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Czechoslovak Mathematical Journal, 28 (103) 1978, Praha 

STRUCTURE OF WEAKLY ABELIAN QUASIGROUPS 

TOMAS KEPKA, Praha 
(Received May 26, 1975) 

This paper is concerned with some properties of weakly abelian quasigroups and, 
it is a continuation of the last section from [4]. It will be shown (among other things) 
that the structure of weakly abelian D-quasigroups is very similar to that of distri­
butive quasigroups. 

First we recall some notions and definitions. A quasigroup Q is called 

— abelian if it satisfies the identity ab . cd ~ ac . bd (a) 
— an LWA-quasigroup if it satisfies aa . be = ab . ас (b) 
— an RWA-quasigroup if it satisfies be . aa = ba . ca (c) 
— a WA-quasigroup if it satisfies both (b) and (c) 
— a D-quasigroup if it satisfies ab . ca — ac . ba (d) 
— a WAD-quasigroup if it satisfies (b), (c) and (d) 
— unipotent if aa — bb for all a,b e Q 
— idempotent if aa = a for every ae Q 
— distributive if it is an idempotent WA-quasigroup 
— triabelian if every its subquasigroup which is generated by at most three elements 

ÎS abelian. 

if G is a groupoid and x eG then L^ and R^ will denote the left and right translation 
by -x, respectively. If Q is a quasigroup and XE Q then/(x) and e{x) will be the left 
and right local unit of x, respectively. If Q is a commutative Moufang loop then 
iV(ß) denotes the nucleus of Q and a mapping g oï Q into Q is said to be nuclear 
provided that x~^ . g(x) E N(Q) for each x e Q. As is easy to see, the set of all nuc­
lear permutations of ß is a subgroup in the symmetric group SQ. 

The following lemma is an easy consequence of [5, Theorem 2]. 

Lemma 1. Let Q be a commutative loop and g a mapping of Q into Q. Then 
the following conditions are equivalent: 

(i) {g{a) . a) (be) = {g{a), b) (ac) for all a, b, с E Q. 
(ii) Q is a Moufang loop and g is nuclear. 
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Theorem 1. Let Q be a quasigroup. The following conditions are equivalent: 
(i) Q is a WA-quasigroup and there is a e Q such that ab . ca = ac . ba for all 

b, с G Q. 
(ii) Q is a WA-quasigroup and Q is isotopic to a commutative Moufang loop. 

(iii) Q is a WA-quasigroup and Q is isotopic to a Moufang loop. 
(iv) There are a commutative Moufang loop Q(o), (p, ф E Aut ß(o) and g e Q 

such that (рф = фср, срф"^ is a nuclear automorphism of ß(o) and ab ~ {(p{a) о 
о ф{Ь)) о g for all a, b e Q. 

(v) Q is a WAD-quasigroup. 

Proof, (i) implies (ii). If b, с e Q then (aa . ab) {ас . aa) = {aa . ab) {aa . ca) = 
= [aa . aa) [ab . ca) = [aa . aa) [ac . ba) = [aa . ac) [aa . ba) = [aa . ac) [ab . aa). 
Hence [aa , x)[y . aa) = [aa . y) [x . aa) for all x, у e Q and we can use [4, Proposi­
tion 4.8] and Lemma 1. 

The implication (ii) implies (iii) is trivial. 
(iii) implies (iv). Let xe Q and a о b == Rxx^[a) . L~J^[b) for all a, b e Q. As is 

proved in [4], Q[o) is a CI-loop. However, g(o) is a Moufang loop, hence it is an 
IP-loop, and consequently Q(o) is commutative. The rest follows from [4, Proposition 
4.8, Theorem 4.9]. 

(iv) implies (v). Since (рф"^ is a nuclear mapping and срф — фср, ср^ф'-^ = 
= (рф''^(рф~^ is nuclear. According to Lemma 1, we can write ab . ca — [i^(p^[a) о 
о срф[Ь)) о (р[д)) о [[ф(р[с) о ф^[а)) о ф[д))) о g = [[[(р\а) о (рф[Ь)) о [(рф[с) о ф\а))) о 
о (Ф) о ф[д))) о g = [[[(р^[а) о (рф[с)) о (р[д)) о [[ф(р[Ь) о ф^[а)) о ф[д))) од = ас . ba 
for all а, Ь, с е Q. Now the proof of the theorem is complete, the last imphcation 
being trivial. 

