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ON PANCYCLIC LINE GRAPHS

LADISLAV NEBESKY, Praha

(Received August 18, 1977)

By a graph we mean a graph in the sense of [1] or [4]. If G is a graph, then we
denote by V(G), E(G), G, and L(G) its vertex set, edge set, complement, and line
graph, respectively. The number of vertices of a graph is called its order. A graph
containing a hamiltonian cycle is said to be hamiltonian.

In [6] the following theorem was proved:

Theorem 0. Let G be a graph of order p 2 5. Then either (a) G is connected
and L(G) is hamiltonian, or (b) G is connected and L(G) is hamiltonian.

A graph isomorphic with its complement is said to be self-complementary. Note
that if G is a self-complementary graph of order p, then p = 0 or 1 (mod 4).

Corollary 0. If G is a self-complementary graph of order p = 5, then L(G) is
hamiltonian.

In graph theory, various concepts stronger than that of a hamiltonian graph have
been studied. Thus, it is natural to ask how Theorem 0 can be improved.

A graph G is called strongly hamiltonian if every edge of G belongs to a hamil-
tonian cycle of G (cf. [1], Chapter 11). A graph G is called 1-hamiltonian if it is
hamiltonian, and for each u € ¥(G), G — u is also hamiltonian (cf. [3]). Unfortu-
nately, if we substitute “strongly hamiltonian” or “1-hamiltonian” for “hamiltonian”
in Theorem 0, the theorem does not hold for any p = 5. Consider the infinite sequence
of connected graphs in Fig. 1. The complements of these graphs are given in Fig. 2.
It is not difficult to see that the line graph of any graph in Figs. 1 or 2 is neither
strongly hamiltonian nor 1-hamiltonian.

A graph G of order p = 3 is said to be pancyclic if G contains a cycle of length n
for every integer n, 3 < n < p (cf. [2]). If G is a cycle of length five, then G, G, and
L(G) are isomorphic, and so neither L(G) nor L(G) are pancyclic. Fortunately, the
situation is different for p = 6:
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Fig. 1-2.

Theorem 1. Let G be a graph of order p = 6. Then either (a) G is connected and
L(G) is pancyclic, or (b) G is connected and L(G) is pancyclic.

A proof of this theorem is the main result of the present paper.

Following [6], we say that a graph F is an LH-subgraph of a graph G, if (i) F is
either trivial or eulerian, (ii) F is a subgraph of G, and (iii) every edge of G is in-
cident with a vertex of F. HARARY and NASH-WILLIAMS [5] proved that if G is a con-
nected graph with more than 2 edges, then L(G) is hamiltonian if and only if G
contains an LH-subgraph.

Proofs of the following three lemmas may be left to the reader:

Lemma 1. Let G be a graph belonging to the infinite sequence of graphs in Fig. 3
or to the infinite sequence of graphs in Fig. 4. Then L(G) is pancyclic.
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Fig. 3—4.
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Lemma 2. Let G, and G, be vertex-disjoint graphs, let G, be eulerian, and let G,
be a triangle. Consider a graph G obtained from G, and G, by identifyving one
vertex of G, with one vertex of G,. Then L(G) contains a cycle of length n for n = m,
m+ 1, m + 2 and m + 3, where m = lE(Gl)I. If L(G,) is pancyclic, then L(G)
is also pancyclic.

Lemma 3. Let F be an LH-subgraph of a graph G. Then L(G) contains a cycle
of every length n for |E(F)| <nZ [E(G)l If L(F) is pancyclic, then L(G) is also
pancyclic.

Let G be a graph of order p = 5. We shall say that G is an R-graph if there exist
distinct r, 5, t, u € V(G) such that rs, st, tu, ur € E(G) and, for every ve V(G — r —
— s — t — u), either rv e E(G) or tv € E(G).

Lemma 4. Let G be a graph of order p 2 5. If G is an R-graph. then L(G) is
pancyclic.

Proof. Let G be an R-graph, and let r, s, t and u be the same as in the definition
of an R-graph. For every edge of G — r — t we shall define a certain subgraph of G.

