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1. INTRODUCTION

The natural appearance of semigroups with compact topologies in which multi-
plication is continuous on one side only (for example in Chapter 7 of [3] and in § 3
of [4]) suggests that an investigation of these structures may be valuable. Ruppert,
in [8] and elsewhere, has already begun this task in a general setting. However, many
of the examples which arise in practice appear as Stone-Cech compactifications SS
of semigroups S, as in [3], and in any case, such semigroups would be expected to be,
and are, in a sense universal ([4], Theorem 3.4, and (1.1) below). Work on transforma-
tion groups [3] and recent, unpublished, investigations by R.J. BUTCHER at Sheffield
indicate that fZ, where Z is the additive group of integers, is a very complex semi-
group. Success in determining the structure of S will therefore only be possible if S
does not contain a copy of Z. In this paper, we consider certain ordered sets S which
can be made into semigroups by giving them the multiplication max (i.e. Xy =
= max {x, y} for x, y € S).

Before we describe our results, we will establish some terminology and recall
how BS becomes a semigroup when S is discrete. We shall say that a semigroup S
with a topology is a right topological semigroup if, whenever xe S and y; > y in S,
then xy; — xy in S. We describe this situation by saying that multiplication in S is
continuous on the right; but care is needed, since the mapping which is continuous
is multiplication on the left by x, for each x € S.

Now let S be discrete. Fix y € S. The map x > xy is trivially continuous, and so
it extends in a unique way to a map of S to S which we again denote by x i— xy.
Now, for x € S, the map y i— xy of S into S is continuous, and hence it extends
to a uniquely determined continuous map (again denoted by y — xy) of BS to BS.
This product xy gives the multiplication we sought. (This proof is given by ELLIS
in Theorem 7.1 of [3], though he was concerned only with groups S; a more general
result — about topological semigroups — is to be found in § 3 of MILNEs [4].)
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The first question we consider is whether this construction will extend to the case
in which S is a totally ordered, separately continuous (non-discrete) semigroup.
After some preliminary results about totally ordered topological semigroups, we
discover that this is the case if and only if the topology of S is locally convex. The
proof of the theorem (2.8) includes a full description of the structure of S in this case.

In § 4, we determine the multiplication in S when S is a direct product of two
monotone sequences. Not surprisingly, the results depend on whether the sequences
are increasing or decreasing. More worthy of note is the fact that if one sequence
is increasing and the other decreasing, S may not be idempotent (Theorem 4.3 (iv)).
We indicate how an extension to finite products of monotone sequences can be ob-
tained (though the situation becomes very complex).

In order to carry out the investigation just described, some knowledge of the com-
pactification B(N x N) (where N is the set of positive integers) is necessary. Of
course, f(N x N) is homeomorphic with SN, but by retaining the product structure
we are able to show that it contains subspaces homeomorphic to N* x Ny, where
N* = BN\ N and Nj is N* with a P-topology (in the sense of [9]). We believe that
this fact, besides being vital to the descriptions of the multiplications in § 4, is of
interest in itself.

In our final section we show that the semigroup S may be a useful tool for the
solution of problems. To be precise, we use S for a discrete semigroup S to show
that if Ty, ..., T, are totally ordered topological semigroups, then the weakly almost
periodic compactification of T; x ... x T, is just the product of the weakly almost
periodic compactifications of the individual semigroups T;. A general criterion for
this to occur for arbitrary semigroups Ty, ..., T, has been given by J. F. BERGLUND
and P. MILNEs in a paper yet to appear, but it is not clear that their conditions give
a proof easier than the one we present. It turns out that the weakly almost periodic
compactification of T; x ... x T, coincides with its almost periodic compactification.
(These results are relevant to our study of measure algebras in [7].)

We shall have occasion to use the universal property of the semigroup fS. The
result is a particular case of Theorem 3.4. of [4].

1.1. Proposition. Let S be a discrete semigroup, and let S, be a semigroup with
a compact topology and a right continuous multiplication. Let @ : S — S, be
a homomorphism, and suppose that, for each yeS, s — s®(y) is a continuous
map on So. Then there is a unique continuous homomorphism ® : S — S, which
extends ®.

The question this proposition answers is when the unique continuous extension &
of @ to S is a homomorphism. (A proof is easy to obtain by following the steps of
the construction of the multiplication in SS given above; the reader who requires
a proof can turn to [4].) The conditions of the proposition are essentially necessary,
for if & is surjective, the continuity of x i— xy (resp. X — yx) in BS leads immediately
to the continuity of s i— s &(y) (resp. s = &(y) 5) in S,.
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We will now give an example to show that there can be no relaxation of the con-
ditions of this proposition even when S is totally ordered. We do this by exhibiting
a right-continuous compact semigroup S, containing a totally ordered subsemi-
group S for which multiplication on the right by elements of S is not continuous.

