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PARTIAL MONOUNARY ALGEBRAS WITH COMMON
CONGRUENCE RELATIONS

DaNIcA JAKUBIKOVA-STUDENOVsSKA, KoSice

(Received June 23, 1981)

Partial monounary algebras have been investigated by W. Bartol [1]—[3] and by
O. Kopegek [5]—[9] (in the papers [1]—[3], [6] and [8] the authors used the
term “machine” instead of “partial monounary algebra”).

Let (4, f) be a partial monounary algebra and let D, be the set of all z € 4 such
that f(z) does not exist. By the symbol F we denote the set of all partial mappings
of A into A. Let Con (4, f) be the system of all congruence relations on (4, f) and
let E(A) be the system of all equivalence relations on A. We denote

R(f) = {g e F: Con (4, f) = Con (4, g)} .
In this paper the following result will be established:

(A) Let (A,f) be a partial monounary algebra such that Con (4, f) # E(A) and
f~YD;) % 0. Then we have
card R(f) < 4,

and this estimate is the best possible.

For each ie{1,2,3,4} all partial monounary algebras with Con (4, f) + E(A4),
f7'(Ds) %+ 0 and card R(f) = i will be explicitly described. The formula for
card R(f) in the case when Con (4, f) = E(A) is given in Corollary 1.6 below.

If f7(D,) = 0, then the question on the cardinality of R(f) can be reduced to
an analogous question concerning (complete) monounary algebras (this investigation
will be performed elsewhere).

While the results on homomorphisms of partial monounary algebras obtained
in [5], [6] are analogous to the results on homomorphisms of (complete) monounary
algebras (M. Novotny [11]—[13]; cf. also M. Novotny and O. Kopegek [10]),
when investigating congruence relations the situation is different: for a (complete)
monounary algebra (4, f) with Con (4, f) + E(A) the cardinality of R(f) can be
infinite.
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1. THE CASE Con (4, f) = E(A)

Let (4, f) be a partial monounary algebra. An equivalence © on A will be called
a congruence, if the following implication is valid (cf. also [4], p. 177):

(Vx,ye A — D)) (x@y = f(x) © f(»)) .

By the symbol N we denote the set of all positive integers. Further, put D} =
= Usen, Unen S "(2), B, = A — (D, U Dj). For a, b € A let ©/(a, b) be the smallest
congruence © on (4, f) such that a®b. Notice that ©/(a, b) exists for each a, b e A.
If no misunderstanding can occur, we shall also write @(a, b), D, D' and B instead
of ®'(a, b), D, D} and B,. Further, we shall not distinguish between a congruence &
and a partition of the set A corresponding to @. Let @ = {T;: Ael} and letI' = I
be such that card T, = 1 for each A€l — I'. Then we shall write @ = [T, : 1 eI'].
Now let S < Con (4, f) be the system of all congruences @ such that @ = [T]
and card T = 2. Then we put

P={zeA:0(z,x)eS foreach xe 4, x + z} .

We start with formulating four lemmas, the proofs of which are obvious; these
lemmas will be frequently used without specific reference.

1.1. Lemma. D < P.

1.2. Lemma. Let x,ye€ D'. Then the partition corresponding to @(x, y) has
only finitely many nontrivial classes. Further, O(x, y)e S if and only if x * ¥
and f(x) = f(y).

1.3. Lemma. Let xe D', ye B. Then the partition corresponding to O(x, y)
has only finitely many nontrivial classes and ©(x, y) ¢ S.

1.4. Lemma. Let x,ye B, x + y. Then O(x, y)€ S if and only if (a) f(x) = X»
f(y) =y, or (0) f(x) = f(¥). or () S(x) = y, f(¥) = x.

1.5. Theorem. The following conditions are equivalent:

(1) Con (4, f) = E(A).

(2 P=A

(3) Some of the conditions (a)—(d) is satisfied:

(a) There are Ay, A, S A such that A = A; U A,, A; = D, f(z) = z for each
ze A,

(b) There are Ay, A, < A, ae Asuchthat A= A, v A, {a}, 4; = D, f(z) =
= a for each z e A, U {a}.

(c) There are A, < A, a,be A, a+ b, such that A = 4, U {a, b}, 4, = D,
f(a) = b, f(b) = a.

(d) There are A;, A, € A, ae A such that A = 4, U 4, U {a}, A, U {a} =D
f(z) = g for each z € A,.
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Proof. The assertion (1) <> (2) is obvious, since in both the cases we have O(x, y) =
= [{x, y}] for each x, ye 4, x + y.

It is easy to see that (3) = (2).

Suppose that (2) is satisfied, i.e., ©(x, y) = [{x, y}] for each x, ye 4, x * y.
Let B # (. Then 1.3 implies that D’ = 0. According to 1.4 we obtain that either
f(x) = x for each x € B, or there exists a € B with f(x) = a for each x e B, or B
is a cycle with two elements. Hence (a), (b) or (c) is valid. Now assume that B = .
From 1.2 it follows that f(x) = f(y) for each x, ye D', x % y, thus f7*(D) = 0
and hence (d) holds.

1.6. Corollary. Assume that Con (4, f) = E(A). If A is infinite, then card R(f) =
=29 Ifcard A = n < N, then

card R(f) = 2"(n + 1) + n;(n?_-—i)

Proof. Suppose that Con (4, f) = E(A) and let card A = n. From 1.5 it follows
that for an operation belonging to R(f) some of the conditions (a)—(d) is satisfied,
hence we have the following number of possibilities: 2" in the case (a) (a subset
A, < A can be chosen in 2" ways); n. 2"~ ! in the case (b) (the choice of an element
a € A, the choice of A; = A — {a}); 4n(n — 1) in the case (c) (the choice of {a, b});
n . 2"~ !in the case (d) (the choice of a € A and 4, < A — {a}). But these possibilities
are not all independent. If 4, = 0 in the case (b), then this possibility is considered
also in the case (a) (for each a € A4). Similarly, if A, = 0 in the case (d), this possibility
is included in the case (a) as well, for each a € A. All the other possibilities are in-
dependent, hence we obtain

card R() =2+ n. 20+ MO ot g wa) + 1"_2‘_5)

If n 2 N, then card R(f) = 2".

2. AUXILIARY RESULTS

In what follows we suppose that Con (4, f) + E(A).
2.1. Lemma. P = D.

Proof. From 1.1 it follows that we have to prove only the relation 4 — D <=
< A — P. Since P # A, according to 1.5 we obtain that the condition (3) in 1.5
fails to hold, hence none of the conditions (a)—(d) in 1.5 is satisfied. First consider
the case B = 0. Then either (a) there exist distinct elements a, b, z € A with f(b) = a,
f(a) = ze D, or (b) there exist distinct elements a, b, u, z€ A with f(a) = ze D,
f(b) = ue D. Suppose that (a) is valid. Then O(b, a) = [{b,a,z}]¢S, hence
b¢ P.Let xe A — D, x + b. Then f(x) O(x, b) a. If f(x) + a, then x ¢ P. If f(x) =
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= a, then O(x, a) = [{x, a, z}], hence x ¢ P as well. If (b) holds, then @(a, b) =
= [{a, b}, {z,u}] ¢S, thus b¢P. For each xe A — D, x + b, we obtain f(x).
.O(x, b)u. If f(x) % u, then x ¢ P. If f(x) = u, then O(a, x) = [{a, x}, {z, u}],
and x ¢ P.