Let Q be a WAD-quasigroup. A tetrad (Ô(o), ç, ф, g) is called an arithmetical 
form of Q if it satisfies the condition (iv) from Theorem L 

Lemma 2. Let Q be a WAD-quasigroup and x e Q. Then there exists an arithme­
tical form (ß(o), (p, Ф, g) of Q such that the element xx . xx is equal to the unit 
of Q[O) and g = [xx . xx) [xx . xx). 

Proof. The lemma follows from the proof of [4, Theorem 4.9]. 

Proposition L Let Q be a commutative WA-quasigroup. Then Q is a WAD-
quasigroup and (p = Ф for every arithmetical form (ô(o), (p, ф, g) of Q. 

Proof . Obvious. 

Proposition 2. Every unipotent WA-quasigroup is abelian. 

Proof. Let ß be a unipotent WA-quasigroup. There is j e Q such that aa = j 
for each a e Q. Put x о y = ^ 7 ^ ^ ) • ^1^{у) ^^^ ^^^ ^^ У ^ Q- Then Q[o) is a loop, 
j is the unit of Q[o) and [a[a) о a) о [b о c) = [(x[a) о b) о [a о c) for all a, b, с e Q 
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and a~RjLJ^ (see [4, Proposition 4.8]). Further, a{a) с a = RJ^RjLj^(^a) . 
* ̂ 7 ^{^) " ^7^0^) • ^7^(^) ~ J ^^^ every a e Q, and hence с = a(a) о (a о с) for every 
ĉ  G ß. On the other hand, 

a^(a) о (a(a) о (c о a)) = (a^(ö) о j) о (a(ö) о (с о а)) = 

= (a^(ö) о а(а)) о (с о а) = (а^(а) о с) о ((х(а) о <:?) = а^(а) о с . 

Thus с = а(а) о (с о л) = а(а) о (а о с) and а о с = с о а. We have proved that Q(o) 
is commutative, and therefore Q[o) is a commutative Moufang loop by [4, Proposition 
4.1]. By Lemma 1, а(а) = a~^ is a nuclear mapping, so that a~^ eN(Q[o)) for every 
^ 6 g. However, since ö(o) is a commutative Moufang loop, a о a о a e N{Q{o)) for 
every a e Q ([2, pg. 128]), and so N{Q(O)) = Q(o). Thus ö(o) is an abelian group 
and б is an abelian quasigroup by [4, Proposition 4.3]. 

Proposition 3. Let Q be a WÄ-quasigroup such that the mapping x i—> xx is a per-
mutation. Then Q is a WAD-quasigroup. 

Proof. Let (x(x) = XX and a ^ b = a~^{ab) for all x, a, b e Q. Then (a * b) * 
* (a * c) = oc-'{oc-\ab) . a-'{ac)) = {(х'^а) . ot~\b)) {oc'^a) . a~'{c)) = {a~\a) . 
. oc~^(a)) (oc~^(b) . a""^(c)) = a~^(a) . (a~^(b) . oc~^-(c)) = a * (6 * c), since ß is 
a WA-quasigroup and a is an automorphism of Q. Similarly we can show (b * a) * 
* (c * <я) = (Ь * с) * fl, and hence ß(*) is a distributive quasigroup. As is easy to 
see, a is an automorphism of ö(*) and ab . ca = (a^(a) * a^(b)) * (a^(c) * a^(a)) for 
all a, b, с e Q. Hence it is enough to prove that every distributive quasigroup is 
a D-quasigroup. However, every distributive quasigroup is triabelian, as follows 
from a more general theorem proved by BELOUSOV. Here we give an other direct 
proof of this theorem. 

Theorem. [1, pg. 147]. Let Q be a distributive quasigroup and let a,b, c, de Q 
be such that ab . cd — ac . bd. Then the subquasigroup generated by these elements 
is abelian. 