There can then be no continuous homomorphism S — S, which extends the identity
on S. :

1.2. Example. Let S be a totally ordered set with elementsa, < b; <a, <b, <...,
with the discrete topology and multiplication max. Let S, = {ay, a5, ..., x} U
U {by, b, ..., y} be the union of two disjoint clopen sets whose compact Hausdorff
topology is determined by the requirements a, — x, b, — y. Multiplication in S,
is to induce max on S, to yield a,x = b,x = x for all n, and all other products are to
have the value y. It is easy to check that S, is a semigroup.

To discuss continuity of multiplication, we observe that there are essentially only
two convergent sequences. Moreover, if a, - x and m is fixed, we find b,a, = a,
eventually, so lim(b,a,) = lim a,'= x = b,(lim a,); this and similar arguments

n n n

show that multiplication is continuous on the right. On the other hand, lim (a,b,,) =
n

= lim g, = x, while (lim a,) b,, = xb,, = y, so that multiplication on the right by

elements of S is not continuous.

2. TOTALLY ORDERED SEPARATELY CONTINUOUS SEMIGROUPS

Let T be a totally ordered set made into a commutative semigroup by giving it the
multiplication max.

2.1. Notation and definitions. For x, y € T'the sets |x, y[ = {ze T:x <z < y},
1o,y ={zeT:z <y} and Jx, o[ = {ze T:x < z} (which notations we use
whether or not T has maximal or minimal elements) are called open intervals. The
closed intervals [x, y], ]—o0, y] and [x, o[ are obtained by replacing < by <.
A subset I of Tis convex if x, yeI and x < z < y imply z € I. A segment U has the
property that if ye U and z < y, then z € U. The interval topology on T has the
open intervals as a base for its open sets [2]. (A compact Hausdorff topology on T
in which open intervals are open sets is necessarily the interval topology.) Any
topology which has a base for its open sets consisting of convex sets is called locally
convex.

We begin with two results about the relationship between the continuity of max
and the separation properties of the topology.

2.2. Proposition. Let T have a topology in which points are closed (ie. T has
a Tl-topology). Then max is separately continuous if and only if both
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(i) Ix, o[ is open for each x € T, and
(ii) if U is open, |— oo, x[ U U is open for each x € U.

Proof. Suppose max to be separately continuous. Let x € T, so that T\ {x} is
open. By separate continuity,

Tx, oo = {y : yx e T~ {x}}

is open, and if U is open and x € U,

J-oo,x[ U ={y:yxeU}
is open.

To see the converse, take x € T and consider y - yx. We shall show this is con-
tinuous at z € T. There are two cases. First, when z > x, we have zx = z. Let U be
any neighbourhood of z and observe that, from (i), V = U n ]x, oo[ is again a neigh-
bourhood of z. Then Vx = V < U, which shows continuity in this case. Secondly,
take z < x, so that zx = x. Let U be an open neighbourhood of x, and then V =
= ]—o0, x[ U U is an open neighbourhood of z, by (ii). Also, ¥x < U, and so con-
tinuity is again proved.

2.3. Examples. (i) Separate (even joint) continuity does not imply that a T-topo-
logy must be Hausdorff.

Let T be given the topology with a base of open sets of the form |x, o[ \ F
(x€ T, F = Tfinite). Then max is jointly continuous, and the topology is T; but not
Hausdorff.

(ii) Separate continuity in a Tj-topology does not imply joint continuity.

This example is achieved by giving T the topology with a base of open sets of the
form [x, o[ \S (xe T, S either finite or a strictly decreasing sequence {x,} with
inf {x,} = x).

The second example is of interest in view of the next result.

2.4. Proposition. Let T be Hausdorff, and suppose max is separately continuous.
Then every open interval is an open set (i.e. the topology of T is finer than the in-
terval topology). Conversely, if T has a topology finer than the interval topology,
it is Hausdorff and max is jointly continuous.

Proof. First assume T is Hausdorff and separately continuous. We show that
an open interval ]x, y[ is a neighbourhood of each point z € |x, y[. Let W, V
be disjoint open neighbourhoods in T of z and y respectively. By Proposition 2.2,
]—o0, y[ L Vis open, and ]x, oo is open. Hence

Walx,y[ =Wn (-, y[uV)n]x, of

is open. It is clearly a neighbourhood of z contained in ]x, y[.
Conversely, the interval topology is obviously Hausdorff. To prove the continuity
of multiplication, let x, y € T and let W be a neighbourhood of xy. We consider two
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cases. If x = y, continuity follows from the relation WW = W. If x < y, we take dis-
joint intervals U, V which are neighbourhoods of x and y respectively. Then V n W
is again a neighbourhood of y(= xy), and UV W)=V W< W.

Below, we shall be concerned with the topological properties of the suprema of
segments. We look more closely at segments in the following lemma.

