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INTRODUCTION

This paper deals with k-uniform hypergraphs for k > 2. D. PALUMBINY in [2],
[3] studies the problem of decomposing a complete graph into factors with equal
diameters. He proved in [2] that FJ(d) = 2m for m 22 and 3 <d < 2m — 1,
where F3(d) is the smallest natural number such that the complete graph with Fa(d)
vertices can be decomposed into m factors with a diameter d. Even though his aim
was not to find a decomposition into isomorphic factors with the diameter equal
to d, the m factors of his decomposition of the complete graph with 2m vertices are
isomorphic for d odd.

In this paper we shall systematically study the problem of decomposing a complete
k-uniform hypergraph into isomorphic factors with a given diameter. The study of
decompositions of complete graphs into isomorphic factors with a given diameter
was initiated by [5], where the problem of decomposing a complete graph into three
isomorphic factors with a given diameter d = 2 is considered.

*

First we give some definitions. A hypergraph is an ordered pair of sets G = (V, H),
where H < P(V) (the potence of V). The set Vis called the vertex set, H is the edge
set of G. A path of length q is a sequence x,, hy, ..., hy, X,4; such that x;, ..., x,44
are distinct vertices of V, hy; ..., h, are distinct edges of H and X, X, € hk for
k =1,2,...,q. The distance d(x, y) of two vertices x and y is the length of the
shortest path joining them. The diameter of a hypergraph is defined as

d = sup d(x, y)

x,yeV

A hypergraph is said to be a k-uniform if for each h € H we have |h| = k. If the
set H contains all k-element subsets of V we say that G is a complete k-uniform
hypergraph and we denote G by {(n),, where n = |V| A factor of G is a subhyper-
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graph of G which contains all vertices of G. We shall say that G; = (V;, H;) and
G, = (V,, H,) are isomorphic and write G, = G, if there exists a bijection [ : V; —
— V, such that h € H, if and only if f(h) € H,.

Denote by Gk(d) the smallest cardinal number such that {Gk(d)> can be decom-
posed into m isomorphic factors with diameter d.

A question arises whether Gj(d) has the same property as the number F, ,‘f,(d),with
the additional condition of isomorphy, i.e. whether {n), can be decomposed into m
isomorphic factors with diameter d if and only if n = Gf,,(d). However, if the factors
of a decomposition of {n), are mutually isomorphic they have the same number
n
k
We shall call the numbers n for which m divides <

. This implies the negative answer to our question.
n
k

of edges so that m divides (
) the suitable numbers. This

leads us to the following definition.

Definition 1. Let H},(d) be the smallest cardinal number with the following property:
A decomposition of the hypergraph {n), into m isomorphic factors with diameter d
exists if and only if n = Hi(d) and n is a suitable number.

Now we introduce a concept which makes it possible to bring a common point
of view into the problems concerning decompositions.

Definition 2. Let G be an arbitrary group of automorphisms of the hypergraph {n),
and let there exist a surjection h : G — R, where R is a decomposition of the hyper-
graph {n), into isomorphic factors, with the following property:

x(h(y)) = h(xy) forevery x,yeG.

Then we shall say that R is a decomposition of {(n), by the group G. If the mapping h
is a bijection then we shall say that R is a simple decomposition of {(n), by G. The
factor h(x) will be denoted by G,.

The following lemma makes it possible to prove a necessary and sufficient condi-
tion for the existence of a simple decomposition of {n), by an Abelian group of a finite
order.

Lemma 1. Let R be a simple decomposition of the hypergraph {n), by an Abelian
group H and let a group H, be a subgroup of H. Then there exists a simple decom-
position R of {n), by the group H[H,.

Proof. Denote Hy = U H,.

aeHy

Let x, y e zH, for some z € H. Then

x(Ho) = U Hye = U H,, y(Hy) =be£ H, = U Hy.

aeHy bexH, beyH1
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But x, y € zH, if and only if xH, = yH; and so we have x(Hg) = y(H;) if and only
if x, ye zH, for some z e H. The desired decomposition R, is formed by factors
x(H{), where x are representants of the classes of H/H,. The lemma is proved.