Proof. The proof is divided into several lemmas. First, it is easy to observe that 
the group generated by all the translations L^, R^, x e Q, is contained in the group 
Aut Q. If a, b, ...e Q then S(a, b, ...) will denote the subquasigroup generated 
by a, b, ... . 

Lemma. Let a, b, c, d e Q and ab . cd = ac . bd. Then ax . yd = ay . xd for all 
X, у e S(a, b, c, d). 

Proof. If /î = RJ^LIcRcdLa then au . cd = ac. h(u) d for every и e Q. Further, 
ab . cd = ac . bd, aa . cd = ac , ad, ac . cd = ac . cd and ad , cd = ac . dd. Hence 
h(^a) = a, h(b) = b, h(c) = с and h(d) = d. Since h is an automorphism, the set 
P = {xe Q\ h(x) = x} is a subquasigroup and S{a, b, c, d) ^ P. Thus ax . cd = 
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= ас .xd for every x G S{a, b, c, d). By symmetry, ax . bd — ab . xd for every 
S(a, b, c, (i) and the result easily follows. X G 

Lemma. Let a, b, c, d e Q and ab . cd = «с . bd. Then zx . yd = zy . xd and 
ax . yv = ay . xi; / o r a// x, у e S[a, b, c, rf), z G 5'(Д, Ь, С) and v e 5(Ь, с, d). 

Proof. Let X, j ; G S(a, b, c, J). By the preceding lemma, ax . yd — ay . xd. The 
set P •= [u E Q\UX . yd — uy . xd} is a subquasigroup and (7, x, j ; G P. Hence 
их , yd = uy .xd for every w G S(a, x, v). Now let y = ba. Then Ь G 5(a, x, y), 
and so bx . (ba . d) = (b . ba) . xd. From this we obtain the equality bp . qd = 
= bq . pd for all p, q e (b, x, ba, d). If x = с then iS'(b, x, ba, d) = S[a, b, c, <i) and 
bp . qd = bq . pd for all /?, ^ G S(a, b, c, d). Using the symmetry, we get the equality 
cp . qd = cq . pd for all p, q E S(a, b, c, d). The rest of the proof is now clear. 

Lemma. Q is a D-quasigroup. 

Proof. Since aa . be = ab . ас, ab . ca = ас . ba by the preceding lemma. 

Now to the proof of the theorem itself. Let a, b, c, d E Q and ab . cd = ас . bd. 
By the preceding lemmas, zx . yd = zy . xd and dx . yd = dy . xd for all x, у E 
E S(a, b, c, d) and z E S(a, b, c). Hence их . yd = uy . xd for all u, x, у E S(a, b, c, d). 
Similarly, ax . yu = ay . xu for all u, x, у E S(a, b, c, d). In particular, ad . be = 
= ab . dc and ac . db — ad . cb. Hence, as was proved above, их . ye = uy . xc 
and их . yb = uy . xb for all u, x, у E S(a, b, c, d). From this, dc . ab = da . cb, 
so that их . ya = uy . xa for all u, x, у E S(a, b, c, d) and the result follows easily. 

Let б be a quasigroup. A mapping g (h) of Q into Q is called left (right) regular 
if there exists a mapping ^* (/z*) such that ^(xj^) = ^*(x) . y (h(xy) = x . h^(y)). 
A mapping к is called middle regular if there is a mapping /c* such that k(x) . у = 
= X . /c*(j). By LQ we shall denote the set of all the left regular mappings and LQ 
will be the set of all the corresponding mappings g*. Similarly we define RQ, RQ, FQ 
and FQ. AS is easy to see, mappings from LQ, LQ, RQ, RQ, FQ and FQ are permuta­
tions and all these sets are subgroups in SQ. 

Lemma 3. Let Q be a WAD-quasigroup and let (Q(o), cp, ф, g) be an arithmetical 
form of Q. Then 

(i) LQ = Ll = RQ = Rl = FQ = F^, 
(ii) / / к is a mapping of Q into Q then к E LQ iff there is a E N(Q(o)) such that 

k(x) = X о a for every x E Q. 