2.5. Lemma. Let U < T be a segment. Then either (i) for some x, U = |—0,x][, or
(ii) for some x, U = ]|— o0, x], or (iii) neither (i) nor (i) holds and U = U ]—o0, x[
xeU
and TNU = ) |y, o[. If, in addition, T is separately continuous in a Hausdorff
yeT\U
topology, then in case (i) U is clopen if x ¢ U; in case (ii) U is clopen if x ¢ T\U;
and in case (iii) U is always clopen.

Proof. If U is not of the form (ii), then for each z € U there is x € U with z < x;
hence U < U ]—oo, x[ = U. Similarly, if U is not of the form (i), T\ U is not of

xeU

the form [x, o[, so that T\U = U ]y, oo[.

yeT\U

Let U = |— oo, x[. Then, using 2.4, U = |— o0, x]. Hence U is closed if and only
if x ¢ U. Also, U, being an open interval, is open. Case (ii) is dealt with in the same
way. In case (iii), both U and T\ U are unions of open sets, so open.

We next construct an order compactification aT of a Hausdorff separately conti-
nuous semigroup T. If U = 0 is a segment for which U does not contain a supremum
for U, we adjoin an element s(U) to T; if U # Tis a segment for which TN\ U does
not contain an infimum for T\ U, we adjoin an element i(U) to T. We order the result-
ing set aT by writing, for example,

x<sU)<i(U)<y (xeU, yeT\U).

Then «T becomes a totally ordered set in which each subset has both a supremum
and an infimum. The order topology therefore makes «T a compact Hausdorff
space, and when it is given the multiplication max it becomes a jointly continuous
semigroup. (The space oT is in fact the order compactification mentioned in [6],
especially on page 104, when T is completely regular.)

2.6. Proposition. The inclusion T < aT is continuous. The topology oT induces
on T is the finest locally convex topology coarser than the original topology of T,
it has a sub-base for its open sets consisting of the open intervals, the clopen seg-
ments and complements of clopen segments.

Proof. Lemma 2.5 together with the construction of a7 shows that the topology
induced on T by aT does have the sub-base asserted in the proposition, and that
therefore the inclusion T — «T'is continuous. To see that it is the finest locally convex
topology coarser than the original topology of T, notice first that it is certainly
locally convex. Then, let I be convex and open in the original topology of T. Take
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x €. Then both the segment U = ]—oco, x[ UI and the set I U |x, oo = T\ 'V,
say, which is the complement of a segment V, are open in T, by 2.4. We now have
three cases to consider. If U is of the form (i) of 2.5 it is clearly open in the topology
induced by oT. If U is of the form (ii), say U = ]— o0, y], it is closed as well as open

in the original topology and so y ¢ T\U = T\ U. The construction of T then
shows U is open in the induced topology. In case (iii), U is a union of open intervals,
and so is open in the induced topology. Similarly, we see that T\ V is open in the
induced topology, and hence I = U n(T\V) is also open. We have proved that
every open convex set in the original topology is open in the induced topology, and
the proposition is now proved.

Since «T is compact, the locally convex topology described in Proposition 2.6 is
completely regular. We now give two examples, the first to show that T can be
Hausdorff without being completely regular, and the second to show that T can be
completely regular without having the topology of 2.6.

2.7. Examples. (1) Let T be the usual interval [0, 1] in the real line, and take the
basic open sets in T'to be of the form I \ C where I runs through open intervals and C
runs through countable sets. Then T is Hausdorff, not regular, and max is jointly
continuous (Proposition 2.4).

(2) Again take T = [0, 1]. Let (a,) be any fixed strictly increasing sequence in T
with a, 7 1. Let T~{ay, a,, ...} bear the subspace topology and let {a,, a,, ...}
be clopen and bear the discrete topology. Then T'is completely regular, but does not
have a locally convex topology. (The finest locally convex topology coarser than the
topology of T has as a base of open sets the open intervals and finite subsets of
{ay, ay,...}.)

We now consider the question of whether ST can be made into a semigroup by
the procedure of § 1. Since «T is a compact topological space, there is a unique
continuous map ¥ : BT — oT which is the identity on T. (There is an interesting
parallel here with Proposition 10.34 of [9].)

2.8. Theorem. Let T be Hausdorff and separately continuous. The following
assertions are equivalent.

(i) BT has a right-continuous multiplication for which the elements of T com-
mute with all elements of BT.
(i) The map  : BT — oT is such that y~'(x) contains only the point x for
x € T (or, in other words, y(BT\T) = aT\T).
(iii) The finest completely regular topology coarser than the original topology
of T is locally convex.

Proof. (i) implies (ii). Let x € T, and suppose y € BT with y(y) = Y(x). Assume
y % x. Then

ye]—oo,x[ ulx, oo =]-00,x[ U]x, oo .
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Suppose first y € |— oo, x[. Then there is a net ()’j) in ]—oo, x[ with y; - y. As
also x € ]—o0, x[, we can also find (x;) in ]— oo, X[ With x; - x. We shall obtain
a contradiction by proving y = xy = x. Indeed, for a fixed i, Y(y) € ]x;, oo[ and so,
eventually, x; < y;, whence

Xy = lim Xy = Iim yi=YDy
J J

and because x;, x € T and so commute With elements of BT,
xy = yx = lim yx; = lim x;y = limy =y.