Theorem 1. Let H be an Abelian group of a finite order m > 1 and let k 2 3
be a natural number such that (m, k!) = 1. Then the following two statements are
equivalent:

I. There exists a group H, =~ H such that a hypergraph {n), has a simple
decomposition by the group H,.

.. n
2. m divides (k

) and divides precisely one of the numbers n,n — 1,...,n —
—k+ 1.
Proof. Let R be a simple decomposition of the hypergraph {n), by an Abelian

k
morphic and so each factor contains the same number of edges.

group H,; of order m. It is evident that m divides ( > because the factors are iso-

The condition (m, k!) = 1 implies that the number m can be written in the form
m = my.m,.....m, where m; are mutually prime and m; divides n — i + 1.
Then we can express the group H,; as the direct product of cyclic groups H; =
= F; x F, x ... x F;, where the order of the group F; is equal to m,.

Let m, > 1 for some 1 <t < k. We shall show that m; = 1 for every i = t.
Lemma 1 implies the existence of a simple decomposition R, of the hypergraph {n},
by F,. Let v; be a vertex which is not a fix-point in all elements of F,. Thus there

exists o € F, such that a(v,) = v,, a(v,) = vs, ..., %(v,—;) = v, Let now B(v;) = v,
for some BeF, Then we have by induction B(v;) = Ba(v;_,) = ap(v;-1) =
a(v;—;) = v;forevery j = 2,3,..., k and thus B is conforming with the zero element

of F, on the set h = {v, v,, ..., v;}. The edge h is contained in a factor G, of the
decomposition R,. However, h e B(Gy) = Gg,. This implies By = y and thus B = &.

From this we have that for every vertex which is not a fixpoin with regard to the
group F, there exists a set of vertices which are images of this vertex by mappings
o € F, and which has a cardinality equal to m,. These sets are either disjoint or iden-
tical. Denote by S the system,of these disjoint sets. Let ue Ae S and {e F,, r + t.
Let {(u) € Be S. Now let us have ve A. Then there exists o € F, such that a(u) = v
On the other hand {(v) = {a(u) = o {(u) € B and we have {(4) < B.

The converse inclusion can be proved analogously and so we have {(A4) = B.
Now let A = B. Then {(u) = B(u) for some B € F,. Let us have x € 4. Then x = y(u)
for some ye F, and {(x) = §y(u) = v {(u) = v B(u) = B y(u) = B(x). This implies
that { and P are identical on the set A. If we take now some k-tuple g from the set 4
we get B(g) = ¢(g) and thus p = ¢, because otherwise the edge g would be included
in two different factors which is a contradiction.
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However, the equality B =  holds if and only if B = { = €. This implies: If
{ #+ n then {(4) + n(A4), {, n € F,, and thus for every set 4 € S there exists a system
of cardinality m, of disjoint sets of cardinality m,. These systems are for different 4
either disjoint or identical. This implies that the system S splitsinto (n — ¢ + 1)/m,.m,
subsystems. This is possible if and only if m, = 1 which we want to prove.

Proof of the sufficient condition: Let H be a group of order m and let m satisfy the
condition (2) in Theorem 1. Thus there exists such i that m dividesn — i, 0 < i £
<k-1

We shall define a group H; =~ H by which we shall be able to construct the simple
decomposition just found.

Choose i vertices from {n), and divide the remaining n — i vertices into m-tuples
which will be denote by A, 4,, ..., A,. To every natural x £ z and to every a € H
assign a vertex ux(ot) € A, such that

Buya) =u o) forevery BeH.

In this way we define a group of automorphisms H; =~ H on the set consisting
of n — i vertices. On the remaining i vertices define H to be point stationary.

A simple decomposition of the hypergraph {n), by H, is constructed in the fol-
lowing way: We choose an arbitrary edge &, and insert it into the factor G, cor-
responding to the unit element of H,. We insert the edges o(h,) into the factors
G, = o(G,) for every o.e H,. If we do not use all edges in this way, we insert an
arbitrary one of them — for example h, — into the factor G,. Then we insert o(h,)
into ®(G,) = G,. We continue in this way, while we exhaust all edges. The decomposi-
tion obtained in this way is obviously a simple decomposition of {(n), by the group
H,; = H. The proof is complete.

