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ON A NONLINEAR INTEGRAL EQUATION

JERZY MUszYNskI, Warszawa
(Received January 18, 1979)

This paper is a continuation and generalisation of the former author’s work [2].
Let B be a Banach space, I = [0, ), 2 = {(t,s) €I : s < t}. Let us consider func-
tions ¢, L, p, W satisfying the following conditions:

Cl. o e C'(LI); 9(0) =1, ;l-l»r:: o(t) = 0; (Viel) ¢'(1) <0,

C2. Le C(1,1); (3g > 0) (Vtel) q L(1) + (¢'(1)[o(1)) = 0,

C3. pe C(I x B, B); (VueB) p(0,u) = u; (3N = 0) (Viel) |p(1, 0)] < N;
(3M 2 1) (Yt e 1) (Yu, v e B) [p(t,u) = p(t, o) < M o(1) u - o],

C4. We C(Q x B, B); (¥(t,s)e Q) W(t,5,0) = 0;
(3k = 0) (V(t,s) e Q) (Yu, v e B) |W(t,s,u) — W(t,s,0)| <
< Lis) (o(1)fo(s)) [max ([u, [[o)T* Ju - |-

We shall examine an integral equation

(1) w = p(t, ug) + f W, s, u) ds

]

with u, € B. We are interested in finding some regions in B, such that for every u,
belonging to them the equation (1) has a solution on I, this solution is bounded and
the solutions “starting” from B are convergent.

As examples of functions ¢ which satisfy the condition C1 let us mention

1
t=€_mt, l=e~a'ﬂ, ) = ——
@1(1) (1) 5(1) (1 + )
for @,y > 0, B €(0, 1]. The inequality from C2 has for these functions the following

forms:

y<a, gL sLm<-2
aL(t)<a, ¢q \)_tlh,, q()_1+vt

In the paper [2] the case k = 0 and ¢ = ¢, was considered (the condition q L(f) < «
had the form L(f) £ « — ¢ for some ¢ > 0).
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The equation of the type (1) can be obtained from the Cauchy problem u =
= A(t)u + f(t, u), u(0) = u, in the Banach space B, where A4 is a linear, not
necessarily bounded operator in B. Then under some assumptions on A4 and f there
exists a family of linear bounded operators {U(, 5) : (1, s) € I*} such that every solu-
tion of the given problem satisfies the integral equation u = U(t, 0) uy + [¢ U(t,s) .
.f(s, u) ds. Operator U is connected with the solutions of the equation & = A(f) u
and in many cases it can be estimated by the inequality |U(t, s)| < M e*“~ for some
@, M € R (see for example [1]). In some cases we have only a weaker estimate for the
operator U: |U(t, s)| < M o(t)/¢(s) with a decreasing function ¢, for example
¢ = @5. In this paper we are interested in general in this case.

Example 1. Let functions ¢, Lsatisfy the conditions C1, C2 with some constants
k=0, M >0,q>0, P>=0. Assume that U, f satisfy the following inequalities:

106 )] = M2Y, s 0)] = P L),
o(s)

1
16, w) = (s, o)} = - LUs) [max (] Jo])T* [« = o],
where as usual U(s, s) = I (the identity operator). Then the integral equation
t
u=U(0)u, + 'f U(t, s) f(s, u)ds
0

has the form (1) and for suitable p and W the conditions C3, C4 are satisfied.
Now we give two concrete examples (in R and R?).

Example 2. Consider the differential equation

k+1

b= - L (0)
14+t 141t '

with the initial condition u(0) = u,. It is easy to transform this problem to the
integral equation

t

t
u=—0 4 1—+—£y(s)ds w [ L.
1+t ol + 1t ol +1t

Take

u 145 1 e
t,u) = + s)ds, W(t,s,u)=——u .
p( ) 1+t _[01+ty() ( ) 1+t

Suppose that for a constant N = 0 we have ly(t)| < N. Take

1 1+ k 1
e —t M=1, L= L g= ——.
o) =T33 O=Tr T T1x
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Then it is easy to see that the conditions C1 —C4 are satisfied. We give here only the
proof of the inequality from C4. We have

- =L TR BTN T N

IW(t, s, u) — W(t,s, u)| T ]u v — lj;ou v Jl |u v| .

But
k koo ok

| Y ujv"_jl <y |u|’ Ivl"" < Y [max (lul, Ivl)]" = (k + 1) [max (Iul, Iv|)]"

=0 =0 i=o
and

L(S)M=1+k1+s=1+k
o(s) 14+sl+t 141

hence

Wt s, u) = W(t,5,0)] < L) 2O [max (Ju]o [o)J* |« — o]
(s)
and C4 is satisfied.