Then again, for each j, y; < x so that

xy =limxy; =limx = x.
j J
A similar contradiction is achieved if y € ]x, oo[.
(ii) implies (i). Suppose (ii) holds. Define multiplication in ST by

xy =y if y(x)<¥(y);

xy = x if Y(x) =y¥(y) and x(=y)eT;

xy =x if Y(x)=y(y)=s(U) forsome U;
xy =y if y(x)=¥(y)=i(U) forsome U.

It is then easy (but tedious) to check that multiplication has the properties required
in (i).

(i) is equivalent to (iii). The topology BT induces on T is the finest completely
regular topology coarser than the original one. In view of Proposition 2.6, the
present equivalence follows from the following lemma

2.9. Lemma. The topologies induced on T by oT and BT coincide if and only
if (ii) holds.

Proof. Let @ be the identity map from T with the topology induced by aT to T
with the topology induced by ST. Its inverse, ¥ restricted to T, is continuous, so the
question is whether @ is continuous. '

Suppose (i) holds. Let x € T, x; — x in T in the topology of aT. Then (®(x;)) is
a net in the compact set ST. Let (®(x;)) be any convergent subnet, say &(x;) — y € fT.
As  is continuous x; = Y(®(x,)) = ¥(y), and as (x;) is a subnet of (x;), ¥(y) = x.
By (i), this means y = ®(x). We conclude ®(x;) - ®(x), and hence that & is con-
tinuous.

Now suppose @ is continuous. Let x e T, y € BT, ¥(x) = Y(y). Let (x;) be a net
in T with x; = y in BT. Then ¥(x;) » ¥(»), and so x; = ®(Y(x;)) = (Y(y)) =
= &(Y(x)) = x. Thus y = x, and (ii) follows.
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Example 2.7(2) shows that the conditions of this theorem are not always satisfied.
They are, of course, when T has the discrete topology, and the proof that (ii) implies
(i) gives a complete description of the multiplication in this case. Dr. J. W. BAKER
(in a personal communication to the authors) has a criterion, in terms of the com-
pactness of sets of translates of tunctions, for S to be a right continuous semigroup
for a general topological semigroup S.

Later (in section 5) we shall see that « T is both the almost periodic and the weakly
almost periodic compactification of T.

3. A TOPOLOGICAL CONSTRUCTION

Before we proceed to discuss in detail the multiplication in (N x N), we shall
need to know a little about its structure. Of course, f(N x N) is homeomorphic
with BN (which has been the subject of many investigations [9]) but to say this is
to lose information which is useful in considering semigroup properties. For our
purposes it is enough to find certain subsets embedded in f(N x N), and this we do
in Proposition 3.1; however, an explicit description of the manner of the embedding
is also of interest, and this we provide in Proposition 3.3.

Below, we shall denote by IX | the set underlying the topological space X.

3.1. Proposition. Let X and Y be completely regular (which we take to include
Hausdorﬂ) topological spaces. Then there is a (unique) completely regular topo-
logy  on |BY x X| such that BY x {x} is naturally homeomorphic with BY for each
xeX and Y x X is C*-embedded in (IBY x X|, 1) (i.e. every continuous bounded
function on Y x X extends continuously to (IIS‘Y X Xl, 7)).

Proof. Let f be bounded and continuous on Y x X. For each x € X, the map
y = f(», x) extends to a unique continuous function on Y x {x}, which we denote
by f(-, x), such that sup {f(y,x):ye Y} = sup {f(y,x): y € BY}. We see that J
is defined on |BY X X[ and has the same bounds as f. We give IBY X Xl the topology
determined by the functions f; it is completely regular, and the proposition follows.

We shall now give a construction for the topology of Proposition 3.1 in the case
in which Y = N. We write N* = SN \ N (so that N* is the ‘growth’ of N in the sense

of [9]).

3.2. Notation. We denote by X the topological space whose underlying set is |X [
and whose topology has a base consisting of sets U such that there exists a sequence
(V,,) of open sets in X with U = ) V,. (Then Xp is the P-space coreflection of X;
see exercise 10B of [9]. Some properties of P-spaces are given in [5].)

It is convenient to give the definition of the topology of Proposition 3.1 in terms
of neighbourhoods rather than open sets.
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3.3. Proposition. Let © be the topology of Proposition 3.1 on ‘BN X Xl. Then, if
(n,x)e N x X, a set U is a neighbourhood of (n, x) if and only if U n [N x X
is a neighbourhood of (n, x) in the usual topology. Again, if (y,x)e IN* x X
then U is a neighbourhood of (y, x) if and only if it contains a set of the form

(U (@ m) o ralv) < (0 W)

where W is a neighbourhood of y in BN, and for each ne Wn N, V, is a neigh-
bourhood of x in X.