Remark 1. In the construction described above a weaker condition is sufficient
for the existence of a simple decomposition, namely (m, k) = 1. We shall often use
this fact in the sequel.

Theorem 2. Let m,k = 3, m >k, (m, k) =1, d = 2 be integers. Then Gy(d)
exists and
Go(d) S m[(d —2)(k — 1)+ 1] if d=3,
Gr(2) <2m.

IIA

Proof. I. Let d = 3. Denote n = mt, where t = (d — 2)(k — 1) + 1. Denote

the verticesof <n), by i, 1 Si<ml1=j=t. Obvious!y m divides . Moreover,

n
k
m divides n. Because (m, k) = 1, the sufficient condition for the existence of a simple
decomposition of <{n), by a cyclic group H of order m, generated by the element
B=(1y....,my)... ... (1,, ..., m,), is satisfied. Now we shall show that there exists
a special simple decomposition of {n), by the group H, whose factors have the dia-
meters equal to d. We construct the factors G, o € H as follows:
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1. Let the factor G, corresponding to zero of H contain a path of length d — 2
which is formed by the edges

hy={1,,...1,,}, where t;,=1+(i—-1)(k—=1); i=1,...,d—2;

F={1,2,. k).

2. Let4; = {2,,....m}, i =1,.., t;let {B U {2;}} € G, for an arbitrary (k — 1)-
tuple B = A; and for every j = i.

3. Let G, = a(G,) for every a € H.

The diameter of the factors defined in this way is obviously equal to d. This is true
for G,: the shortest path of length d is formed by the edges {23, 33, ..., k3, 2,},
fohys hayy ooy hy_s.

The other factors are isomorphic to G,, thus their diameters are also equal to d.

The factors G, need not form a decomposition of the hypergraph {(n),. Let S be
a system of all edges, which are not included in any factor. The group H decomposes s
into disjoint sets of cardinality m. Since m > k, there exists in each of these sets an

edge h that it does not contain the vertices 1;, where 1 < i < t. Let then h € G, and
ofh) € G, for every o€ H.

In this way we do not change the diameter of the factors and so we obtain a simple
decomposition of {n), by the cyclic group of order m, which implies the existence of
the number Gj(d) and at the same time its upper bound.

II. Let d = 2. We decompose the hypergraph {2m), into m factors with diameter
two.

Obviously, the sufficient condition for the existence of a simple decomposition
of {2m}), by a group H generated by the element B = (1;,...,m;) (15, ..., m,) is
satisfied.

Let 4; = {1;,...,m;}, i = 1,2 and let B be an arbitrary (k — 1)-tuple, B < 4,.
Then let h = {Bu{1;}}€G, for i * j; i,j = 1,2 and a(h)e G, for every a e H.

The diameter of the factors constructred in this way is obviously two, because
dg(my, my) = 2.

The factors G, need not form a decomposition of the hypergraph (2m),. Let S be
a system of all edges, which are not included in any factor. The group H decomposes S
into disjoint sets of cardinality m. Since m > k, there exists in each of these sets an
edge h that it does not contain the vertices m,, m,. Then let h € G, and a(h) € G, for
every a € H.

The edges added to G, in this way do not change the diameter of G,. Thus the
factors G, form a simple decomposition of (2m}, by the cyclic group H of order m
into factors with diameter two, which implies the existence of the number Gﬁ(2)
and its upper bound. The theorem is proved.

In the following considerations the concept of a “simple decomposition by a group
is not sufficient. Thus we shall use decompositions by a group of greater order than
the number of factors of the decomposition.
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Theorem 3. Let m > k, (m, k) > 1, k = 3, d = 2 be integers. Then Gy(d) exists
and
Gi(d) < km[(d —2)(k = 1) + 1] if d=3,
Gi(2) < 2mk .