Further, suppose that B + (. From 1.5 it follows that some of the following cases
occurs: (a) D’ # 0; (b) D’ = 0 and there exist distinct elements a, b, c e B with
f(a) = b, f(b) =c; (c) D’ = 0 and there exist distinct elements a, b, c€ B with
f(a) = f(b) = b,f(c) = ¢;(d) D’ = 0 and there exist distinct elements a, b, a’, b’ € B
with f(a) = b, f(b) = a, f(a’) = V', f(b’) = a’; (¢) D' = 0 and there exist distinct
elements a, b, ce B with f(a) = b, f(b) = a, f(c) = c. In the case (a) there exist
distinct elements a, b,ze A with f(b) =ze D, aeB. Then O(a, b)¢ S, hence
b¢P. Let xe A— D, x & b. We get f(x) O(x, b)z. If f(x) # z, then x ¢ P. If
f(x) = z, then z O(x, a) f(a), thus O(x, a)¢ S and x ¢ P. Let (b) be valid. Since
O(a, b) * [{a, b}], we have a¢ P. Let xe A — D, x =+ a. Then f(x) O(x, a) b.
If f(x) # b, then x ¢ P. If f(x) = b, then b O(x, b) c, hence x ¢ P. Now suppose
that (c) holds. Since ©(a, ¢) = [{a, b, c}], we have a¢ P. Let xe A — D, x + a.
If f(x) # b, then f(x)©(x, a) b, hence x ¢ P; if f(x) = b, then O(x,c)¢ S and
x ¢ P. In the case (d) or (e) we obtain respectively ©(a, a’)¢ S or ©(a, c)¢ S, thus
a¢P. Let xed — D, x =% a. If f(x) % b, then f(x) O(x.a)b, hence x ¢ P. If
f(x) = b, then f(x) O(x, b) a, and therefore x ¢ P.

Remark. In the following Lemmas 2.2—2.16 let us assume that distinct symbols
X, ¥, z, ... denote distinct elements. Moreover, we shall not prove the implication
(1) = (2) in 2.2—2.16; it can be easily verified. The figure corresponding to Lemma
2.2 is denoted as Fig. 2.2, and similarly for other lemmas in this section.

If the same figure is related also to some lemma of § 3, then we denote it also by the

number of the corresponding lemma from § 3.
In the figures we use the following denotation:
e a eclements with the property f(a) = a;
a0 b elements of D;
od
g ¢ apair of elements ¢, d € A with f(c) = d (the possibilities d € D or f(d) = d
being not excluded).

2.2. Lemma. Let x, y, u, z€ A. The following conditions are equivalent:

(1) f(u) = ze D, f(x) = y¢ D, f(y) ¢ {x. y, z}.

(2) zeP, O(x,y) = [x O(x, y)] ¢S, {z} ¢ O(u, y), Ou, x) = [{u, x}, {z, y}]-

Proof. Let (2) be valid. According to 2.1 we have ze D. Since O(x, ¥) ¢ S,
O(u,x)¢ S, we obtain y¢ D, x¢ D, u¢ D and hence f(y), f(x) and f(u) exist.
Further, we have f(u) @ (u, x) f(x). If f(u) = f(x) or {f(u), f(x)} = {u. x},
then O(u, x) € S, which is a contradiction. Therefore {f(u), f(x)} = {z, y}- Now
let f(u) =y, f(x) =z Then O(u, y) = [{f'(u): i e Nu{0}}], and the fact
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that {z} ¢ O(u, y) implies that z = f(u) for some i€ N. Obviously, i > 2, since

z¢{u,y}. Let i >2, ie, f(y) + z. We obtain O(x,y) = [{x, ¥}, {z,/(»)}] +
+ [x O(x, y)], which is a contradiction. Thus i = 2, f(y) = z. But then @(x, y)e S,

flyl & {x,y z} flyl & {x,y,z}
z y&D z v &D
u x u X ov
Fig.2.2,3.4 Fig 2.2.1

z flyl & {x, v, 2}

u yé¢D

v x

Fig. 222

a contradiction. Therefore f(u) = z, f(x) = y. If f(y)e{x, y}, then O(x, y)eS;
if f(y) = z, then {z} € O(u, y) € S. Hence the condition (1) is satisfied.

2.2.1. Lemma. Let x, y, u, z, v€ A. The following conditions are equivalent:

(1) f(u)=zeD, f(x) = y¢D, f(y)¢{x, y, 2}, fv) = v.

(2) zeP, O(x, 1) =[x 00 NI¢S, (2}#6(urn), 0w x) = [fu}, (= 5}]
O(v,u) = [{v,u, z}], O(v, x) = [v O(v, x)].

Proof. Let (2) be valid. According to 2.2 we obtain f(u) = ze D, f(x) = y ¢ D,
S(v)¢{x,y, z}. Since O(v,u)¢S, we have v¢ D and then f(v) O(v, u) z, hence
f()e{v,u, z}. If f(v) = z, then O(v, x) = [{v, x}, {z, y}] + [v O(v, x)], which is

a contradiction. If f(v) = u, then O(v, x) = [{v, x}, {u, ¥}, {z, f(»)}] = [v O(v, x)].
a contradiction. Therefore f(v) = v.

2.2.2. Lemma. Let x, y, u, z, ve A. The following conditions are equivalent:

(1) f(u) = zeD, f(x) = y¢ D, f(») ¢ {x,», 2z}, fv) = u. »
(2) zeP, O(x,y) =[x0(x, )] ¢S, {z}¢O(u,y), Ou,x)={[{ux}, {z)}]
O(v, u) = [{v, u, z}], {u, y} € O(v, x).

Proof. Let (2) be valid. According to 2.2 we obtain f(u) = ze D, f(x) = y ¢ D,

311



f(») ¢ {x, y, z}. Further, v¢ D and f(v) O(v, u) z, hence f(v) € {v, u, z}. If f(v) = 2,
then O(v, x) = [{v, x}, {z, y}], and if f(v) = v, then O(v, x) = [v O(v, x)]; in both
the cases we obtained a contradiction. Therefore f(v) = u.