Let e€ E(G — r — t). Then there exist distinct v, w € ¥(G) such that e = ow. If
{rv, rw} = E(G), then we denote by A(e) the triangle induced by {r, v, w}. If {rv, rw} —
— E(G) # 0 and {tv, tw} = E(G), then we denote by A(e) the triangle induced by
{t.v,w}. Let {rv,rw} — E(G) & 0 * {tv, tw} — E(G). Since G is an R-graph,
there exists exactly one r — t path P in G with the property that P contains exactly
three edges, and one of these edges is vw This means that either E(P) = {ruv, vw, wt}
or E(P) = {rw, wo, vt}. We denote P by A(e).

Consider a matching M in G — r — s — f — u which is maximal with respect
to <. We denote by F, the subgraph of G induced by the set of edges

{rs, st, tu, ur} U U E(A(e)) .
eesM

Clearly, every edge of G is incident with a vertex of F,. It is obvious that there exists
Jj 2 2 such that (i) exactly one block of Fy, say B, is homeomorphic to the complete
bipartite graph K(2, j), and (ii) if F, % B, then every block of F, different from B is
a triangle.

We distinguish the following cases:

(I) Assume that j is even. Then F, is an LH-subgraph of G.

(TA) Assume that j = 2. Then B is a cycle of length four. Since p = 5, L(G) con-
tains a triangle. If F, = B, then it is clear that L(G) is pancyclic. If F, #+ B, then
L(F,) is pancyclic, and therefore L(G) is also pancyclic.

(IB) Assume that j % 2. Then j = 4 and B is isomorphic to one of the graphs in
the infinite sequence given in Fig. 3. Lemmas 1 and 2 imply that L(F,) is pancyclic.
Hence, L(G) is pancyclic.
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(II) Assume that j is odd. Then p = 6, and L(G) contains a cycle of length 3 and
a cycle of length 4. Obviously, M is a matchingin G — r — s — t. If M is a matching
in G — r — s — t which is maximal with respect to <, then we denote the graph
Fo — u by F. Otherwise, there exists u’ € V(G — r — s — t — u) incident with no
edge in M such that uu’ € E(G), and we denote by F the graph obtained from F, — u
by adding the triangle A(uu’). It is easy to see that F is an LH-subgraph of G.
Obviously, F contains the block B — u.

(ITA) Assume that B — u is a cycle. Then it is a cycle of length 5. It is clear that
L(G) is pancyclic.

(IIB) Assume that B — u is not a cycle. Then B — u is isomorphic to one of the
graphs in the infinite sequence given in Fig. 4. Hence, L(B — u) is pancyclic. This
implies that L(F) is pancyclic, and therefore L(G) is pancyclic, which completes the
proof.

Proof of Theorem 1. (I) Assume that p = 6. (Note that the list of graphs of order
six is to be found in [4], Appendix 1.) Since the complete graph of order six has exactly
15 edges, without loss of generality we shall assume that fE(G)] = 8.

(IA) Assume that G is disconnected. Then G consists of exactly two components,
and one of them is trivial. Hence, G contains a spanning star and 5 < |E(G)] <17
Clearly, G is connected and L(G) is pancyclic.

(IB) Assume that G is connected.

(IB1) Assume that G consists of at least three blocks. Then G consists of two
acyclic blocks and one complete block of order four. This means that either G or G
is an R-graph. According to Lemma 4, either L(G) or L(G) is pancyclic.

(IB2) Assume that G consists of two blocks. If one of the blocks is a triangle,
then G contains a spanning eulerian subgraph; otherwise, there is a cycle of length
four which is an LH-subgraph of G. Clearly, L(G) is pancyclic.

(IB3) Assume that G is 2-connected. Since p = 6, it is not difficult to see that
there exists a cycle which is an LH-subgraph of G. Therefore, L(G) contains a cycle
of length n for n = 6, ... and |E(G)|.

(IB3a) Assume that G contains a triangle, say T. Since G is 2-connected, T contains
at least two vertices of degree =3 in G. Hence, L(G) contains a cycle of length n for
n = 3,4 and 5. It is obvious that L(G) is pancyclic.

(IB3b) Assume that G does not contain any triangle. It is easy to see that G
contains a cycle C of length four. Since C contains a vertex of degree =3 in G, we
have that L(G) is pancyclic.