Proof. Let к E LQ. Then k(((p(a) о ф(Ь)) о g) = (cp /c*(a) о ф(Ь)) о g for all a, b E Q. 
Substituting ф''^[д~^) for b, we obtain the equality к (p(a) = cp k^(a). Hence 
k((a о b) о g) = (k(a) ob) о g for all a, b E Q, so that k(a о g) = k(a) о g and 
k(a о b) == k(a) о b. Thus k(b) = k(j) о b and the equality k(j) о (a о b) = (k(j) о a) о 
о b yields k[j) G N(Q(O)). The rest is clear. 
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Let ß be a commutative Moufang loop. We shall say that Q is 3-elementary if 
x"̂  = j for every x e Q, where j is the unit of Q. 

Proposition 4. Let Q be a commutative WA-quasigroup. The following conditions 
are equivalent: 

(i) aa . ax = bb . bx for all c/, b, x e Q. 
(ii) aa . ax = XX . xx for all a, x e Q. 

(iii) Q is isotonic to a commutative 3~elementary Moufang loop, 
(iv) Every commutative Moufang loop isotopic to Q is З-ектеШагу. 

Proof. The implication (i) implies (ii) is trivial. 
(ii) implies (iii). Let (ô(o), (p, (p, g) be an arithmetical form of Q (see Proposition l) 

and j the unit of Q{o). Then 

{{{(p^{a) о ip^{a)) о (p^{a)) о {(p{g) о (p{g))) о g = aa . aj - jj . jj = 

= (ф(е/) о (p{g)) о g . 

Hence (p^'{a) о (p^{a) о (p^'{a) = j , so that a о a о a = j . 
(iii) imphes (iv). As is well known, isotopic commutative Moufang loops are 

isomorphic. 
(iv) imphes (i). Let {Q{o), (p, (p, g) be an arithmetical form of ß. Then aa . ax = 

= ((((^^(^) ° ̂ \^)) ° (^ i^) ° ^4^))) ° (Ф) ° ̂ Ш) - 9 = {(p\y^) о {(p{g) о (p{g))) о g 
by (iv) and with respect to the diassociativity of ß(o). Thus aa . ax = bb . bx. 

A commutative WA-quasigroup satisfying the equivalent conditions of the 
preceding proposition will be called primitive. 

Proposition 5. Let Q be a WAD-quasigroup. Define a binary relation r on Q by 
a Y b iff a = k(b)for some к e LQ. Then 

(i) // (ô(°)î Ф? 'A? 9) is ^^ arithmetical form of Q and a, b e Q then a r b iff 
b = a о X for some x e iV(ß(o)), 

(ii) r is a normal congruence relation of ß , 
(iii) the factorquasigroup Qjr is a primitive commutative WA-quasigroup, 
(iv) // a class A of r is a subquasigroup then A is an abelian quasigroup, 
(v) if a r aa for an a e Q then the class A = {x e ß I x r (7] is an abelian sub­

quasigroup of Q. 

Proof, (i) is obvious from Lemma 3. 

(ii) Let (ß(o), (p, Ф, g) be an arithmetical form of ß and a, b, с e Q. If ax b then 
b = a о X for an X 6 iV(ß(o)) and be = ((p(a о x) о ф{сУ) од — ((ф(^) о Ф{^)) ° д) ̂  
о (р[х) = ас о (р{х), since <p(x) e Ar(ß(o)). The rest can be proved similarly. 

(iii) Let (ß(o), (p, ф, g) be an arithmetical form of ß and k[a) = xl/[a~^ о (рф~^[а)) 
for every a e Q. Since (рф~^ is a nuclear mapping, k[a) e iV(ß(o)). On the other hand, 
ba о k{a) == {{cp{b) о ф{а)) о g) о k{a) = {(p{b) о {ф{а) о к{а))) о g = {cp{b) о (р{а)) о g = 

185 



= ab о k{b). Hence ab г ba for all a, b G Q and Qjr is commutative. Finally, x о x о 
о xe iV(ß(o)) for each x e ß , г is a normal congruence of ß(o), ß(o)/r is S-elementary 
and ß(o)/r is isotopic to ß/r. According to Proposition 4, ß/r is primitive. 