2.3. Lemma. Let u, z, x, y € A. The following conditions are equivalent:

(1) fw) = z& D, f(x) = 3, S(¥) = x.
(@) ze P, O(u.x) = [{u, ¥} {z 3}], O, y) = [{u, 3}, {z. 5}], O(x, )€ 5.

zg. 3%
zo. y z yoev
u x
u x u x
v
Fig.2.3,33 Fig. 2.3.1 Fig.2.3.2

Proof. If (2) is valid, then acccording to 2.1 we have ze D, u ¢ D, x ¢ D, y ¢ D.
Further, f(u) O(u, x) f(x) and similarly as in the proof of 2.2 the relation {f(u),
f(x)} = {z, y} holds, since O(u, x)€ S in the remaining cases. Now let f(u) = y,
f(x) = z. Then z O(x, y) f(v), and the fact that O(x, y)e S yields that f(y) = z.
This implies ©(u, y) = [{u, y, z}], a contradiction. Hence f(u) = z, f(x) = y.
Then z O(u, y) f(y), thus either f(y) = z or f(y) = x (in virtue of the relation
O(u, y) = [{u, y}, {z, x}]). In the case f(y) =z we get O(u, y)e S, which is
a contradiction, and therefore f(y) = x.

2.3.1. Lemma. Let x, y, z, u, ve A. The following conditions are equivalent:

(1) J(6) = z€ B, J() = 3, 103) = % f&) = v

(2)zeP, O(u,x) = [{u, x}, {z, y}]. O(u,y) =[{u,y}, {z,x}], O(x,y)e€S5,
O(v, x) = O(v, y) = [{v. x, y}].

Proof. Let (2) be valid. According to 2.3 we have f(u) = ze D, f(x) = y, f(y) =
= x. Since O(v, x)¢ S, we obtain v¢ D and f(v) O(v, x) y. This implies f(v)e
e {v, x, y}. If f(v) € {x, y}, then O(v, x) + O(v, y), which is a contradiction. Thus
1) = v

2.3.2. Lemma. Let x, y, z, u, v e A. The following conditions are equivalent:

(1) f(u) = ze D, f(x) =y, f(») = x, f(v) = u.

(2) zeP, O(u,x) = [{u,x}, {z,y}], O(u,y)=[{u,y}, {z,x}], O(x,y)€S,
O(v, u) = [{v, u, z}], {u} ¢ O(v, x).

Proof. Let (2) be valid. From 2.3 it follows that f(u) = z e D, f(x) = y, f(y) = x.
Since O(v, x) ¢ S, we obtain v¢ D, f(v) ©(v, u) z, and this implies f(v) € {v, z, u}.

If f(v) = v, then O(v, x) = [{v, x, y}]; if f(v) = z, then O(v, x) = [{v, x}, {z, y}].
This is a contradiction, hence f (v) = u.
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2.4. Lemma. Let u, z,u’, z' € A. The following conditions are equivalent:

(1) (@) f(u) = ze D, f(u') =z €D, or (b) f(u) =z €D, f(u') = ze D.

(2) {z.2} = P, O(u,u') = [{u,u'}, {z, 2'}].

Proof. If (2) is valid, then 2.1 implies that {z,z'} = D, u ¢ D, u’ ¢ D. Further,

we have f(u) O(u, w’) f(u'). If {f(u), f(u')} = {u, u'} or f(u) = f(u'), then O(u, u') €
€ S. Hence {f(u), f(u')} = {z, z'}, f(u) # f(u’), and thus the condition (1) is satisfied.

z z! z z’ z z! z"
u u’ u u' u u’ u
(a) (b)
Fig.2.4,3.5 Fig.2.5,3.1
z z' ey
u d'
Fig. 2.6,3.2

2.5, Lemma. Let u, u’,u", z, z’, z" € A. The following conditions are equivalent:

(1) f(u) =z, f(w) =2, f(u)=z2" {z,z/, 2"} = D.

() {z. 2,2} € P, Ou, v') = [{u,u'}, {z, 2'}], Ou, u") = [{u, u"}, {z, z"}].

Proof. If (2) is valid, then from 2.4 we have either (a) f(u) = ze D, f(v') =
=z'eD,or(b)f(u) =z’ € D, f(u') = z e D. Similarly, for the elements u, z, u”, z"
it follows from 2.4 that either (a’) f(u) = ze D, f(u") = z"e D, or (b') f(u) =
=z"eD, f(u") = ze D. It is obvious that (a) and (a’) hold, hence the condition
(1) is satisfied.

2.6. Lemma. Let u, z, u’, z’, y € A. The following conditions are equivalent:

(1) f(u) = zeD, f(u') =z €D, f(y) =y
() {2} = P, 0w u) = [}, (= )] O0uu) = [l 2}], 00w w) -

= [w. 2]

Proof. Let (2) be valid. Since ©(y, u) ¢ S, we have y ¢ D. Further, from 2.4 it
follows that either (a) f(u) = ze D, f(u') = z € D, or (b) f(u) =z € D, f(u) =
= ze D. In the case (b) we obtain z’' @(u, y) f(y), hence f(y) = z". Then O(y, u’) =
= [{», u'}, {2, 2'}], which is a contradiction. In the case (a) we have z @(u, y) f(¥),
thus f(y)e{y, z,u}. Further, z’ O(u’, y)f(v), which implies f(v)e{y, u’z'}.
Therefore we obtain that f(y) = y.
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2.7. Lemma. Let x, y, z € A. The following conditions are equivalent:

(1) @) f(x) = y, /(») = ze D, or (b) f(y) =x, f(x)=zeD. or (c) f(y) =
< 2€D,f(x) = x,0r(d) f(x) = ze D, f(y) = ».
(2) ze P, O(x,y) = [{x, », z}]

Proof. Let (2) be valid. Then z € D, x ¢ D, y ¢ D according to 2.1. Hence we have
f(x) o(x, y) f(y). If f(x) = f(»), then ©(x, y)e S, which is a contradiction, and
tperefore f(x) + f(y), {f(x). f(»)} = {x. . z}. I {f(x). f(»)} = {x. y}, then
@(x> y) € S, a contradiction. The case f(x) = y, f(y) = z is the case (a); if f(x) = z,

f(y) = x, we have the case (b); if f(x) = x, f(y) = z, then (c) is valid, and if f(x) =
< 2, f(y) = y, then (d) is valid.

z z
V4 ® x p4 ey
y X
y X
X Y
(a) (b) fc) {d)
Fig.2.7,3.14

2.8. Lemma. Let x, x’, y, z€ A. The following conditions are equivalent:

(1) @) f(x) = f(x') = y, f(¥) = zeD, or (b) f(x) =f(x) = ze D, f(») = »,
or (c) f(y) = zeD, f(x) = x, f(x') = x".

(2) ze P, O(x,y) = [{x, 5, 2}], O(x,x) e S, O(x', y) = [{x, y, z}].

