let | <keN, k < n
and suppose that Z' is a convex [-subgroup of Z isomorphic with G;. There exists
a set { Y}, € ¢«(Z)n H(S(A)) with Z = V;; Y,. Hence

iel =
Z =2 AZ=Vu(Z AY).

Thus there is i € I such that Z' = Z' A Y, and therefore Z’' € c(Y,), which contradicts
2.5 (ii).

2.7. Lemma. A,y B = {{0}} U G}.

Proof. Clearly {0} € Ay Bi - From 2.4.1 it follows that G, € B{* for each ke N.
Assume that there exists Z € Ayey Bi = Niey By such that Z + {0} and Z ¢ G;.
Then Z is not isomorphic with G;. Choose n € N. In view of 2.1 and 2.6 (i) there is
meN with m > n such that G,, is isomorphic with some Z’ € ¢(Z). Because of
Z € B}, we have a contradiction with 2.6 (ii).

2.8. Lemma. Let {0} + Ge%. Then the following conditions are equivalent:
(i) G € A5 ; (ii) G can be expressed as a direct sum of lattice ordered groups G’ (j e J)
such that for each j € J, G’ is isomorphic to some G, with n e N.

This follows from 2.2 and from the fact that for each n € N, G, has only trivial
convex I-subgroups.

2.9. Corollary. A,y (A5 Vv Bl) + A v (Awen BY).

Proof. In view of 2.7 and 2.8 we have 45 v (A,v By') = A¢; moreover, 2.8
implies that H does not belong to A¢. Now it suffices to apply (3).
As a consequence of 2.9 we infer: '

2.10. Proposition. The lattice Rad (and hence also the lattice ) faiis to be in-
finitely distributive.
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Since complete distributivity (cf. § 3 below) implies infinite distributivity, we have

2.11. Corollary. The lattices Rad and Z fail to be completely distributive.

3. HIGHER DEGREES OF DISTRIBUTIVITY

Leto,, 0, € Z, 0, < 0,. We can consider the following conditions for the interval
[0,.0,] of %: ; _

(2') If te[oy, 0,] and if {0;}, is a subclass of [6,. 0, ], then

(*) TV (Aiel Ui) = Aier (v v O'i)-

(2") If 1€ [0y, 0,] and if {6}, is a set, {6;}ie; S [0, 02, then the relation ()
is valid.

If ¢, covers o, then obviously (2') holds. (The set of prime intervals in 2 is in-
finite; cf. e.g. [3], Propos .4.4.)

3.1. Lemma. Let 0, 0, € &, 6, < 0,. The conditions (2') and (2") are equivalent.

Proof. We obviously have (2') = (2"). Assume that (2') fails to hold. Hence

there is a subclass {t} U {0;}; of [0}, 0,] such that (x) does not hold. Thus there
exists G € ¥ with

(v (Aier ) (G) = (Aies (x v 6)) (G) .

There is a set J = I such that
(T v (Aiel 0',-)) (G) = (T v (Aie.l 0'.')) (G) s
(Aiel (T v O'i)) (G) = (/\ieJ (T v O'i)) (G)

TV (Aiej Uf) 4: /\ieJ (T v o-l') ’

which implies that (2”) does not hold.
The interval [0y, 0,] is called completely distributive, if, whenever {o,,}ss rer 1S
a subclass of [ay, 0,], then

(4) ASES v:eT Og = V(pETS AssS Os.0(s)

holds and also the relation dual to (4) is valid.

By analogous reasoning as in the proof of 3.1 we can verify that [o, 0,] is com-
pletely distributive if and only if the above condition is valid for the case when S
and T are sets. '

Let o be an finite cardinal. If the above condition is fulfilled whenever S and T
are sets with card S < o, card T £ «, then [01, 02] is called a-distributive.

Let #,, #p and Z, be the class of all torsion radicals ¢ such that the interval[0, o]
is completely distributive, infinitely distributive or a-distributive, respectively.

‘Therefore
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3.2. Proposition. Let fe {d, D, a}. Then Ry possesses the greatest element.

Proof. Let B = d, #; = {6} ic1» 04 = Vi1 6:- We have to verify that g, belongs
to #,. By way of contradiction, assume that [0, ¢,] fails to be completcly distributive.
Hence there are sets S, T and torsion radicals as,,(s € S, te T) belonging to [0, ¢,]
such that either the relation (4) or the relation dual to (4) fails to hold. Assume that
(4) does not hold (the dual case is analogous). Therefore,

() 00 = Vers Ases Ts,0() < Nses Vier 05 = 0,
Clearly 0,, 0, € [0, 0], hence according to (2) we have
(6) 0,=0,A0;=Vir(o, A0o)), 06,=0,A0;=Vis(0, A 0;).
Next we infer from (5) (in view of (2)) that
0 A 0 = Voers Nses (050 A 1) 5
0y A 0; = Ases Vier (Jst A Gy).

Because [0, o] is completely distributive, we have o, A 0; = 6, A o; for each
i el, whence with respect to (6) we infer that o, = o,, which contradicts (5). The
proofs for f = D and B = « are analogous.