(iv) Let X e A and J = xx . xx. As Л is a subquasigroup, j e A. Consider 
(ß(o)> 9, Ф, д)^ the arithmetical form corresponding to j in the sense of Lemma 2. 
Then j is the unit of ß(o) and (i) yields the equality A = iV(ß(o)). However, g = 
= jj E A, and so (/l(o), (pjA, ypjA, g) is an arithmetical form of A. Since A{o) is an 
abelian group, A is an abelian quasigroup. Now the proof is complete, because (v) 
is a straightforward consequence of (iv). 

Corollary 1. (i) Every simple WAD-quasigroup is either abelian or commutative 
and primitive. 

(ii) Every finite simple WA-quasigroup is a WAD-quasigroup. 

Proof, (i) follows immediately from Proposition 5. 

(ii) Let ß be a finite simple WA-quasigroup and k(x) — xx for every x G Q. 
Since к is an endomorphism of ß and ß is simple, к is one-to-one or /c(x) = k(y) 
for all X, у e Q. In the first case, /c(ß) = ß (because of the finiteness of ß) and ß is 
a WAD-quasigroup by Proposition 3. In the second case, ß is unipotent and hence 
abelian by Proposition 2. 

Theorem 2. Let Q be a WA-quasigroup. Then it is a WAD-quasigroup, provided 

at least one of the following conditions holds: 

(i) ß is commutative. 
(ii) ß is unipotent. 

(iii) The mapping x i—> xx is biunique, 
(iv) ß is finite and simple. 
(v) ß is idempotent. 

Proof. Apply Propositions 1, 2, 3 and Corollary L 

Proposition 6. Let Q be a WAD-quasigroup with an idempotent j G Q and let 
(ß(o), (p, ф,]) be the arithmetical form, corresponding to j in the sense of Lemma 2. 
For all a e Q let k{a) = ф(а~^ о сф~^{а)). Then 

(i) к is an endomorphism of ß(o) and k(a) G N[Q(o))for every a G Q, 
(ii) к is an endomorphism of Q and k(Q) is an abelian quasigroup, 

(iii) k{a) = k{b) iff ab = ba, 
(iv) the set A = {a G Q\ äj = ja} is a normal commutative subquasigroup of Q. 

Proof, (i) Clearly, (p{a) =^ \l/{a) о k{a) for each a G Q. Hence {xl/{a) о \l/{b)) о 
о k{a о Ь) = il/{a о b) о k{a о b) = (p{a о b) = (p{a) о ф) = {ф{а) о к{а)) о {ф{Ь) о 
о к{Ь)) = {ф{а) о ф{Ь)) о {к{а) о к(Ь)), since both к{а) and k(b) belong to iV(ß(o)). 

Thus k{{a о b) = k{a) о k{b). 
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(ii) Let a e Q, Then kcp = cpk, as follows from the definition of k, and con­
sequently 

Ф k(a) о /c^(a) == (p k(a) = к (p[a) = к ф(^а) о k^[a) . 

Thus фк = кф and /с(аЬ) = k{(p{a) о ф{Ь)) = ср к[а) о ф к(Ь) = /с(а) . к(Ь). Let 
Б = k{Q). As /с is an endomorphism of both Q(o) and Q, Б(о) is a subloop and В 
is a subquasigroup. However, Б(о) Ç iV(ß(o)) and (р{В) ç Б, |/^(Б) ç Б. Now it is 
obvious that {В(о), (p\ В, ф \В, j) is an arithmetical form of В and that В is abelian. 

(iii) If ab = ba then 

(iA(a) о ф{Ь)) о /c(ö) = (p(fl) о ф{Ь) = (p{b) о ф{а) = {ф{Ь) о ф{а)) о к{Ь), 

so that к[а) = k{b). Conversely, if k(a) = /с(Ь) then the equality ab о k[b) = ba о 
о k(a) yields ab == ba. 

(iv) This is obvious from (ii) and (iii). 