Proof. I. Let d 2 3. Denote n = kmt, where t = (d — 2) (k — 1) + 1. We shall
show the existence of a decomposition of {(n); by a cyclic group H of order mk into m
factors with diameter d.

Denote by i;, 1 < i <.km; 1 £ j <t the vertices of (n),. Let the group H be
generated by B = (1, ..., (km),) ... (1, ..., (km),). The construction of the factors
with diameter d proceeds as follows: Let the edges h; = {m;, (2m);, ..., (km);} € G,
for 1 < j < t where G, is the factor corresponding to the zero element of H.

Let g, = A = {1y, ..., (km),} be an adge containing the vertices m,, (m + 1),.
The remaining vertices belonging to g, let be different from the vertices of h;. The
element B is obviously of order k and so let p™(g,) € G, for 1 < r < k.

Now we insert into the factor G, a path of length d — 2: Denote

fo={my, 2m) 1, .. (km)e,, } s

where t, = 1 + s(k — 1), 0 < s < d — 2. Then let B™(f;) € G, forevery 1 < r < k
Denote A; = {i;| 1 £ i < km} — h; and take an arbitrary (k — 1)-tuple B < 4;

Then insert B™(B u (m + 1),) into G, for every i +j; i,j =1,2,....,t, 1 <r
The factor G, constructed in this way has a diameter equal to d, since

IIA

dg((m + 1), (m(k — q))) =d, g =d -3 (modk).
The shortest path of length d is formed by the edges

{(m + 1), (m + 1)y (m + 2)gs oo (m + k — 1)},
915 Lo B™ V(1) B (1), s fro B O (fisr)s s B4 fs)

Now define Gg: = B¥(G,), 0 < i < m. The factors Gy: need not form a decomposi-
tion of (n),. Let S be a system of all edges which are not in any factor. The group H
decomposes S into disjoint sets. Since m > k, in each of these sets there exists an
edge g that does not contain the vertices of h;, 1 < j < t. Let us insert the edges
B™(g9), 1 < r < k into G, and their images in the mappings B’ into the factors Gy,
0 < i < m. In this way we obviously do not change the diameter of G, and the
factors Gp: form a decomposition of {n), into m factors with a diameter d which
implies the existence of the number GJ,(d) and its upper bound.

II. If d = 2, the proof is analogous to the above one. It is not difficult to prove
the existence of a decomposition of {2mk}, into m isomorphic factors with diameter
two, because now we need not construct a path of length d. The theorem is proved.
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In the end of this part we can say that in Theorems 2 and 3 the problem of the
existence of a decomposition of a complete k-uniform hypergraph into isomorphic
factors with a diameter d is affirmatively solved for d greater or equal to two and for
the number of factors greater the than uniformity of the hypergraph.

DECOMPOSITIONS OF GRAPHS INTO ISOMORPHIC
FACTORS WITH A GIVEN DIAMETER

In this part we shall prove the existence of the number G.(d) ford = 3and m = 4.
We also prove the existence of the number H,f,(d) for d = 3 and for m which is a power
of a prime different from two. Moreover, we shall show that the existence of the
number H,f,(d) for m which is not a power of a prime, cannot be proved by the method
of a simple decomposition by an Abelian group.,

Theorem 4. Let t,d and m be integers, t >2,de{3,...,t +2}, m >3 and m
odd. Then the graphs {mt), and {(mt + 1), can be decomposed into m isomorphic
factors with diameter d.

Proof. I. First we prove the existence of a decomposition of {mt),. Denote its
vertices by 0y, 1y, ...,(m — 1),...,0, 1,,...,(m — 1), Let g€ {0, 1, ..., — 1}.

We construct the factor G? as follows:
a) g > 1
Let Xy = {[0s,24], [11, 2,], [25,3,]}

Xy = {[0s Liss ] [0is . 1] [ 1 S i < g + 1},
Xy={[2.02k+1)]|i=1..,t2<ksim-1)},
X,={[0,1]]35igq+1},
Xs={[2,4]]|25i<q+ 1},
Xe={[1,2][0.2]|qa+1<is1t},
X, ={[2,@k)]|i*j; ij=1 ..t k=1},
Xg={[2.3]||i—J| >t ij=1..1.

