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In the classical theory of harmonic functions, some sets for which the Dirichlet
problem is not solvable for any continuous function on their boundary are known.
Nevertheless, we can assign to those functions something like a solution in a rea-
sonable way. For the first time, it has been shown by M. V. KELDYCH in [6] that this
““generalized solution™ is in fact completely determined on the subspace of all “solv-
able functions”. This result is in a certain sense surprising because the set of all
“solvable functions” is in the uniform topology generally only a closed set of the
first category, while the set of all “non-solvable functions” is of the second category.

Given a bounded open set U = R” and a continuous function f on the boundary U*
of U, then H}] stands for the generalized solution of the Dirichlet problem for f
obtained by the Perron method. Let F be a linear and positive map associating with
any continuous function f on U* the harmonic function F, on U satisfying F, = f
if f is continuous on U and harmonic in U. The Keldych theorem states that F, = HY
for any continuous f on U*.

An extension of the classical theorem of Keldych was given by M. BRELOT in [3]
for a more general setting of the axiomatic theory including the domination axiom D,
and in the framework of the general Bauer’s axiomatic by the author in [10]. It was
shown that the Brelot-Keldych theorem remains valid for any open set with a “neg-
ligible” set of all irregular points and this result is the best possible.

In the present paper we study certain topologies on the space of all continuous
functions and we try to explain the functional-theoretical background of the Brelot-
Keldych theorem. Also some new results will be derived. Let us remark at this point
that an operator approach and methods of functional analysis were used in Landkof’s
book [8] to prove Keldych theorem in the classical case.

1. THE BRELOT — KELDYCH THEOREM
In what follows, (X s Jf) denotes a strong harmonic space in the sense of Bauer’s

axiomatic [1], or more generally any P-harmonic space with countable base in the
sense of CONSTANTINESCU and CORNEA [4].
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If U = X is an open relatively compact set, then ¢SV is the balayaged measure
of the Dirac measure ¢, on the complement CU of U, and H‘f’ stands for the general-
ized solution defined on the closure U of U by H}(x) = ¢Y(f) for any fe C(U*)
(= the space of all continuous functions on the boundary U* of U). A point z € U*
is called a regular boundary point of U if e£V = ¢,. The set of all regular points
will be denoted by U, while U} = U*\ U, will be the set of all irregular points.
A set U is termed regular if U},, = U*, i.e.if for any f € C(U*) there exists a solution
of the Dirichlet problem, which is non-negative if f is. We shall say that a set M < U*
is negligible if M is of ¢£V-measure zero for every x € U.

Let us denote by S = S(U) the set of all continuous functions on U which are
superharmonic in U. This min-stable convex cone determines a partial ordering on
the set of all Radon measures on U and the question raised by E. G. EFFros and
J.L.KAZDAN in [5] was whether the cone S is simplicial. This problem was affirmati-
vely solved by J. BLIEDTNER and W. HANSEN in [2]. Thus, for every x € U there is
a unique minimal measure 83, and it was shown in [2] that the following statements
are equivalent: :

(i) U} is negligible,
(i) oY = Y for any xe U,
(iii) &Y(U%) = 0 for every xe U

(see [2], Theorem 4.1).

It is almost obvious that the condition
(iv) 6Y = &Y for every xe U

is also equivalent with (i). Indeed, if x € U, and (iv) is assumed, then using the results
from [2] we get (5¥)Y = (67)°Y = 6Y = e£". Hence, &£"(U};) = 0. (Compare also
[10], Théoréme 2.7.)

The Choquet boundary ChgU is defined as the set of all x € U* such that 6Y = e,.
Of course, ChsU < U},,. We know, in fact, that for any x € U\ ChgU, 6Y is exactly
the balayaged measure of ¢, on the Choquet boundary. Comparing the definition of
the regular points and the Choquet boundary with the above result, we obtain the
following important lemma.

Lemma 1. If U} is negligib}e, then ChgU = UZX_.
4

Let us remark that if H(U) := S(U) n —S(U) is an admissible subspace of C(U)
(i.e. it contains the constant functions and separates the points of U), then H(U) is
also simplicial, ChypU = ChgU, and for any z € ChgU there is a function h € H(U)
such that h(z) = 0 and h > 0 otherwise on U ([2], Corollary 3.8).