A quasigroup Q is called anticommutative if ab ф ba, whenever a, b e Q and 
a Ф b. 

Corollary 2. Every anticommutative WAD-quasigroup is abelian. 

Proof. Let Q be an anticommutative WAD-quasigroup, XEQ and a^b = 
= L~^(a) . L~^(b) for all a,b e Q. Then ß(*) is a WAD-quasigroup with a left 
unit and (a * ib) * (c * d) = U^^L^^^J^ab . cd) for all a, b, c, de Q. As is easy 
to see, ß(*) is anticommutative, ß(*) has an idempotent element and ß(*) is abelian 
iff" ß is so. Hence we can assume that ß contains at least one idempotent element. 
Let к be the endomorphism of ß defined in Proposition 6. Then k{a) = k{b) iff 
ab = ba and /c(ß) is an abelian quasigroup. Since ß is anticommutative, к is 
one-to-one, and therefore ß is isomorphic to k[Q). 

Proposition 7. Let Q be a WAD-quasigroup with an idempotent element j , A — 
= [x e Q\ ax . be = ab . jc for some a, b, с e Q} and let P be the subquasigroup 
<^f ß generated by A. Then 

(i) P is a normal subquasigroup of Q, 
(ii) the factorquasigroup QjP is abelian, 

(iii) P is a primitive commutative WAD-quasigroup. 

Proof. The proof is similar to that of [1, Theorem 8.7]. Let (ß(o), (p, ф,]) be the 
arithmetical form of ß corresponding to j . lï a,b,ce Q then there is a uniquely 
determined element h{a, b, c)e Q such that (a о b) о с = (a о h{a, b, c)) o{b о с). 
Let Б(о) be the subloop of ß(o) generated by all the elements h[a, b, c), a, b, ce Q. 
Since k(h[a, b, c)) = /i(/c(a), k{b), /c(c)) for every endomorphism к of ß(o), В(о) is 
a normal subloop in ß(o) and Б is a normal subquasigroup in ß . The factorloop 
о(о)/Б(о) is clearly an abelian group, and hence the factorquasigroup QJB is abelian. 
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Further, according to [ l , Lemma 8.6], 

(ph{a, 6, c) = h{(p{a), (p{b), (p{e)) = 

= к{ф{а) о k{a), ф{Ь) о /с(Ь), ф{с) о к{е)) = фк{а, Ь, с) 

[к is the endomorphism defined in Proposition 6) and x о x о x — j for every x e B. 
Hence В is a commutative primitive WAD-quasigroup. Now it remains to prove that 
В = P. To this purpose it suffices to show that ab .je = ah[a, Ь, с) . be for all 
a, b, e e Q. Indeed, let ax , be — ab .je. Then 

{(p\a) о <p^l>{Ъ)) о ф\с) = {<p^{a} о срф{х)) о {срф{Ь) о ф\с)). 

However, (р^(а) = (р{ф{а) о к^а)) = (рф(а) о (р к{а), ф^'{с) = (рф{с) о ф к{е~^) and 
<р /c(fl), î/̂  к(с~^) belong to iV(ö(o)). Thus (a о x) о (Ь о с) = (a о Ь) о с. 

If Q is а quasigroup then the multiplication group Ä{Q) of Q is the subgroup of SQ 
generated by all the translations L^, JR ,̂ x e Q. In [3], it is proved that A{Q) is 
a solvable group, if Q is a finite distributive quasigroup. The following proposition 
is a generalization of this result. 

Proposition 8. Let Q be a finite WAD-quasigroup. Then A[Q) is a solvable group. 

Proof. Let (ß(o), (p, Ф, g) be an arithmetical form of ß, G = ^(ô(^)) and let H 
be the subgroup of SQ generated by G u [cp, ф]. Since cp, ф are automorphisms of 
Q(o) and (рф = ф(ру G is a normal subgroup in H and HJG is an abelian group. 
On the other hand, the multiplication group of a finite commutative Moufang loop 
is nilpotent (see [2, pg. 106]), and consequently H is solvable. Finally, as is easy 
to see, ^ ( ß ) ^ Я and the proof is complete. 
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