(IT) Assume that p = p, = 7, and that the theorem is proved for p = p, — 1.
The case when either G or G is complete is obvious. Assume that neither G nor G are
complete. Then there exists 7€ V(G) such that 1 Sd < p—-2and1 Sd<p -2,
where d or d denotes the degree of r in G or in G, respectively. By the induction
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assumption, at least one of the graphs G — r and G — r, say G,, is connected and
L(G,) is pancyclic. Since G — r is identical with G — r, we shall assume without loss
of generality that G, is identical with G — r. Thus G — r is connected and L(G —r)
is pancyclic. This means that L(G) contains a cycle of length n for n = 3, ... and
|E(G — r)|. Since L(G — r) is hamiltonian, there exists an LH-subgraph of G — r.
Consider such an LH-subgraph F of G — r which has the maximum order among
the LH-subgraphs of G — r.

Since d 2 1, G is connected. If L(G) is pancyclic, then the theorem is proved. We
shall assume that L(G) is not pancyclic.

Assume that F is an LH-subgraph of G. According to Lemma 3, L(G) contains
a cycle of every length n for lE(F)| <n< |E(G)| Since iE(F)! < [E(G - r)|, we
have that L(G) is pancyclic, which is a contradiction. Therefore, F is not an LH-
subgraph of G. This implies that there exists 1 € V(G — r) such that rt € E(G) and
t ¢ E(F).

(ITA) Assume that F is trivial. Then G — r is a star. It is clear that if d = 2, then
L(G) is pancyclic, which is a contradiction. If d = 1, then G is an R-graph, and thus G
is connected and — according to Lemma 4 — L(G) is pancyclic.

(IB) Assume that F is nontrivial. Then F is eulerian. We denote by F, or F, or F,,
the graph obtained from F by adding the vertex r or the vertex ¢ or the vertices r
and f, respectively.

Consider an arbitrary vertex v of F. Assume that rv, tv € E(G). Then F,, + rv +
+ tv + rt is an LH-subgraph of G. Lemmas 2 and 3 imply that L(G) is pancyclic,
which is a contradiction. Thus either rv € E(G) or tv € E(G).

Consider an arbitrary edge ww’ of F. If tw, tw’ € E(G), then F, — ww' + tw + tw’
is an LH-subgraph of G — r with more than [V(F)] vertices; a contradiction. Assume
that either rw, rw’ € E(G), or rw, tw’ € E(G), or rw’, tw € E(G). Then either F, —
—ww' + rw + rw', or F,, — ww' + rw + w’, or F,, — ww' + rw’ + tw, respec-
tively, is an LH-subgraph of G. Hence, L(G) contains a cycle of every length n,
for |E(F)| <n< |E(G)| This implies that L(G) is pancyclic, which is a contradic-
tion. Thus we have that either rw, tw € E(G) or rw’, tw' € E(G).

Since F contains a cycle, there exist distinct s, u € V(F) such that rs, ru, ts, tu €
€ E(G).

Letve V(G —r —s — t — u). If ve V(F), then — as we have proved — either
rve E(G) or tve E(G). If v ¢ V(F), then from the fact that F is an LH-subgraph
of G — r it follows that tv € E(G). Thus we have that G is an R-graph. Hence, G is
connected. According to Lemma 4, L(G) is pancyclic, which completes the proof.

In graph theory concepts stronger than that of a pancyclic graph have been studied,
first of all the concept of a vertex-pancyclic graph. A graph G of order p = 3 is
called vertex-pancyclic if for every u € V(G) and every n, 3 < n < p, there exists
a cycle of length n in G which contains u (cf. [2]). However, if we substitute “vertex-
pancyclic” for “pancyclic” in Theorem 1, the theorem does not hold. Consider the
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infinite sequence of graphs in Fig. 5. The complements of these graphs are given in
Fig. 6. It is easy to see that the line graph of none of the graphs in Figs. 5 or 6 is

vertex-pancyclic.

Fig. 5—6.

For p = 8, Corollary 0 can be improved as follows:
Corollary 1. If G is a self-complementary graph of order p 2 8, then L(G) is
pancyclic.

In [2] BonDy stated the metaconjecture that almost every nontrivial sufficient
condition for a graph to be hamiltonian is also a sufficient condition for a graph to
be pancyclic (a simple family of exceptional graphs is allowed). Corollaries 0 and 1
represent one of partial confirmations of Bondy’s metaconjecture.
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