Remarks. (i) In neighbourhoods of the second kind, NV, < V¥, for each n, so the

above expression may be written a little more simply as

(U ({n} xv)o@mx(n ).
neWnN neWnN'*
(ii) The topology described in the present proposition induces on [N* x X ] the
topology N* x Xp.

Proof. Let (y, x) € [BN X Xf. We shall show that if f is an extension of a con-
tinuous function on N x X as in 3.1, and f(y, x) = 1, then there is a neighbour-
hood U of the form described with f(U) > 0; and conversely, if U is of the form
described, there is a function f with 0 < f = 1, f(y, x) = 1 which extends a con-
tinuous map on N x X and which vanishes off U. This will prove the proposition.
Both parts are easy if (y, x) e N x X, so we may assume (y, x) € [N* x X|.

Take f to be the extension of a continuous function satisfying f(y, x) = 1. Let
1 > & > 0. Since the restriction of f to BN x {x} is continuous, we can find an open
neighbourhood Wof y in AN such that f(z, x) > eforze W.Ifne W N, f(n, x) >
> ¢, so we can find a neighbourhood V, of x in X such that f(n, t) > ¢ for te V,.

Now consider (z, 1)eWx () V, As Wis open, each z € W belongs to Wn N;

neWnN
as f is continuous on BN x {t}, it follows that f(z, t) 2 ¢ > 0. Hence f is strictly

positive on
U (n} x V) u(Wx 0 V).
neWnN neWnN

To prove the converse, we take a neighbourhood of (y, x)€ |[N* x X| of the
prescribed form. We may suppose W is closed, and we shall assume the neigh-
bourhoods ¥, decrease with n (for if they do not, we may replace ¥, by the finite
intersection V, = ﬂ{V,,, tm=n meWn N}) Define a continuous function f
on N x X by taking f(n, x) = 0 for all x if n ¢ W, and by taking f(n, *) to be a con-
tinuous function with 0 < f(n, ) < 1, f(n, x) = 1, and which vanishes off {n} x ¥,
for ne Wn N. By Proposition 3.1, f extends in a unique way to BN x X. Since
f(n,x) = 1 foreachne Wn N and W is a neighbourhood of y, we see f(y, x) = 1.
If t ¢ NV, then f(n, t) * Oonlyif ne Wn N and ¢t € V,, and since the V,’s decrease,
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this implies that f(n, t) + 0 only for a finite number of values of n. Thus, f(z, 1) = 0
for all z e N*. Since W is closed, we also see that if z ¢ W, f(z, ) = 0 for all te X.
Thus f vanishes off our given neighbourhood.

We shall now give our description of S(N x N). To establish the notation we use
in the sequel, we shall write @ = {1,2,3,...} and consider w as an ordered set
(i.e. the first infinite ordinal). We have tried to represent f(w x w) schematically
in fig. 1. The diagram should be interpreted in the following way.

(" x wy)
o

(03 @)

. . ° °
° . . .
W e ° L] [
° . . .
w w*
Fig. 1.

The subspace (w* x w) together with the subspace labelled (wp x w*) is sup-
posed to be the set ‘w* X ﬁw[ with the topology of Proposition 3.1. The discrete
space w x o is affixed to this by giving the union the finest topology which induces
the topology of fw on (w U w*) x {n}. The subspaces @ x w* and w* x wp are
adjoined in the same way (or equivalently, by reflecting in the diagonal). The
remainder, €, is just what has to be added to the space we have already to obtain
its Stone-Cech compactification (i.e. its growth [9]); but before we can assert that
the diagram gives an accurate picture of this compactification we must check that the
space we are compactifying is completely regular.
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3.4. Lemma. The topology on (0 x @) U (0* X @) U (wf x ©*) U (0 x w*) U
U (0* x o}) is completely regular.

Proof. Discarding those parts of the lemma which are obvious and using the
symmetry of the space, it will be enough to show that if U is an open neighbourhood
of (x, y) € (w* x w) U (wp x w*) there is a continuous f on the space which is 1
at (x, y) and vanishes off U. Using Proposition 3.1, we can find f on (0* x @) U
U (wp x o*) with these properties. Define f to be zero on {(m, n)ew x w : m < n}
and on (0 x w*) U (0* x w}); this part of f is clearly continuous on its domain.
Now, for each n € w, f(x, n) is defined for x = m < n and for x € w*; we write also
f(x,n) = 0 if (x, n)¢ U. Then f(-, n) is defined and continuous on a closed sub-
space of the normal (in fact compact) space fw x {n}, and so it extends continu-
ously to fw x {n}. The resulting function on the whole space is the one required.

3.5. Proposition. The space of figure 1 is f(w x ).
Proof. We must show that (o x ) is C*-embedded in
(0 x ©) U (0* x ©) U (0f X 0*) U (0 x 0*) U (0* X ©f).