Clearly #, < #, < ®, is valid for each infinite cardinal o. Next, each two-
element lattice is completely distributive. According to Proposition 4.4 in [3] the class
of all torsion radicals covering 0 is infinite. Hence #,, 2, and £, are infinite classes.

4. TORSION CLASSES GENERATED BY LINEARLY ORDERED GROUPS

A torsion class A is said to be generated by linearly ordered groups if there exists
a class X < & such that 4 = T(X) and each lattice ordered group belonging to X
is linearly ordered. We also say that the torsion radical C°(A4) is generated by linearly
ordered groups.

In this section it will be shown that if {6} .7 s are torsion radicals generated by
linearly ordered groups, then the relation (4) and the relation dual to (4) are valid.
In other words this can be expressed as follows: Let X, be the class of all linearly
ordered groups; then C%(T(X,)) € #,.

For each class B € ¢ we denote L(B) = B X,,.

Let C, (1€ T, s € S) be torsion classes.

4.1. Lemma. (.. r I(UseS L(Cts)) S [(U(peST (nrer L(Cz,¢<r))))~

Proof. Denote
A= nteT I(UseS L(Cts)) s B = I(Uq)eST (ﬂzer L(Cmp(r)))) .
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Then
(7) B = I(nrsT UseS L(Cts)) .

Let R € A. For each t e T there exist linearly ordered groups R,; (j € J,) belonging
t0 Uyes L(C,,) such that

(8) R=UR,;(jel,)-
Now we distinguish two casgs.

a) Assume that there exists t e T such that R, #+ R for each je J,. Let ' e T,
jeJ,. From
' R=UR,; (j el

it follows that there exists j' € J,, with R,; < R,j;, Whence R,; € U5 L(C,,)).
Therefore in view of (7) and (8) we infer that R belongs to B.

b) Assume that there exists no te T fulfilling R,; + R for each je J,. Hence
R € Uys L(C,,)) holds for each t e T. This together with (7) implies R € B.

4.2. Lemma. Let C, (te T) be torsion classes generated by linearly ordered
groups. Then L{A.r C,) = Neer L(C)) and LV .r C;) = (U1 1{C,)).
Proof. The first assertion is a consequence of A,r C; = Nir C;- The second

assertion follows from 2.2 and from the fact that each linearly ordered group is
directly indecomposable.

4.3. Lemma. Let C,;(t € T, s € S) be torsion classes generated by linearly ordered
groups. Then Aier Vs Cis = V(/)EST Ater Ct,(p(t)'

Proof. Denote 4; = A,.r Vses Cis» Bi = Vpest Ater Cror)- We obviously have
B, < A,. Further, both A; and B, are generated by linearly ordered groups. Hence
for proving that 4, < B, holds it suffices to verify that L(A4,) = L(B,) is valid. Let A
and B be as above. According to 4.2, L(4,) = A and L(B,) = B. Thus in view of
4.1 we infer that L(4,) = L(B,) is valid.

From 4.1, 4.3 and (7) we immediately obtain:

4.4. Lemma. Let C, (1€ T, s € S) be torsion classes generated by linearly ordered
groups. Then nteT I(USES L<Cts)) = ](nteT UssS L‘(Cts))'

4.5. Lemma. Let C, (t € T, s € S) be torsion classes generated by linearly ordered
groups. Then VreT /\seS Cts = A(peST VteT CT,‘P(')'

PI'OOf- Denote Al = VleT AseS Cls, Bl = /\(peST VteT Cl,rp(t)' Since Al and Bl
are generated by lineaily ordered groups, it suffices to verify that L(B,) = L(4,)
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holds. According to 4.2,
L(Ax) = I(Urer Nses L(Cts)) = l(n«peST Ueer L(Cr.w(t))) >

L(Bl) = n(peST I(UteT L(CY,(P(I))) °

Therefore in view of 4.4 we obtain L(4,) = L(B;)-
Because of the isomorphism between Rad and £ we infer from 4.3 and 4.5:

4.6. Theorem. Let X, be the class of all linearly ordered groups, o, = C°(T(X,)).
Then the interval [0, o] of R is completely distributive.
From 2.2 it follows that [0, ] is a proper class. Therefore we have:

4.7. Corollary. Let f € {d, o, D}. Then &, is a proper class.

References

[1] P. Conrad: Lattice ordered groups, Tulane University, 1970.

[2] JI. ®ykc: YacTuuHO yHOPsAOYCHHBIE anrebpanyeckne cucteMnl, Mocksa 1965.

[3] J. Jakubik: Torsion radicals of lattice ordered groups. Czech. Math. J. 32 (1982), 347— 363.

[4] J. Martinez: Torsion theory for lattice ordered groups. Czech. Math. J. 25 (1975), 284—299.

[5] J. Martinez: 1s the lattice of torsion classes algebraic? Proc. Amer. Math. Soc. 63 (1977),
9—14.

6] J. Martinez: Prime selectors in lattice ordered groups. Czech. Math. J. 37 (1981), 206—217.

Author’s address: 040 01 Kosice, Svermova 9, CSSR (Vysoka $kola technicka).



		webmaster@dml.cz
	2020-07-03T03:23:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