Proof. If (2) is valid, then ze D, x ¢ D, x" ¢ D, y ¢ D. According to 2.7 some of the
following conditions is satisfied: (a') f(x) = y, f(y) = z; (V) f(¥) = x, f(x)

_ 7

<>

z
z L 4 z ] [ ]
y x x
X x' X X d
(a) (b) (c)
Fig. 2.8, 3.12

(€)f(y) = 2z, f(x) = x; (d') f(x) = z, f(y) = y. Let (2') hold. Then f(x) O(x', x) y,
hence f(x') = y, and it is the case (a). If (b’) is valid, then f(x") ©(x’, x) z, thus f(x') =
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=z and O(x', y) = [{x', ¥}, {x, z}], which is a contradiction. Let (c¢’) hold. Then
f(x") ©(x", x) x, and this implies that either f(x’) = x or f(x’) = x’ holds. If f(x') =
= x, then O(x', y) = [{x, y}, {z, x}], a contradiction. Thus f(x') = x’, and we
have the condition (c). If (d') is satisfied, then f(x) ©(x’, x) z, hence f(x') = z,
and this is the case (b).

2.9. Lemma. Let x, x', y, z, u € A. The following conditions are equivalent:

(1) (@) f(x) = f(x) = », f(y) = ze D, f(u) = u, or (b) f(x) =x, f(x') =,
fu)=y, f(y) =zeD.

(2) zeP, O(x,y) = [{x, v, z}]. O(x,x")e S, O(x,y) = [{x,»,2}], Ou,y) =
= [{u, y,2z}], O(u, x)¢S.

z o u > e o
X x!
y y
x x' u
‘al (6]
Fig. 2.9, 3.10

Proof. Let (2) be valid. Then ze D, u ¢ D in virtue of 2.1. Further, 2.8 implies
that some of the following three conditions is satisfied: (a') f(x) = f(x') = y, f(y) =
= z: (b)) f(x) = f(x') = z, f(») = y; (¢') f(¥) = z, f(x) = x, f(x') = x". Suppose
that (a’) holds. Then f(u) ©(u, y) z, hence f(u) € {u, y, z}. If f(u) = z, then O(u, y) e
€ S, which is a contradiction. If f(u) = y, then ©(u, x) € S, a contradiction. Thus
f(u) = u, and it is the case (a). Now let (b’) be valid. Then f(u) O(u, y) y, f(1)e
ef{u, y, z}. If f(u)e {u, y} we obtain O(u, y)eS; if f(u) = z, then O(u, x)e S.
Hence (b’) does not hold. In the case (¢') we have f(u) € {u, y, z}. If f(u) = u, then
O(u, x)e S; if f(u) = z, then O(u, y)e S. This is a contradiction, and therefore
f(u) = y; thus the condition (b) is satisfied.

2.10. Lemma. Let x, X', y, y',ze A. The following conditions are equivalent:

(1) (@) f(x) = f(x) = ze D, f(y) = y, f(') = ¥/, or () f(y) =f(y') = ze D,
f(x)=x, f(x)=x"

(2) zeP, O(x,y) = [{x,»,z}], O(x,x)e S, O(x', y) = [{x", y, z}], Oy, )€
€S, 0(x,y) = [{x, ¥, z}].

Proof. Let (2) be valid. Then z € D, y' ¢ D in virtue of 2.1. From 2.8 it follows
that either (a’) f(x) = f(x') =y, f(y) =z or () f(x) =f(x') =1z f(y) =y,
or (¢') f(y) = z, f(x) = x, f(x) = x . Suppose that (a’) holds. Then f(y') @()", y) z,
hence f(y') =z and O(x,y') = [{x, y'}, {», z}], a contradiction. Iet (b’) hold.
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Then f(y') ©(y', y) y implies that f(3") e {y, y'}. If f(3') = y, we have O(x, ') =
= [{x, ¥}, {z, y}], which is a contradiction, therefore f(y) = y' and (a) is valid.
If (¢’) holds, then f(y") ©(y', y) z, thus f(y') = z, and we have the case (b).

z ® o z o o
/\ y ¥y A x x'
X x! y vy
(al (b)
Fig.2.10,311

' 2.11. Lemma. Let X, ¥, z, u € A. The following conditions are equivalent:

(1) (@) f(x) = y. f(») = ze D, f(u) = u, or (b) f(u) = y, f(y) = ze D, f(x) = x.

(2) ze P, O(%3) =[x 3.3} O ) = [{ux, 3 3], O(u,») = [fus . 2}].

Proof. Let (2) be valid. Then z € D, u ¢ D with respect to 2.1. Further, 2.7 implies
that some of the following conditions is satisfied: (2') f(x) = y, f(¥) = z; (b') () =
=x, f(x) =z (¢) f(») = z, f(x) = x; (d') f(x) =z, f(y) = y. We always have

z ou z ®x z u
Y Y Y v
x u x
(a) (b)
Fig. 2.11,3.13 Fig. 2.12, 3.7

f(x) e {x, y, z}, f(u) O(u, x) f(x), hence f(u) € {u, x, y, z}. Suppose that (a’) holds.
If f(u) = x, then O(u, y) = [{u, y}, {x, z}]; if f(u) = y, then O(u, x) € S; if f(u) =
= z, then O(u, x) = [{u, x}, {z, y}]. Thus the only possibility is f(u) = u, and we
have the case (a). If (b') is valid, then f(u) ©@(u, y) x, hence f(u) = x, but then
O(u, x) = [{u, x, z}], which is a contradiction. Suppose that (c') is valid. We obtain
f() ©(u, y) z, hence f(u)e{u,y,z}. If f(u) = z, then O(u, y)eS; if f(u) = u,
then @(u, x) € S. In both the cases we have obtained a contradiction. Hence f (u) =
=, and therefore (b) is valid. Now let (d’) hold. If f(u) € {u, y}, then O(u, y) € S,
and if f(u) € {x, y}, then O(u, y) % [{u, y, z}], a contradiction.

2.12, Lemma. Let x, y, z, u, ve A. The following conditions are equivalent:

(1) f(x) =y, f(y) =zeD, f(v) = f(u) = u.
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() 2P, 0(x3) =[x 321} O x) = [ %2, 4], O 3) = [ », 211,
O(v,u)e S, {u} ¢ O(v, x).

Proof. Let (2) be valid. Then z € D, v ¢ D according to 2.1. From 2.11 it follows
that either (a) f(x) = y, f(») = z, f(u) = u, or (b) f(u) = y, f(y) = z, f(x) = x.
In the case (b) we obtain f(v) ©(v, u) y, thus f(v) = y. But then {u} € (v, x), and this
is a contradiction. If (a) holds, then f(v) (v, u) u, hence f(v) € {v, u}. If f(v) = v,
we get {u} € O(v, x), a contradiction. Therefore f(v) = u and the condition (1) is
satisfied.