Now (@ x w) is C*-embedded in fw X w. By construction (Proposition 3.1),
o* x o is C*-embedded in (0* x w) U (wp x w*). Putting these assertions together
and using symmetry yields the result.

4, THE SEMIGROUPS Blw X o), f(@ X @), Blw X @)

In this section, @ denotes the ordered semigroup {1, 2, ...} with the multiplication
max. The opposite order type, @, we will realize as {, -3, =2, -—1} and again
use the multiplication max. We shall give complete descriptions of the multiplications
in the Stone-Cech compactifications of products of  and @, using the representation
of section 3.

The compact semigroup ow (see just before Proposition 2.6) is simply the one-point
compactification {1, 2,3,...,0}. The inclusion @ x @ S aw X ow extends in
a natural way to a continuous homomorphism @ : f(@ x @) — aw x aw (Proposition
1.1). Observe that, in the notation of figure 1, ~!(c0, ) = (wp X w*) U
U (0* x op)u £, etc. We also notice that the natural projection

priw x o> w; pring,n)=n; (i=12)

extends in a unique way to a continuous map pr; : f(@ x ®) — fow. We use these
notations in the following theorem.

4.1. Theorem. The multiplication in f(w x w) is as follows:
(i) if ?(xy) e ® x w, then xy € ® x w and the product is the usual one;
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(i) if d(xy) = (n, ©) where n e w, then xy e ® x w* pn = pri(xy) =
= max {pr,x, pr,y}, and

_pryy if o(x)ew x o
pra(xy) = {przx if ®(x)ew x {oo};

(iii) if ®(xy) = (0, n), where n € w, results are obtained from (ii) by symmetry;

(iv) if ®(xy) = (o0, ), then (a) if ®(x) = (o0, ), xy = x; (b) if &(x) = (o0, n)
where n € w, then xy = (pryX, pr,y) € wp x 0*; (c) if #(x) = (n, ) where n e o,
then xy = (pr,y, prox) € ©* x wp; (d) if ®(x) e w x o, then xy = y.

Proof. Let x, yef(w x ) and let (m; n;), (p;, q;) be nets in w x w with
(my, n;)) > x, (p;» q;) = y- Then

x(py q;) = hfn (my ) (pjs 4;) = Iiim (max {m;, p;}, max {n; q;}),

and therefore
xy = lim lim (max {m;, p;}, max {n;, q,}) .
Jj i

We shall repeatedly use this formula.

Part (i) of the theorem needs no proof. For part (ii), observe that we may take m;, p;
fixed so that indeed n = max {m,, p;} = max {pr,x, pr,y}. If also (n;) is eventually
constant, then for large enough j, g; = n;, so that pry(xy) = lim g; = pr,y. On the

J
other hand, if #(x) € @ x {0}, then n; — 00, so that for fixed j, eventually n; = g,
and so pr,(xy) = hm hm max {n;, q; } = hm n; = pryx.

Part (iii) is proved in the same way.
For part (iv) (a), notice that for fixed j, eventually m; > p; and n; 2 g¢; (for
&(m;, n;) - (0, 0)). Hence

xy = limlim (m;, n;) = x .
J i

In (iv) (b), we may take n; = n for all i, and then eventually we will have g; = n.
But again, for fixed j, m; > p; eventually. Thus, we have for large j, referring to
figure 1,

x(p;, q;) = lim (m;, q;) = (pr;X, q;) € ©* X w;
and then

xy = lim (pr;x, ;) = (pryx, pryy) € p x w*.
J
Case (c) follows in the same way. Case (d) is like (a).
If we replace w by @, the topological structure remains unchaged of course.

We can therefore use figure 1 to represent (@ x @), though we shall place tildas
over all the constituent parts, and speak of, for example, @3. The space a&d is
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{-—oo, v —3, —2,—1}. We shall again use @ for the canonical homomorphism
B(@® x @) - ad x ad, and pr; : f(@ x @) - P& (i = 1, 2) for the natural projec-
tions. We shall also let pr; : «® x a@® — ad be the projection onto the i™ coordinate
(i =1, 2); this will have advantages and will not lead to confusion.

4.2. Theorem. The multiplication in f(& x @) is as follows:
(i) if P(xy)ed x @, then
xy = (max {pr, ®(x), pr,; ®(y)}, max {pr, ®(x), pr, &(»)}) ;
(ii) if @(xy) = (—n, —c0) where —ne®, then
xy = (max {pr, ®(x), pr; D(y)}, pr.y) e d x @*;
(iii) if ®(xy) = (—o0, —n), the product is obtained by symmetry from (ii);
(iv) if ®(xy) = (—o0, —o0), then xy = y.
Proof. The proof follows the methods of the last theorem, and we will prove
only (iv) as an illustration. If (—m;, —n;) - x, (—pj, —q;) > y, then as at the
beginning of the proof of 4.1 we find

xy = lim lim (max {—m;, —p;}, max {—n; —q;}).
Jj i

Now since ®(—m;, —n;) > (—o0, —c0) we must have eventually —m; < —p;,

—n; £ —q, for fixed j. Hence

xy =lim (=p;, —=q;) = y.
J

To discuss f(w x @), we again use figure 1, but the constituent parts will now be
labelled w x @, 0* x @, wp x @*, © x @*, o* x dp and Q. We again have
a homomorphism @ : f(w x @) — aw x ad, and projections pr; : fw X @) — Po,
pry : flw x @) - P, pry i ow X ad — aw, Pry oW X ad —> oAd.