Let #/(U) be the set of all harmonic functions on U. A Keldych operator on U is
a positive and linear mapping

L: C(U*) » #(U)
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such that L(s N U*) < s on U for any se S(U). (Here, and in the sequel, f / A
stands for the restriction of f on A.) Obviously, L(h /' U*) = h on U for every
Keldych operator and any h € H(U). If H(U) is admissible and Uj;, negligible, then
the last condition turns out to be sufficient for a positive linear operator to be
Keldych. Indeed, let L be such an operator. Then Hy(x) = 62(w) < Lw(x) < w(x)
for any x € U and any w € W(U), where W(U) is the set of all functions of the form
min (hy, ..., h,), h;€ H(U). Hence, lim Lw(x) = w(z) for any z e U},. Since the set

of all restrictions of W(U) — W(U) is uniformly dense in C(U*), we can conclude
that lim Lf(x) = f(z) for any ze U}, and fe C(U*). It follows that, for a given

Xz

se S(U), lim (s(x) — Ls(x)) = 0 for every ze U}, and the minimum principle

([1], Satz 4.4.6) yields the statement.

Clearly, f - H} is a Keldych operator, and if we define D}(x) = 67(f) for any
x € U and any f e C(U*), then f - Dy is also a Keldych operator. Another type of
generalized solutions was introduced in [10]. The so-called principal solution L}
is again a Keldych operator. Possibly there are more Keldych operators on a set U.
We shall say that U is a Keldych set if every Keldych operator on U coincides with
the generalized Perron solution HY. As a consequence of the results in [10] and
Lemma 1 we obtain the following characterization of Keldych sets.

Proposition 2. The following assertions are equivalent:
(i) U}, is negligible,
v) U is a Keldych set,
(v) y
(vi) DY = HY on U for any fe C(U*),
(vii) L} = H} on U for any fe C(U*),
(viii) (e$Y)°Y = &Y for any x e U,
(ix) eU(f) = e$Y(F) on U for any fe C(U*), where F = &£°(f) N U*.

Proposition 2 is in fact a generalization of the classical theorem of Keldych. Let
us mention briefly the ideas of the proof of this Brelot-Keldych theorem. In the clas-
sical case of harmonic functions, M. V. Keldych in 1941 constructed for any regular
point z a non-negative function from H( l_]) which vanishes exactly at z. This result
together with the minimum principle for harmonic functions leads easily to the proof
that any open bounded set is Keldych. The generalization to the axiomatic theory
with axiom D was made by M. Brelot in 1960, the construction of the desirable
function though with weakened properties being substantially simplified. Returning
to the classical case, N. S. LANDKOF presented in 1965 an operator approach. Using
a characterization of the annihilator of a set H(U) in the space of all measures, the
crucial step consists in the proof that lim L f(x) = f(z) if Lis a Keldych operator,

Xz
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fe€ C(U*) and z is a regular point of U. This observation together with the minimum
principle imply that any open set is Keldych. Taking account of the inequalities
Lw < HY, < w for any we W(U) and the fact that the set of all differences of such
functions is dense in C(U*), we get again that lim Lf(x) = f(z) for any z € ChsU

as above. This yields the proof of the Brelot-Keldych theorem in the general axiomatic
as is made in [10].

2. TOPOLOGIES ON C(U%)

In what follows, let us observe the following notation. U < X will be a fixed
open relatively compact set, C = C(U*) will denote the set of all continuous functions
on U*, and Cy = C will be the subspace of C consisting of the restrictions of the
functions from H(U) to U*. Thus, Cg contains continuous functions for which the
Dirichlet problem is always solvable, and the set U is regular if and only if Cx = C.
The Banach subgroup theorem ([7], Theorem 10.5) gives the following characteri-
zation.

Proposition 3. If we consider C with the supremum norm, then Cyg is closed in C,
and Cy is of the second category in C if and only if U is regular.