2.13. Lemma. Let x, y, z, u € A. The following conditions are equivalent:

(1) (@) f(x) = ». f(y) = f(u) = ze D, or (b) f(x) = ze D, f(u) = f(y) = y.
(2) zeP, O(x,y) = [{x, y,z}], O(u, y) €S, Ou, x) = [{u, x}, {y, z}].

z z oV
z y
u Y u y
IS
x x
(a) (b)
Fig. 213,39 Fig.2.14,3.6(a)

Proof. If (2) is valid, then 2.1 implies that z € D, u ¢ D. Further, according to
2.7, one of the following conditions is satisfied: (a") f(x) = y, f(y) = z; (b") f(») = x,
f(x)=1z; (¢) f(») =z, f(x) =x; (d) f(x) =z, f(y) = y. Let (a’) hold. Then
f(u) ©(u, y) z, hence f(u) = z, and it is the case (a). If (b") is valid, then f(«) O(u, y) x,
hence f(u) = x, and then O(u, x) = [{u, x, z}], which is a contradiction. If (¢')
is valid, then f(u) ©(u, y) z, thus f(u) = z, but this implies a contradiction, namely
O(u, x) = [{u, x, z}]. Suppose that (d’) holds. We have f(u) @(u, y) y, and hence
f(u)e{u, y}. If f(u) = u, then O(u, x) = [{u, x, z}], which is impossible, therefore
f(u) = y and the condition (b) is satisfied. '

2.14. Lemma. Lef x, y, z, u, v € A. The following conditions are equivalent:

(1) f(x) = ». f(y) = f(u) = ze D, f(v) = ».

(2) ze P, O(x, y) = [{x, y, z}], O(u, y) € S, O(u, x) = [{u, x}, {y, z}], O(v, u) =
= [{v. u, 2], O(v, y) = [{v. v, 2}].

Proof. Let (2) be valid. Then z € D, v ¢ D with respect to 2.1. According to 2.13

we have either (a) f(x) = y, f(y) = f(u) = z, or (b) f(x) = z, f(u) = f(y) = y.
Suppose that (b) holds. We obtain f(v) ©(v, u) y and hence f(v) = y. Then 6(v, y) e
€ S, which is a contradiction. Let us consider the case (a). We have f(v) @(v, u) z,
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thus f(v) e {v,u,z}. If f(v) =z, then O(v,u)eS; if f(v) = u, then O(v, y) =
= [{v, ¥}, {u, z}]. Hence we get a contradiction except for the possibility f(v) = v.

2.15. Lemma. Let x, y, z, u, ve A. The following conditions are equivalent:

(1) f(x) =y, f(y) = f(u) = ze D, f(v) = u.
(2) ze P, 0(x, y) = [{x. y, z}]. O(u, y) € S, O(u, x) = [{u, x}, {y, z}], O(v, u) =
= [{v.u, 2}], 0(v, y) = [{v, ¥}, {u, 2} ].

zZ
_ z y ®v
up gy
A 4
14 X
Fig.2.15,3.6(b] Fig.216,3.8

Proof. Let (2) be valid. Then z € D, v ¢ D according to 2.1. From 2.13 it follows
that either (a) f(x) = v, f(y) = f(u) = z, or (b) f(x) = z, f(u) = f(y) = y. If (b)
holds, then we have f(v) ©(v, u) y, hence f(v) = y, but then O(v, y) € S, which is
a contradiction. In the case (a) we obtain f(v) O(v, u) z, thus f(v) € {z, v, u}. If
f(v) = z, then O(v, y) € S; if f(v) = v, then O(v, y) = [{v, y, z}]. Hence we have
a contradiction, and the remaining case is f(v) = u.

2.16. Lemma. Let x,y,z,u,ve A. The following conditions are equivalent:

(1) () = z€ D, 1(u) = 1) = 7. 1)) = o

(2) zeP.O(x,y) = [{x, », 2}]. O(u, y) € S, O(u, x) = [{u, x}, {y, z}], O(v, u) =
= [{v.u, y}], O(v, y)€S.

Proof. Let (2) be valid. Then z € D, v ¢ D in virtue of 2.1. Further, 2.13 implies
that either (a) f(x) = y, f(¥) = f(u) = z, or (b) f(x) = z, f(u) = f(y) = y. In the
case (a) we have f(v) ©(v, u) z, hence f(v) = z, and then @(v, u) € S, which is a con-
tradiction. In the case (b) we obtain f(v) ©(v, u) y, thus f(v) € {y, v, u}. If f(v) = ,
then O(v, u) € S, a contradiction. If f(v) = u, then O(v, y) = [{v, y, u}], which is
a contradiction as well. Therefore f(v) = 0.

3. UPPER BOUND FOR card R(f)

We start with a lemma which has an auxiliary character.
We suppose that the system Con (4, f) is given and that Con (A4, f) + E(4).

3.0. Lemma. (i) The set D is uniquely determined by Con (4, f).
(i) Let u,ze A, f(u) = zeD. Further, let ac A — {u,z}, a¢ D. The case
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when f(a)¢ {a,u} U D can be characterized by Con (A, f) and in this case f(a)
is uniquely determined by Cor (4, f).

Proof. The assertion (1) follows from 2.1. Let the assumptions of (ii) be satisfied.
We distinguish the following cases.

a) There exists be A — {u, z, a} such that u, z, a, b fulfil the condition that we
get from (2) of 2.3 if we write u, z, a, b instead of u, z, x, y. According to 2.3 we
obtain f(a) = b, f(b) = a.

b) There exists be A — {u, z, a} such that u, z, a, b fulfil the condition that we
obtain from (2) of 2.2 writing u, z, a, b instead of u, z, x, y. From 2.2 it follows that
f(a) =band b¢ D, f(b)¢{a, b, z}.

¢) Neither a) nor b) holds. Then the remaining cases are: o) f(a) € {a, u} U D,
B) f*(a) = z, f(a) + u, v) f*(a) = f(a) + a. We have to characterize the cases )
and y) by means of Con (4, f).

cl) First suppose that there exists be A — {a, u, z} such that the condition ob-
tained from (2) of 2.13 writting u, b, a, z instead of x, y, u, z is satisfied. Then 2.13
implies that either f(u) = b, f(a) = f(b) = z, or f(u) = z, f(a) = f(b) = b. Since
we assume that f(u) = z, we have f(a) = f(b) = b, and this is the case y).

¢2) Suppose that the condition assumed to be valid in c1) does not hold and that
there exists be A — {a, b, z} such that a, b, u, z fulfil the condition which we get
from (2) of 2.13 writing a, b, u, z instead of x, y, u, z. Then 2.13 implies that either
f(a) = b,f(u) = f(b) = z,0r f(a) = z,f(u) = f(b) = b. Because the relation f(u) =
= z is valid, we have f(a) = b # u, f(b) = z. This is the case ).

Now we shall investigate the following question: Assume that the system
Con (4, f) + E(A) is given. To what extend are we able to reconstruct the partial
operation f?

First we notice that the conditions (2) in 2.2.—2.16 are expressed merely by the
properties of the system Con (4, f), without using explicitly the partial operation f
itself.

In the following lemmas distinct cases concerning Con (A, f) will be investigated;
e.g., in Lemma 3.5 we suppose that no condition assumed in Lemmas 3.1—-3.4 is
valid. Again let us remark that the figure which is related to some of the following
lemmas is denoted by the same number as the corresponding lemma.