4.3. Theorem. The multiplication in f(w x @) is as follows:

(i) if ?(xy)ew x @, then

xy = (max {pr,x, pr,y}, max {pr, ®(x), pr, ®(y)})
(notice that here, necessarily pr,x, pryy € o, but one of pr, ®(x), pr, ®(y) could
be —w);
(ii) if @(xy) = (o0, —n), then if pr; ®(x) = oo,
xy = (pr;x, max {pr, 9(x), pr, ¥(»)}),
but if pr,; &(x) € w, »
xy = (pr,y, max {prz (D(x)’ pr; ¢(y)}) ;
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(ii) if P(xy) = (n, — o), then
Xy = (max {phx, Pr1J’}s prz)’) >
(iv) if P(xy) = (0, —0) then (a) if pryx € o,

Xy =Y,
but (b) if pr, &(x) = oo, then

xy = (pryx, pr,y) € wp x @*.

Proof. Once again the proofs are on similar lines, so we shall consider only (iv).
The general formula for the product is

xy = lim lim (max {m;, p;}, max {—n, —q,}).
J i

Now in case (a), (m;) is eventually constant, so that for large j, m; < p;. Also both
¢(_ni) — —oo and ‘D(—qj) — — o0, so that, for fixed j, eventually, —n; £ —gq,.
Hence, in this case, for large j,

lim (max {m;, p;}, max {—n;, —q;}) = (p;, —4;) .

and we conclude xy = y.
For case (b), we have pr, ®(m;, — n;) > o0, so that, for fixed j, eventually m; = p;
and —n; £ —q;. Hence

lim (max {m;, p;}, max {—n;, —q;}) = lim (mi, —q;) = (pr;x, —q;) € 0* X @ ;!

thus,
xy = lim (prix, —q;) = (pryx, proy) € p x @.
J

We could now go on to give complete descriptions of the multiplication in
ﬁ(w’ x @) for any positive integers r and s. It is of course true that since the cardinals
of " and @* are Ny, f(w" x @°)is homeomorphic with f(w x ®), and indeed with N.
To give a complete account of the multiplication it would be necessary to use induc-
tion (B(w?) = B(w* x w), etc.) to provide an analysis of the structure of f(w" x @&°)
on the lines of that in section 3. However, an adequate picture of the multiplication
can be obtained simply by investigating the part of f(w" x cT)‘) ‘at the corner at in-
finity’. '

To see what is meant here, consider the natural homomorphism

@ : f(0" x @) - (0w) X (ad) .

The subset &~ *(c0, ..., 00, —0, ..., —0) of f(w" x @) is a subsemigroup. Any
element of f(w” x @) will be in a subsemigroup of the form @~ (xy, ..., X,, Yy, ..., V)
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where x; € w U {0}, y; € @ U { — 0}, and is therefore in a subsemigroup isomorphic
to one of the kind &~ (oo, ..., 0, — 00, ..., —00) in f(w* X @") where 0 < u < r,
0 < v < 5. The only problem — and that complicated rather than difficult — is to
see how distinct subsemigroups of this kind combine. We shall content ourselves
with the following result.

4.4. Theorem. (i) If &(x) = &(y) = (o0, ..., ) and x, y € f(®"), then xy = x.

(ii) If &(x) = &(y) = (=0, — 0, ..., —®) and x, y € f(&°), then xy = y.

(iii) If &(x) = ®(y) = (0, ..., 0, —00,..., —©), D(z) = (1,1,...,1, —oo, ...
.y =) for x,y,z€pf(@" x &), then xy = (pryx, pryy) € (@) x (&)*, yz =
= (pryy, pryz) € (w")p x (&)*, and zy = y.

Proof. As we are again using the same method of proof, we shall prove only
(iii). Let x = llm(n,, m,) (n;e ", myed), y = hm(pj, 4;) (p; € @, g; € &°). Then
d(n;), d(p;) - (oo, ., ), @(m;), ®(q;) > (-0, ..., —0). Thus, for fixed j, we
have eventually (n;, m;) (p), q;) = (1 4,), 50 that

xy = lim lim (n;, q;) = (pryx, pryy) € (@) x (&°)*
J i
The product yz is obtained in the same way. To find zy, let z = lim ((1, ..., 1), u,).
k

Then &(u;) - (— 0, ..., — ), and so eventually, for fixed j,
2p; q;) = li:n (11,51, w) (py q)) = “km (pj»a5) = (ps> 9))

so that zy = y as required.