Given any Keldych operator L on U, the mapping L, : f - Lf(x) is a positive
Radon measure on U* for any x € U. Let us denote by 9 the collection of all such
measures. Thus, u € M if and only if there is a Keldych operator Lon U and xe U
such that u = L,. Evidently, {85”; xe U} = M. Any element of M is continuous
on the Banach space C with the uniform norm, and on the subspace Cy coincides
with the Perron solution (L,(f) = &5"(f) for any f € Cg and x € U). Moreover, any L,
is representing measure for x with respect to S(U), i.e. L, € .#,(S) in the notation
of [2]. But if the set U is not regular, then Cg is only of the first category in C, while
C \ Cyis of the second category. Hence, the uniform topology on C is too strong and
we shall seek other topologies on C which are weaker than the uniform one. One
candidate is the weak-topology on C given by the duality of C and the space of Radon
measures. However, this topology is still too strong. The set Cy is again weak-closed,
because the weak closure of Cy and the uniform closure of Cy coincide. Nevertheless,
if U* is infinite, then C is of the first category in the weak topology, and thus Cg is so.
The question whether there is a topology on C for which Cy is dense in C and all
elements of I are continuous can be trivially answered.

Theorem 4. If there is a topology t on C such that Cy is t-dense in C and any
element of M is t-continuous, then U} is negligible.
Proof. Assume fe C(U*) and take a net {f,} = Cg such that f, > f in t. Then

u(f,) = u(f) for any pe M. In particular, &5°(f,) > ¢£U(f) and 8Y(f,) > o(f).
Since £5Y(f,) = 6Y(f,), it follows that DY = H§ on U and we apply Proposition 2.
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Subsequently, if U} is negligible, we shall show that there are some topologies
on C with the properties mentioned in Theorem 4. And if there are such topologies,
then the weak w(C, SUi)—topology, which is the weakest topology making all elements
of M continuous, surely has also the desirable properties. However, in searching
for such topologies we would like to find the strongest one possible.

Before doing so we digress to a more general setting. Using the Choquet theory
we derive a certain characterization of simplicial cones which permits one to introduce
the above mentioned topology on C. (All the material in detail could be found in [2].)
Let S be a min-stable admissible convex cone of continuous functions on a compact
metrizable space X. The cone S determines a partial ordering on the space of positive
Radon measures on X. Recall that S is called simplicial if for every x € X there is
a unique minimal measure p, representing a point x. Further, denote by B = B(X)
the set of all boundary measures on X, i.e. the set of all measures x on X such that
Iul (X \ ChgX) = 0. We note that a positive Radon measure is minimal if and only
if it is a boundary measure. Let H(S) be the space of all continuous S-affine func-
tions on X. A (signed) Radon measure x on X is a H(S)-dependence if ph = 0 for
any h e H(S). Clearly, the set H*(X) of all H(S)-dependences on X is the annihilator
of H(S) in the duality of C = C(X) and the space M(X) of Radon measures on X.
Let us remark that B(X) and H*(X) are linear subspaces of M(X).

Theorem 5. The following assertions are equivalent:

(i) S is a simplicial cone.
(ii) H(S) is a w(C, B)-dense subset of C.
(iii) X does not admit any non-zero boundary H(S)-dependence, i.e. B(X) n
n HY(X) = {0}.
(iv) H(S) separates the minimal measures on X.
(v) For any x € X, H(S) separates the minimal measures representing a point x.

Proof. According to [7], Theorem 16.5, (ii) and (iii) are equivalent. Obviously,
(iv) implies.(v), and equivalence of (iii) and (iv) is trivial. Now assume that S is
a simplicial cone and take any minimal measure u. Using Proposition 1.1 of [2],
we get u(s) = p(sup {te —S; t < s}) for any s € S. Theorem 2.1 of [2] implies that
the set of all ¢ in the brackets is upper directed and, moreover,

u(s) = sup {u(t); te =S, t < s} < sup {u(h); he H(S), h < s} < u(s).

Hence p(s) = sup {u(h); h € H(S), h < s} for any se S. By the density of S — S
in C one concludes that (i) implies (iv). The last implication (v) = (i) is an immediate
consequence of the definition of simliciality (compare also Proposition 2.4 of [2]).

Remark. There are many other characterizations of simplicial cones. One of them can be
stated (in the case when H(S) is uniformly closed and contains constants and separates the points
of X) that S is simplicial if and only if H(S) is a Lindenstrauss (or an L,-predual) space. In parti-
cular, it follows that the Banach space H(U) is, in any axiomatic of harmonic functions, a Linden-
strauss space.
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Returning to our case of the cone of continuous superharmonic functions, taking
into account the relation between Cy and H( U) and regarding measures on U with
support in U* as measures on U*, we can state that Cg is a w(C, B(U*))-dense subset
of C. Of course, B(U*) signifies the set of all Radon measures on U* supported by
the Choquet boundary of U. We know that U/ is negligible if and only if M < B(U*).