3.1. Lemma. Let there exist distinct elements u,z,u’,z',u",z"€ A fulfilling
the condition (2) from 2.5. Then f is uniquely determined by Con (4, f).

Proof. From 2.5 it follows that f(u) = ze D, f(u') = z'e D, f(u") = z" € D.
Let ae A — {u, z, u', z', u”, z"}: With respect to 3.0 we obtain that the only case
we have to investigate is the case f(a) € {a, u} U D. If a is such that u,z,u’, z', a
fulfil the condition that we get from (2) of 2.6 (writing u, z, 4’, z’, a instead of
u,z,u',z', ), then f(a) = a. If there exists be A — {a,u, z,u’, 2’} such that
u, z, u', z', a, b fulfil the condition that we obtain from (2) of 2.5 (with u, z, u’, z', a, b
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instead of u, z, u’, z’, u”, z"), then f(a) = b e D. Notice that here b = z” can hold.
From 3.0 (for ', z’ instead of u, z) it follows that the case f(a) = u can be charac-
terized by Con (4, f). Hence f(a) is uniquely determined by Con (4, f) for each
aeA.

Let the assumption of 3.1 be not satisfied.

3.2. Lemma. Let there exist distinct elements u,z,u’,z',ye A fulfilling the
condition (2) from 2.6. Then f is uniquely determined by Con (4, f).

Proof. From 2.6 it follows that f(u) = ze D, f(u') = z’e D, f(y) = y. Let
aeA—{u,z,u,z,y}. According to 3.0, the only case we have to investigate is
the case f(a) € {a, u} U D. If we consider 3.0 for the elements u’, z’ instead of u, z,
then we see that f(a) is uniquely determined by Con (4, f) for f(a) ¢ {a, '} U D.
Since the assumption of 3.1 is not satisfied, we obtain f(a)¢ D — {z, z’}. Hence
we only have to characterize the case f(a) € {a, z, z'} by Con (4, f).

First suppose that u, z, u’, z’, a fulfil the condition that we get from (2) of 2.6
(with u, z, u’, 2, a instead of u, z, ', z’, y). Then f(a) = a. The case when f(a) = z
can be described by Con (4, f) according to 2.6 (with a, z, w’, z’, y instead of u, z, v/,
z', y), and the case f(a) = z’ is analogous.

Let the assumptions of 3.1 and 3.2 be not satisfied.

3.3. Lemma. Let there exist distinct elements u, z, x, y € A fulfilling the condition
(2) from 2.3. Then f is uniquely determined by Con (4, f).

Proof. Let ae A — {x, y, u, z}. According to 3.0, if f(a) ¢ {a, u} U D, then f(a)
is uniquely determined by Con (4, f). From 2.3.1 (with u, z, X, y, a instead of u, z,
x, y, v) it follows that the case f(a) = a can be characterized by Con (4, f); by
2.3.2 (with u, z, x, y, a instead of u, z, x, y, v), the case f(a) = u can be characterized
by Con (4, f), and the case f(a) € D follows from 2.3 (there exists b € D such that
a, b, x, y fulfil the condition that we obtain from (2) of 2.3 for a, b, x, y instead
of u, z, x, y).

Let the assumptions of 3.1 —3.3 be not satisfied.

3.4. Lemma. Let there exist distinct elements u, z, x, y € A fulfilling the condition
(2) from 2.2. Then f is uniquely determined by Con (4, f).

Proof. Let ae A — {x, y, u, z}. I f(a) ¢ {a, u} U D, then f(a) is uniquely deter-
mined by Con (4, f) according to 3.0. From 2.2.1 it follows that the case when f(a) =
= a can be characterized by Con (4, f); the same is valid for the case f(a) = u
(in view of 2.2.2) and for the case when f(a) € D, f(a) + f(y) (in view of 2.2). Sup-
pose that there is b e D — {z} such that x, y, b, a fulfil the condition that we obtain
from (2) of 2.13 (with x, y, b, a instead of x, y, z, u). Then 2.13 implies that either

(a) f(x) = y, f(y) = f(a) = b, or (b) f(x) = b, f(a) = f(y) = y. In the case (b) the
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elements u, z, x, b, y fulfil the condition that we obtain from (2) of 2.6 (with u, z, x,
b, y instead of u, z, u’, z’, y), which is a contradiction with the fact that the assump-
tion of 3.2 is not satisfied. Hence in this case f(a) = f(y) = b e D, and the proof is
complete.

Let us define the following notions. We shall say that the elements x and x’ of A
behave in the same way, if one of the conditions (a)—(c) is satisfied:

@) f(x) = x, f(x) = x';
(0) f(x) = 7(x), f7Hx) = 0 = F7H(x);
(c) x,x" e D.

Let (4,,f;) be a partial monounary”algebra and let § # B; = 4, such that
f1(t) € B, whenever te B, n (4, — Dy,). Suppose that for each a € 4, — B, there
exists b € By such that the elements a and b behave in the same way (as elements of the
partial algebra (4, f,)). Under these assumptions we shall say that (4,, f,) is a c,-
extension of the partial algebra (B, f;).

Let the assumptions of 3.1—3.4 be not satisfied.

3.5. Lemma. Let there exist distinct elements u, z, u’, z’ € A fulfilling the con-
dition (2) from 2.4. Then R(f) consists of two elements, which can be described by
means of Con (4, f). The partial algebra (A, f) is a cy-extension of some of the
partial algebras given in Fig. 3.5 (a) or 3.5 (b).

Proof. The elements u, z, u’, z' € A fulfil the condition (1) from 2.4 and the as-
sumptions of Lemmas 3.2, 3.3, 3.4 are not satisfied, hence B = (. Further, the
assumption of 3.1 is not satisfied, which implies that f~!(z) = @ for each te D —
— {z, z'}. The fact that the assumption of 3.4 does not hold, implies that f ~*(u’) = @
and f~'(u) = 0. Let ae A — {u, z,w', z'}. Then ae D if and only if a € P (in view
of 2.1). Now let a ¢ D. Obviously, f(a) = f(u) if and only if ©(a, u) € S. Denote
U={ulu{aed—{uz,u,z}:0(au)eS},U ={w}u{aed — {u,zu,z}:
:0(a,u’)eS}. Then A =D uUuU, and we have either f(a) = z, f(a') = 2/,
or f(a) = z', f(a’) = z for each ae U, a’ e U’. It is obvious that these two cases
can not be distinguished by means of Con (4, f).

Let the assumptions of 3.1—3.5 be not satisfied.

3.6. Lemma. Let there exist distinct elements x, y, z, u, ve A fulfilling the con-
dition (2) from 2.14 or 2.15. Then f is uniquely determined by Con (4, f).