Example 3. Consider the second order equation

v 2 gy 2
(t+ 1) (t+ 1)

BH

we can rewrite this equation in the form of a system i = A(t)u + g(t, u) in R%
The functions

x = f(t, x, %).

Taking

1 1

X = y, Xp = ————
S T

are linearly independent solutions of the corresponding homogeneous equation and
thus the fundamental matrix W, W(0) = I, of the system @ = A(t) u has the form

2t + 1 t

(t+ 12 (t+1)2
-2t —t+1]

(t+1)7? (t+1)

w(t) =

Then

. 241 _ 1)2
Wi = [Zt(tt D) J:(;)+(: ) 1)2]
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and for a suitable matrix norm we obtain

) < (s +1)
Jues)l = W@ W) < 47—

with a constant 4. We can see that this example is different from the first because
there exists no function ¢ from C1 with |U(t, s)|| £ ¢(t)/¢(s). However, this example
can be treated as an example to our considerations. Suppose for simplicity that

k+1

(t + 1)y

£t %, %) =

for some y = 1 and k = 0. Then

et = ] 5 2 fmae ([, [ - ]

If(txx) f(t, y,y)]——“— “(t+1)v

(t+1y

for every x, y, %, y € R and if
=[] =[]
lo(t, u) = g1, v)]| = lf(h x, %) = f(t. y, y)| £
ax ([lul, Jol)I* u = ol -

then

k+ 1 \ <
i1y [max ([x], [y)]* |x = y] < l)y

lIA

If we put p(t, u) = U(t, 0) u, W(t, s, u) = U(t, 5) g(s, u) and

1 k+1 1
t)=——, M=A, Lt = ’
elt) 1+t ()= (1 + 1)y’ T

then the conditions C1— C4 are fulfilled for the integral equation

t
u=U(t0)u, + J‘ U(t, s) g(s, u) ds,
0
which is equivalent to the differential equation given at the beginning of this example.
Theorem 1 (k = 0). If the functions in the equation (1) satisfy the conditions

C1—C4 and q > 1, then for any u, € B the equation (1) has exactly one solution
on I (and on any interval [0, T], T > 0). This solution is bounded.

Theorem 1’ (k > 0). Let R be any fixed number such that 0 < R < ¢"/* and let
No = R — (1/q) R**'. Then for any N < N, and for any uy € B such that |[u,| <
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< R¥*'/gM, the equation (1) has exactly one solution u on I (and on any interval
[0, T], T > 0); this solution is bounded (i.e. (Vt €I) nu(t)“ < R).

Proof of Theorems 1 and 1'. For k = 0 let X be the set of all continuous and
bounded functions from I to B, and for k > 0 let X be the set of all continuous
functions from I to B bounded by the number R (i.e.if u € X then (Vt € I) |lu(t)| £ R).
Let ||ul| = sup [u(t)| for ueX, then (X, ||||) is a Banach space with a metric

tel

o(u,v) = ||v — ul|. In the case k > 0, if u € X, then [|ul| £ R. Consider on X an
operator K such that for any u e X

(2) (Ku) (1) = p(t, uo) + J:W(t, s, u(s)) ds.

It is easy to show that Ku e C(I, B) for any u € X. We shall prove that K : K — X.
The formulae (2) and C3, C4 imply

I(&u) (O] = [lp(t, uo)] +

ﬂwuawmm)<

éwumn+wuwrmumu+jwwsu D ds =

gN+me%wﬁ}w§gmuwmmmwwwm-

But max ([Ju(s)], 0) = |u(s)|| < sslellp lu(s)]| = |[jull. thus
1) O = + ol o) + [l 2920 0
o o)

From Cl1, C2 we have

tsg(L)s< ?(s) S——1 -
® |80 s — Lot [ Ehas =~ 0t0),

hence
(4) nm@mu§N+Mwmwo+§u—¢mmMHt
For k = 0 we obtain that )
uwwmu§N+Mww+§wm

(because 0 < ¢(t) < 1), hence K||ul| < N + M|uo| + (1/q) |[lu|;
continuous function, Ku € X, and finally for k = 0 we have K : X — X.
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Let now k > 0. We consider then such functions u that [[u[|< R, such u, that
luo|| = 1/Mq) R¥**, and such N that N < N, = R — (1/g) R***. Then by the
inequality (4)

1 1 1
R R S ORI O L

ie [|Kul| SR K:X > X.
Now we want to prove that K is a contractive operator. For u, v € X we have