Corollary 6. If U}, is negligible, then Cy is a w(C, M)-dense subset of C.

Proof. We have ChsU = U}, and M < B(U*).

The weak w(C, M)-topology in the case of U} negligible can be described by the
system of pseudo-norms {f 1 [¢5%(f)|; x € U} and is the weakest topology on C
such that H}(x) is a continuous function of f for every x € U. The density of Cyg
in C for this topology was first established by M. Brelot in the general axiomatic
theory with axiom D ([3], Théoréme 3). Let us mention only that in this case all
pseudo-norms f i~ |s,‘§”( f )‘ are equivalent for U connected.

The space C(U*) with the weak w(C, B(U*))-topology is a locally convex linear
topological space, and it is Hausdorff one if and only if U* is the Silov boundary
of S. Indeed, it is clear that the w(C, B(U*))-topology is Hausdorff if and only if the
set B(U*) distinguishes continuous functions on U*. If ChgU is dense in U*, and
f e C(U*) is not identically zero, then there is z € ChsU such that f(z) =% 0. Hence,
for ¢, € B(U*) we have ¢,(f) # 0. On the other hand, if ChgU is not dense in U*,
then there is a point z and an fe C(U*) satisfying 0 < f < 1 on U*, f(z) = 1,
f = 0 on ChgU. Thus, for any p e B(U*) we have puf = 0.

We know that the set U} is negligible if and only if M < B(U*). One implication
is a direct consequence of the Brelot-Keldych theorem, and the other one follows from
the observation that in the case of U} non-negligible there is x € U such that

e’(U*\ ChgU) = e£Y(UE) > 0.

In what follows, we shall derive the inclusion M < B(U*) whenever U}, is negligible
without using the Brelot-Keldych theorem explicitly.

We denote A;(x) = inf {s(x); s = fon U*, se S(U)}, A/(x) = —A4_/(x) for any
fe C(U*) and any x € U. From the minimum principle it follows easily that A, < A,
on U. The set in the brackets of all superharmonic functions constitutes a saturated
Perron family on U, so that 4, and A + are harmonic functions on U. If se S(U),
s = f, then s 2 HY = H} on-U. Hence, A, < H} < A, on U. The same inequal-
ities hold for D} instead of H'.

Theorem 7. The following assertions are equivalent:

(i) U} is negligible;

(x) Ay = A; on U for any fe C(U*).

Proof. If A; = A; on U, then D} = HY} on U whenever fe C(U*) and U} is

negligible in view of Proposition 2. Assume that U, is negligible. The function A4 5
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is upper semicontinuous on U and harmonic in U. For any x € U}, = ChgU we have

A(x) = f(x), the equality ensueing from the characterization of the points in the

Choquet boundary. Summarizing, we get lim sup A,(y) < A,(x) = f(x) for any x €
y—x,yeU
€ Ufeg. Hence, at any regular point x we get

lim_}sup (A,(y) — H)»)) < Iim_'sup A(y) - Ii_x:n HY(y) £f(x) = f(x) =0

and the minimum principle ([1], Satz 4.4.6) results in A, < H] on U. Thus, A, =
=HY = 4, 0nU.

Corollary 8. If U}, is negligible, then for any f € C(U*) and for any x e U
H}(x) = inf {s(x); f < s on U*, se S(U)}.

Corollary 9. If U}, is negligible, then for any f € C(U*) and for any x € U

HY(x) = inf {s(x); s = fon U},, se S(U)} .

reg’

Proof. Obviously, HY(x) Z inf {s(x); s = fon Uk, se S(U)} according to the
preceding Corollary 8. If s, —te€ S(U), s = fon U}, t < fon U*, thent < son U
in virtue of the minimum principle again. Hence A, < inf {s € S(U); s = f on U},
and the proof is complete.

Given any positive Radon measure u on U*, a set M < U* is of outer u-measure
zero if and only if for any ¢ > 0 there is a sequence {f,} = C(U*) with the properties
0<f, <f, <...onU* u(f,) < ¢ for any n, sup {f,} = 1 on M. This yields the
next lemma. " .