Proof. (Cf. Fig. 3.6 (a) and 3.6 (b).) Let ac A — {x, y,z,u,v}, a¢ D = P.
From 3.0 (for u, z, resp. y, z instead of u, z) it follows that we have to characterize
by Con (4, f) the case when f(a) e {a} U D. The case f(a) = a can be described by
2.14. Since the assumption of 3.5 is not satisfied, we have f(a) ¢ D — {z}. Further,
f(a) = ze D if and only if @(a, y)e S and a ¢ P. Thus f(a) is determined by
Con (4, f). :
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Let the assumptions of 3.1 —3.6 be not satisfied.

3.7. Lemma. Let there exist distinct elements x,y,z,u,ve A fulfilling the
condition (2) from 2.12. Then f is uniquely determined by Con (4, f).

Proof. Let ae A — {x, y,z,u,v}, a¢ D = P. From 3.0 (with y, z instead. of
u, z) it follows that we have to investigate only the case when f(a)e {a, y} U D.
The relation f(a) = a holds if and only if a ¢ P, ©(a, u)e S, O(a, v) = [{a, v, u}].
Further, we have f(a) = y if and only if a ¢ P, ©(a, x) € S. The assumption of 3.5
is not satisfied, therefore f(a) ¢ D — {z}. Further, f(a) = z e D if and only if a ¢ P
and O(a, y) € S, completing the proof.

Let the assumptions of 3.1—3.7 be not satisfied. Let us consider the meaning of
this fact in the case when there is z e D with f*(z) % 0. Since the assumptions of
3.3 and 3.5 do not hold, we obtain that f~'(t) = 0 for each te D — {z} and that B
contains no cycle with two elements. From the fact that the assumption of 3.4 is
not satisfied it follows that {f(¢)} is a one-element cycle for each t € B and also that
f73(z) = 0. Further, the assumption of 3.6 fails to hold, thus if x, x"ef~?(z),
then f(x) = f(x'), and if card f ~!(z) = 2 and f ~?(z) # 0, then B = . The assump-
tion of 3.7 is not satisfied, hence if the relation f~*(z) # 0 is valid, then either B
consists of one-element cycles or B = §.

3.8. Lemma. Let there exist distinct elements X, y, z, u, ve A fulfilling the con-
dition (2) from 2.16. Then f is uniquely determined by Con (A4, f).

Proof. Let ae A — {x, y,z,u, v}, a¢ D = P. From 3.0 (for x, z instead of u, z)
it follows that we have to characterize f(a) by means of Con (4, f) only in the case
f(a)e {a,x} U D. Further, according to the facts mentioned above, we obtain
that if f(a) € D, then f(a) = z. The case f(a) = a or f(a) = z can be described by
means of Con (4, f) in view of 2.16 (for the elements X, z, u, y, a resp. a, z, u, y, v
instead of x, z, u, y, v). The case when f (a) = x is impossible, since we suppose that
the assumption of 3.7 does not hold (consider the elements a, x, z, u, y instead of
X, Y, Z, 0, U).

Let the assumptions of 3.1 —3.8 be not satisfied.

3.9. Lemma. Let there exist distinct elements x, y, z,u € A fulfilling the con-
dition (2) from 2.13. Then R(f) consists of two elements, which can be described
by means of Con (4, f). The partial algebra (A, f) is a co-extension of some of
the partial algebras given in Fig. 3.9 (a) or 3.9 (b).

Proof. In view of 2.13 we obtain either (a) f(x) = y, f(¥) = f(u) = ze D, or
() f(x) =zeD, f(u) =f(y) = y. Let ae A — {x, y,z,u}, a¢ D = P. Consider
the case (a). From the facts which were mentioned above when formulating Lemma
3.8 it follows that f(a) ¢ f~1(D — {z}); f(a) * uand f(a) ¢~ '(2) = {y}; f(2) =
=0; B=0. Hence f(a)e {z, y}. Now consider the case (b). Then f(a)¢
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¢/ 1D - {z}); f*(z) = 0 (the assumption of 3.7 is not satisfied); f(a) * a (the
assumption of 3.8 is not satisfied), and hence f(t) = y for each te B. Therefore
f(a) e {z, y} in the case (b) as well as in the case (a). Further, we have: f(a) = f(x)
if and only if ©(a, x) € S, and f(a) = f(u) if and only if ©(a, u) e S. Denote

X ={x}u{aed - D:06(a,x)eS},
U={uju{aed—-D:0(a,u)eS}.

Then A = D u X U U and either (a) f(x,) = y, f(u;) = f(y) = z, or (b) f(x;) = z,
f(uy) = f(y) = y is valid for each x; € X, u, € U. It is obvious that these cases can
not be distinguished by means of the system Con (4, f).

Let the assumptions of 3.1 —3.9 be not satisfied.

3.10. Lemma. Let there exist distinct elements x,x',y,z,u€ A fulfilling the
condition (2) from 2.9. Then R(f) consists of two elements, which can be described
by means of Con (4, f). The partial algebra (4, f) is a co-extension of some of
the partial algebras given in Fig. 3.10 (a) or 3.10 (b).

Proof. From 2.9 it follows that either (a) f(x) = f(x') = y, f(y) = ze D, f(u) =
=u, or (b) f(u) =y, f(y) = ze D, f(x) = x, f(x') = x. Since the assumptions
of 3.1 —3.9 are not satisfied, we obtain that each element ae 4 — D, a + y, behaves
in the same way as x or as u (in the case (a) and also in the case (b)). We denote
by the symbol X or U the set of all elements a € A — D such that a and x or a and u,
respectively, behave in the same way. We have to characterize the sets X and U by the
system Con (4, f). It is easy to see that

X={x}u{aed—-D:0(a,x)eS, Oa,u) =[{a,u,y, z}]},
U={u}u{aed— D:0(a,u)eS, O(a,x)=[{a,xyz}]}.

Then A =Du{y}uX U and either (a) f(x;) =y, f(y) = z, f(u;) = u,, or
(b) f(uy) = y, f(¥) = z, f(x4) = x; for each x, € X, u, € U. It is obvious that these
two cases cannot be distinguished by means of congruence relations.

Let the assumptions of 3.1—3.10 be not satisfied.

3.11. Lemma. Let there exist distinct elements x,x’, y,y', z€ A fulfilling the
condition (2) from 2.10. Then R(f) consists of two elements, which can be described
by means of Con (4, f). The partial algebra (A, f) is a cy-extension of some of
the partial algebras given in Fig. 3.11 (a) or 3.11 (b).

Proof. In view of 2.10 we have either (a) f(x) = f(x') = ze D, f(y) = », f()') =
=y, or(b)f(y) = f(y') = ze D,f(x) = x, f(x') = x'. Letae A — D. The assump-
tions of 3.1—3.10 are not valid, hence a € X or a € Y, where X is the set of all ele-
ments of 4 behaving in the same way as x, and Y is the set of all elements of 4 which
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behave in the same way as y. It is obvious that
X={x}uf{aed—-D:0(a,x)eS, O(a,y)=[{ay z}]},
Y={yu{aed - D:0(a,y)eS, 6(ax)=[{axz}]}.