5. ALMOST PERIODIC COMPACTIFICATIONS

Let T}, T>, ..., T, be totally ordered separately continuous Hausdorff topological
semigroups. For each i, aT; denotes the compact semigroup constructed from T;

by the method of section 2 (see just before Proposition 2.6). Our aim is to use the
properties of the Stone-Cech compactification to prove the following result.

5.1. Theorem. Both the weakly almost periodic compactification W(T; x

. x T,) and the almost periodic compactification A(Ty x ... x T,) of the product
T, x ... X T, coincide with aT; x ... x aT,.

Recall that W(T; x ... x T,) resp. A(T; x ... x T,) is the solution for T; X

. X T, to the universal mapping problem into compact separately resp. jointly
continuous semigroups [1]. Together with the universal properties of (T} x

. x T,), this yields canonical surjective maps

BTy x ... x T,) > W(Ty x ... x T,) > A(Ty x ... x T,) > aTy x ... X oT,.
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We have seen that f(T; x ... x T,) may not be a semigroup, but when it is, all these
maps are homomorphisms.

We must find some way of circumventing the problem that f(T, x ... x T,) is
not a semigroup in general. This is, in fact, simply done. Let ]T,l denote T; with the
discrete topology; then (Proposition 1.1), B(|T1] X ... X [T,,|) is always a semigroup.
The continuity of the identity map |T;| x ... x |T,| > T; x ... x T, yields a con-
tinuous surjective homomorphism W(|T;| x ... x |T,|) > W(T, x ... x T,). From
all the maps at our disposal, we shall only need to consider

B(T:| x ... x |T,)) > W(Ty| x ... x |T,)) &>

n

i>W(T1x...><T,,)irochx...xaT,

n

and these are all continuous surjective homomorphisms. As all the spaces are com-
pact, to establish Theorem 5.1 it will be enough to show that A is injective; for it is
then a homeomorphism, so an isomorphism, and we have observed that A(T; x ...
. x T,) is sandwiched between W(T, x ... x T,) and aT; X ... xoT,.
To this end, let (xy,...,x,)€aT; X ... x aT,. The construction of «T; means

that elements of «T; are of three kinds (see section 1) and by permuting the indices
if necessary, we can suppose (X, ..., x,) is of the form

(s(Uy), ..., s(U,), i(Vy), ..., i(Vy), ay, ..., a,)

where Uy, ..., U,, V|, ..., V, are segments, 0 < r,s,t, and r + s + t = n. By the
construction of «T;, each U; is clopen and each T;\ V; is clopen in the relevant T,
while the closures in aT}, U; = ]— oo, s(U;)] and T\ V; = [i(V;), oo[ are also clopen
in oT;.

Now take x, yeﬁ(|T1| X .o X

T,

Aopox)=2Aopowy) =((U,),....s(U,), i(Vy), ..., i(Vs), ays-..r ayr) .
Then

) with

X, y€@Aopov) (Uy x ... x Uy X T, N Vy X ... X T..

x {a,)} x ... x {a}).

This is a clopen subsemigroup of B(Ty X ... x T,.s x {a;} x ... x {a,}) and is
therefore seen to be the closure of

NV x

Up X oo x Up X (Thy NV) X X (TN V) x {ag} x oo x {a} .

The proof now follows that of Theorem 4.4. There are three cases: r = 0, s > 0;
r > 0,s = 0;and r, s > 0. The last is the most difficult, and that is the one we shall
consider. For brevity, we write a = (a,, ..., a,).

Take nets (m;, n;, a) - x, (p;, q;, a) > y where m;, p;jeU,; x ... x U, n, q;€
€(Tr+1\Vy) X ... X (T,4s\ V;). By considering images under Ao Lo v, We see that
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eventually for fixed j, m; = p; and n; < ¢;. Hence

xy = lim lim (m;, n;, a) (pj, 4;, @) = lim lim (m;, g;, a) .
J i j i

Next, take a fixed ue U; x ... x U,, and write z = lim (u, q;, a). (It is easy to

J
see the limit exists by considering the projection onto f(T,+; X ... x T,,,).) Then,
as above, we find
xz = limlim (m;, q;, a) = xy .
i

By the same method, we also find

zx = lim lim (u, g, a) (m;, ny, a) = lim lim (m;, n;, a) = x.
i Jj i Jj

Now observe that W(ITII X oo X \T,,l) is a separately continuous semigroup
with a dense commutative subsemigroup, so that it is itself commutative. We see that

W(xy) = v(xz) = v(x) W(z) = W(z) (x) = v(zx) = ¥(x).
W(»). Therefore

ATHS(UY), oo s(U), i(Vy)s ooy i(Ve), @y ey ag) = p(W(A 0 prov) ™1 (s(UY), ... ay)))

contains only one point. Hence 4 is injective, and our theorem follows.

Since x and y were arbitrarily chosen, we conclude that v(x)

Il
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