Lemma 10. The following assertions are equivalent:
(i) U} is negligible;
(xi) given any xeU and any ¢ > 0, there are sequences {f,} = C(U*) and
{s,} = S(U) such that :
0<fi<f,<...onU*, f,<s,0onU*, s(x)<e

for any n, sup {f,(y)} = 1 for every y e U}.

Proof. If the condition (xi) is fulfilled, then U7, is negligible in view of the above
remark and the inequality Hy < s for s e S(U). Let U}, be negligible. We fix xe U
and & > 0. There are {f,} = C(U*) with the properties mentioned above and we
may apply Corollary 8.

Now, it is probably time to explain the Brelot-Keldych theorem. If L = {L,} is
any Keldych operator on a set U, and U} is negligible, then any measure L, e M
is supported by the set U} according to the last lemma. (Of course, for every ¢ > 0,
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xeU we can find the sequences {f,} and {s,} as above. Then Ly(f,) < Ly(s,) <
< s,(x) < &.) Hence L, e B(U*), and L, is continuous in the w(C, B(U*))-topology.
Finally, on the set Cg which is w(C, B(U*))-dense in C(U*), L, and 5" coincide.

3. POINT KELDYCH FUNCTIONALS

Any Keldych operator Lon a set U satisfies the inequalities DY < Ls £ HY on U
whenever s € S(U). The first inequality is clear, the second one is a consequence of
the fact that Ls is a lower function to s on U. Hence, by Proposition 2, Ls = H:]
if U}, is negligible. Nevertheless, the validity of the Brelot-Keldych theorem can be
accounted for probably in the best way by Corollary 9.

The requirement of Lf being a harmonic function on the whole set U whenever
f € C(U*) has been important in all variants of proofs of the Brelot-Keldych theorem.
The question arises if this condition can be omitted and an analogous theorem
stated for the point Keldych functionals, a suitable definition of which seems to
be as follows: For x € U, a (weak) point Keldych functional at x is every monotone
functional P on the set C(U*) such that Ps < s(x) for any se S(U) and Pt 2 #(x)
for any te —S(U). On account of Corollary 8, the proof of the following theorem
is straightforward.

Theorem 11. Let U} be a negligible set, and let P be a point Keldych functional
at xeU. Then P = Y.

References

[1] H. Bauer: Harmonische Rdume und ihre Potentialtheorie, Lecture Notes in Mathematics,
* vol. 22, Springer-Verlag, Berlin— New York, 1966.

[2] J. Bliedtner and W. Hansen: Simplicial Cones in Potential Theory, Invent. Math. 29 (1975),
83—110.

[3] M. Brelot: Sur un théoréme de prolongement fonctionnel de Keldych concernant le probléme
de Dirichlet, J. Analyse Math. 8 (1960/61), 273 —288.

[4] C. Constantinescu and A. Cornea: Potential Theory on Harmonic Spaces, Springer-Verlag,
Berlin—New York, 1972.

[5] E. G. Effros and J. L. Kazdan: Applications of Choquet simplexes to elliptic and parabolic
boundary value problems, J. Diff. Equations 8 (1970), 95—134.

[6] M. V. Keldych: On the solvability and stability of the Dirichlet problem (russian), Usp.
Mat. Nauk SSSR 8 (1941), 171—231.

[7]1 J. L. Kelley, I. Namioka and co-authors: Linear Topological Spaces, D. Van Nostrand Co.
Inc., Princeton, N. J., 1963.

[81 N. S. Landkoff: Foundations of modern potential theory, Berlin, Springer-Verlag, 1971.

[9] J. Lukes: Principal solution of the Dirichlet problem in potential theory, Comm. Math.
Univ. Carolinae 14, 4 (1973), 773—1778.

[10] J. Lukes: Théoréme de Keldych dans la théorie axiomatique de Bauer des fonctions harmoni-

ques, Czech. Math. Journal 24 (1974), 114—125.

Author’s address: 186 00 Praha 8 - Karlin, Sokolovsk4d 83, CSSR (Matematicko-fyzikalni
fakulta KU).

616



		webmaster@dml.cz
	2020-07-03T01:08:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