Hence A = DU X U Y and either (a) f(x,) =z, f(y;) = y;, or (b) f(y;) =z,
f (x,) = x, for each x; € X, y, € Y. These two cases cannot be distinguished by means
of Con (4, f).

Let the assumptions of 3.1—3.11 be not satisfied. Hence, in particular, if there
exists z e D with f~(0) # 0, then we have: (i) B consists of one-element cycles or
B =0 (cf. 3.9, 3.3 and 3.4); (ii) card f"*(z) £ 1 or f~*(z) = 0 (cf. 3.9); (iii) if

~card f7*(z) 2 2, then B = 0, and if card B 2 2, then f™*(z) = @ card f7!(2) £ 1
(cf. 3.10, 3.11); (iv) if card f~(z) = 2, then card B < 1 (cf. 3.11).

3.12. Lemma. Let there exist distinct elements x, x', y, z € A fulfilling the con-
dition (2) from 2.8. Then R(f) consists of three elements, which can be described
by means of Con (A, f). The partial algebra (A4, f) is a cy-extension of some of the
partial algebras given in Fig. 3.12 (a)—(c) such that whenever ae A — {x, x, y, z},
then a behaves in the same way as some of the elements x, X', z.

Proof. From 2.8 it follows that either (a) f(x) = f(x') = y, f(y) = ze D, or
(b) f(x) = f(x") = ze D, f(y) = y, or (¢) f(y) = ze D, f(x') = x'. The assumptions
of 3.1—-3.11 are not satisfied, hence if ae A — D, a + y, then a and x behave in
the same way. By the symbol X we denote the set of all elements of A which behave
in the same way as x. Then

X={}u{aed—D:0(a,x)eS, O(a,y)=[{a,yz}]}.

Thus 4 = DuX u{ y}; and one of the following possibilities is valid: (a) f(x,) = y,
f(¥) = z, or (b) f(x;) = z, f(y) = », or (¢) f(¥) = z, f(x,) = x,, for each x, € X.
It is obvious that these three cases cannot be distinguished by means of Con (A, f )

Let the assumptions of 3.1—3.12 be not satisfied.

3.13. Lemma. Let there exist distinct elements x, y, z, u € A fulfilling the con-
dttion (2) from 2.11. Then R(f) consists of two elements, which can be described
by means of Con (A,f). The partial algebra (A,f) is a cq-extension of some of
the partial algebras given in Fig. 3.13 (a) or (3.13) (b), such that whenever ae A —
- {x, ¥, Z, u}, then a behaves in the same way as z.

Proof. In view of 2.11 we have either (a) f(x) = y, f(y) = z€ D, f(u) = u, or (b)
f(u) = y,f(y) = ze D, f(x) = x. Since none of the assumptions applied in 3.1 —3.12
is valid, we obtain that 4 = D u {x, y, u}. The cases (a) and (b) cannot be distingui-
shed by means of congruence relations.

Let the assumptions of 3.1—3.13 be not satisfied. If there is ze D with f~!(z) + 0,
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then we obtain: (i) if f “%(z) + 0, then B = @ (cf. 3.13); (i) if B # 0, then f ~*(z) = 0
and card f~*(z) £ 1 (cf. 3.13 and 3.12); (iii) card f ~%(z) £ 1, card B < 1 (cf. 3.12).

3.14. Lemma. Let there exist distinct elements x,y,ze A fulfilling the con-
dition (2) from 2.7. Then R(f) consists of four elements, which can be described
by means of Con (A, f). The partial algebra (A4, f) is a co-extension of some of
the partial algebras given in Figs. 3.14 (a)—(d) such that whenever ae A —
— {x, y, z}, then a and z behave in the same way.

Proof. From 2.7 it follows that one of the following possibilities holds: (a) f(x) =
~ 3 1(3) = 2€ D)) = % S() = 2€ D, (©)1(3) = 2 Dof(x) = x () F(x) =
=zeD, f(y) = y. Since the assumptions of 3.1—3.13 are not satisfied, we obtain
that A = D U {x, y}. These four cases cannot be distinguished by Con (4, f).

We introduce the following two notions.

Let (By, g,) and (4, f) be partial monounary algebras. Then (4, f;) will be said
to be a c-extension of (By, g,), if there is an isomorphism ¢ of (By, ;) into (4, f,)
such that

(*) for each a € A; — ¢(B,) there exists b € ¢(B,) such that a and b behave in the
same way.

A partial monounary algebra (4, f;) is said to be a d-extension of a monounary
algebra (By, g,), if B, € Ay, D;, = A, — B, and g,(x) = fy(x) for each x € B;.
Denote f, = g;.

Now suppose that none of the assumptions applied in 3.1—3.14 is satisfied. From
3.1—3.14 we obtain that this holds if and only if f~!(D) = 0. Thus the condition
f7(D) = 0 is characterized merely by the system Con (4, f). Then we have 4 =
= D U B, where D = P (i.e., D can be described by means of Con (4, f)). Moreover,
(4, f) is a d-extension of (B, f/B) and

R(f) = {geF :Con(A4,f)= Con(4,g)} =
= {geF :Con (B, f|B) = Con (B, g/B) and D, = D} =
= {g} : g, is a unary operation on B and Con (B, g,) =
= Con (B, f|B)} .

Hence in the case f~ (D) = @ the investigation of R(f) can be reduced to the in-
vestigation of R( f/B), i.e., to the analogous question concerning the complete unary
operation f/B.

The considerations performed in this section can be summarized as follows:

Let (A, f) be a partial monounary algebra such that Con (A, f) % E(A). Then
by using merely the system Con (A,f) (without applying explicitly the operation f)

1) we can decide whether or not f~*(D) #+ 0;

2) in the case when f~'(D) % 0 we can describe all partial unary operations g
on A having the property that Con (4, f) = Con (4, g).

In particular, as a consequence of 3.1 —3.14 we have
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3.15. Proposition. Let (A,f) be a partial monounary algebra such that
Con (A4, f) & E(A). Then we have:

(i) card R(f) = 2 if and only if (A, f) is a c-extension of some of partial mo-
nounary algebras described in Figs. 3.5, 3.9, 3.13 and 3.11.

(i) card R(f) = 3 if and only if (A, f) is a c-extension of some of partial mo-
nounary algebras described in Fig. 3.12, such that whenever ae A — {(p(x), qo(x’),
@(v), @(2)}, then a behaves in the same way as some of the elements ¢(x), p(x’), ¢(z).

(iii) card R(f) = 4 if and only if (A,f) is a c-extension of some of partial mo-
nounary algebras described in Fig. 3.14, such that whenever a € A — {¢(x), o(y),
¢(2)}, then a and ¢(z) behave in the same way.

3.16. Proposition. Let (A,f) be a partial monounary algebra such that
Con (A, f) + E(A). Assume that f~'(D) % 0. Then card R(f) < 4.

3.17. Proposition. Let A be a set, card A = 4. Then for each i e {1, 2,3, 4} there
exists a partial unary operation f; on A such that card R(f;) = i.
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