Mmmo—mwmw=£Mnmw»—W@&m»m

<

< f 0'|| W(t, s, u(s) — W(t, s, ofs))| ds <

éfmﬂ@muwwwmmmmrw%m-
0 ‘P(S)

But max (Ju(s)]. o)) < max (fu. Jo]) and furthermore Juf] < &, [Jo] < .
hen”c!:e maﬁl([[u(s)ll)l, ”v(s)”) < R; taking into account also that [u(s) — o(s) || <
< ||lu — v||| we obtain

lmwm—wm%éww—mﬂmﬁgméww—wa

l|Ku — Kof| < = R* [Ju = o]
q

or

o(Ku, Kv) < ag(u,v), where o= le.
q

In the case k = 0 we have « = 1/g, but ¢ > 1 and so a < 1; in the case k > 0 we
have R < g'/*, hence R* < g and (1/g) R* < 1, so o < 1. The operator K is con-
tractive.

From Banch’s principle it follows that the equation (1) has a unique solution on I,
this solution is bounded (for k = 0 we have shown it directly, for k > 0 it results
from the definition of the space X). For the proof that the equation (1) has a unique
solution on every interval [0, T], T > 0, it is sufficient to repeat the same arguments
as above for the space X of the same functions as before but defined only on [0, T].

Theorem 2. The solutions considered in Theorems 1 and 1’ are convergent (i.e.
for any two such solutions u, v |u(t) — v(t)| > 0 as t > o).
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Proof. Let u,v be solutions of the equation (1) satisfying the conditions of
Theorem 1 or 1, let u(0) = 1o, v(0) = vy. Then

u(t) — v(t) = p(t, uo) — p(t, vo) + J:[W(t, s, u(s)) — W(t, s, v(s))] ds

and
lu(®) = v(®)] = M o(t) uo — o] +

' s—q)—(t)max u(s)||, [o(s)|DT* lu(s) = o(s)| ds
+ [ 0 23 tmax (WL DT 1) - o]

Eut [max ([u(s)[, [[o(s)[)]* = 1 for k = 0, and max (|u(s)], [v(s)]) < R for k > 0,

[u(t) — ()] £ Mo — vo] 0(t) + f RL(5) 2D Jugs) - ofs)] s
0 ‘P(S)
and

[ = o <yt — s ey Jus) = o0)]
s ”*LR 1) Ll

This inequality yields
1) = o0 < vt — o 1 oxn (2 oo
o S Ml = ol (% Lea)

and

Ju(t) = o(0)] < Mo — vo] (t)exp (Rk j () ).

[

The condition C2 implies

qL(t)+£@§0,

(1)
hence
t t ’
qu(s)ds +I 96 g5 < 0.
0 0 <P(S)
We obtain
t t Rk
qJ‘ L(s)ds + Ing(t) £ 0, R"f L(s)ds £ — —1In ¢(t)
0 0 q
and finally

exp (R,, f L(s) dS>§ o()] ™.

419



Thus
(5) Ju(t) = o(t)]| < Mug — vo| [o(t)]' =2 .

For k = 0 we have ¢ > 1, hence I — (R*/q) = (¢ — 1)/qg > 0; for k > 0 we have
R < g'* thus R* < g and | — (R*/q) = (¢ — R¥)/q > 0. Since ¢(t) > O as t - oo,
then in both cases ||[u(r) — v(f)| - 0 as t - oo.

Remark 1. If p(t,0) = 0, then the equation (1) has the trivial solution u = 0;
Theorem 2 implies that in this case all solutions considered tend to zero as t — oo.

Remark 2. The inequality (5) which was shown in the proof of Theorem 2 implies
that all solutions described are asymptotically stable.

Remark 3. Consider the equation from Example 2 with k = 1 and »(¢) =
= NJ(1 + t). The solutions of this equation have the forms:

if N <1 then
l+B(uo—%+B)+B(uo—-7—B)(1+t)28
2" (= +B) = (o — 3 — B)(1+ 17

u =

where B = /(3 —
if N = 1then
1 2uy — 1
= - 4+ ;
2 2—(Que—1)In(l +1)

if N > 1 then
L B(2u0 — 1) + 2Btg(BIn(1 + 1))
2 2B — (2ug — 1)tg(BIn (1 + 1))
where B = \/(N ). These solutions are defined (and bounded) on I only if

N=<land uy =3+ \/ + — N). This result shows that the restrictions of R, N
and u, in the theorems arise from the nature of the problem.
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