8
Then let G} = U X, and the decomposition has the form

R = (p(GY). .... (G}

where p is a cyclic permutation of order m on the set of vertices of the graph {mt),
with the orbits {0;, 1;,....,(m — 1)}, i =1,2,..., ¢

R is relly a decomposition which we can verify by simply summing the edges in
the factor G? and making sure that no edge repeats. This follows immediately
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from the construction. The diameter of G? is equal to g + 3 because, for example,
d(3,,0,+,) = g + 3. The shortest path of length ¢ + 3 is formed by the edges

[3:. 2,1, [22: 24, [245 041, [0y, 15], [125 03], -, [14, O 4] for g even,
[355 2, [225 21 [215 11 [145 0], [0 15], s [14 045 4] for g odd .
b) g = 0:
Let Y, = {[0,2]. [1.2]|i=1,2...1,
Y, = {[2,(2k),]. [2 3] | i #Js ivi=1,2....1: k
Y; ={[2, 2k + 1)]]i=1,2,...6 k= 2}.

I

1
1,

Then let the factor G? = ¥; U Y, U Y;. Now we easily obtain the required decom-
position by the permutation p. The factors of the decomposition have diameter d =
= g + 3 = 3 since, for example,

d(0,,0) = 3.

c)qg=1:

Delete the edge [2;, 1,] from G; and insert there the edge [0, 1,]. Then obviously
d(;'o(l »0;) = ¢ + 3 =4 and we obtain the required decomposition by the per-
mutation p.

II. We construct a decomposition of {mt + 1), as follows: We add a vertex v
and the edges [v, 2;], i = 1,2, ..., t into the factor G It is evident that the diameter
is preserved. The other factors of the decomposition are obtained by the permuta-
tion p; which coincides with p on its definition area, and v is a fix-point. The theorem
is proved.

Corollary 1. Let m be an arbitrary natural power of a prime different from two.

Then Hy(d) exists for d = 3.
. . .. N

Proof. Let m = p", where p is a prime, p #+ 2. Let p divide (2) Then

1) either p” divides N,

2) or p" divides N — 1
and so either p"t = N or p"t + 1 = N for some t. This implies that all suitable
numbers are of the form mt or mt + 1. By Theorem 4 for an arbitrary d = 3 there

exists t, such that for every t = t, there exists a decomposition of {(mt), and
{mt + 1), into m isomorphic factors with a diameter d so that H,f,(d) < mt,.

Remark 2. We can take t, = d. For d = 5 we can take t, = d — 2 and thus
HX(d) < md — 2m. In the paper [1] an upper bound of the number F2(d) is found
in the form

F,f,(d)gmd-—m for d=3.

Since Fj(d) < HZ(d) we have F(d) < md — 2m for d > 5.
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Theorem 5. Let m be an odd natural number, which is not a power of a prime.

2
exists no Abelian group which simply decomposes the graph {N), into m isomorphic
factors.

Then there exists an arbitrarily large number N such that m divides (N and there

Proof. The assumptions imply that m can be written in the form m = m, . m,,
where m,, m, #+ 1; m, m, are coprime.
The diophantic equation
mx — myy =1

has obviously an infinite number of solutions. Choose from them a solution xq, Yo
which is sufficiently large and denote N = m,x,. Then put m,y, = N — 1. It is

evident that m divides neither N nor N — 1. Nonetheless, m divides (g .

Now we can use the theorem proved by B. ZELINKA in [4]: The graph <{n), can
be decomposed by an Abelian group of order m into m factors if and only if m
is odd and

1) m divides $(n — 1) or m divides n, if n is odd
or

2) m divides 1n or m divides n — 1, if n is even.

Obviously m does not satisfy the necessary condition of the existence of a simple
decomposition of the graph (N), into m factors by an Abelian group of order m.
The theorem is proved.

This implies the following statement:

Corollary 2. The method used in the proof of Theorem 4 — i.e. a simple decom-
position by an Abelian group — cannot be used for proving the existence of the
number H(d) in the case that m is not a power of prime.

It remains to explore the existence of the number GJ(d) for m even.
Theorem 6. Let m,d be natural numbers, m = 4 and even, d = 3. Then the
number GJ(d) exists and
GX(d) < 2m(d — 1) if d>3,
GX(3) < 2m.

Proof. Let d = 4 and m = 2k, m = 4. Denote by i; the vertices of the graph
2m(d — 1)),, where 1 £i<2m; 1 <j<d~— 1. Put

X, ={[2sa].[(m+2u(m+a)]|2sisd-1;3Za<m},
X, = {1 Ligs L [(m + 1), (m + 1), ]| 1S i< d -2},
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Xs={[1,1]|2gi<d -1},
Xo={[1r,a,], [(m + 1), (m + a),]|2 < a < m}o{[1,,(m +1),]},
Xs={[lpal. [(m+1),(m+a)]|2Sasm2=5isd-1}.

Thenlet X, UX, UX; UX, UX; <G,

The group H generated by a = (1, ..., (2m),), ..., (141, ..., (2m),_,) decomposes
the set of all edges of <2m(d — 1)), into disjoint sets of cardinality at least m.
Since m >.2, in each of these sets there exists an edge that does not contain the
vertices of the form 1;, m;, where 1 < i < d — 1. Insert this edge into G,. Then
o/(G,) = G,s, j = 0, 1, ..., m evidently form the required decomposition, because for
example dg (2, (m + 1);-,) = d.

IL If d = 3 put G, = X,. It is evident that dg (2,, (m + 2);) = 3. The proof is
complete.

Remark 3. In [2] it was proved that G2(3) = 2m.

*

In all above considerations we were not concerned with decompositions into
smaller number of factors than the uniformity of the hypergraph. The following
theorem gives a sufficient explanation.

The number Fi(d) — if it exists — is the smallest number for which there exists
a decomposition of (F’,‘,,(d)>k into m factors with diameter d.

Theorem 7. Let m, k, d be natural numbers m < k,. k = 3, d 2 4. Then Fi(d)
does not exist.

Proof. Evidently it is sufficient to prove our statement for m = k. So let m = k
and let F(d) exist. Then the hypergraph {Fu(d)), can be decomposed into m
factors with diameter d. Denote these factors by F,, F,, ..., F,,.

Let x, y be vertices of F,,. Let a, b be such vertices that their distance is d in F,.
Then the distance between x and either a or b is greater than one. Let this be the
case for x and a. The second case is analogous. In the factor F; there exists a vertex v,
such that the distance between x and v; is greater than one forevery i = 2, ..., m — 1.
Then the edge h = {x, a, v,, ..., v,_,} € F,,. The distance either between y and a or
between y and b in the factor F, is greater than one. Let w; be such vertex that the
distance between y and w; in F,; is greater than one for every i = 2, ..., m — 1. Then
it is evident that

f={a,yaw2’~-'awm—!}EFm or g={b’y’W2""9wm—l}eFm'

If f € F,,, then the distance between x and y in the factor F,, is less than or equal
to two.
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Let now f € F, and g € F,,. Consider the edge p = {x, Yy Ugyeeny v,,,_|}. Two cases
are possible:

1. peF,. Then dg,(x,y) = 1.
2. peF,. If q={bvy...,0,_1}€F, then dp(x,y) <2 If geF, then
dp,(a, b) < 3 since g, g. f € Fy, which is a contradiction.

Since the vertices were chosen arbitrarily, we proved that the diameter of F,, is
smaller than or equal to two, which contradicts the assumption d = 4. The theorem
is proved.

Theorem 1 involves the assumption (m, k!) = 1. A necessary and sufficient con-
dition for the existence of a simple decomposition by an Abelian group was found
also if (m, k) = 1 and the proof will appear in a future paper.

It remains an unsolved problem whether the number Hl‘,,(d) exists for not a power
of a prime. Another unsolved problem is whether Gi(d) = Hj(d) for m, k = 2 and
d = 1. In [5] it was conjectured that G.(d) = Hp(d). A further problem is to find
an example that Fl(d) + Gy(d).
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