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ON E-SEQUENTIALLY REGULAR SPACES

RoMaN Fri¢, Zilina

(Received February 14, 1975)

The purpose of the present paper is to define and study classes of E-sequentially
regular and E-sequentially complete convergence, resp. sequential, spaces, E being
a subspace of the real line. In the first section we prove and generalize some results
concerning the property p of convergence spaces defined in [2]. As a main result
we prove that for each E — R the E-sequential regularity (completeness) is equivalent
either to [0, 1]-sequential or to {0, 1}-sequential regularity (completeness). The
second section is devoted to equality of E-sequential envelopes. In the third section
we apply the results of the previous two sections to sequential spaces.

Throughout the paper we make a blanket assumption that all spaces have unique
sequential limits and all convergence spaces satisfy axioms (Z,) — (&;). The
definitions and basic properties of convergence spaces can be found in [7], [8], [2],
[5], and those of sequential spaces in [1], [3]. Recall that if (L, u) is a topological
space, then in the associated convergence space (L, 1) a sequence {x,» converges to
a point x whenever each u-neighborhood of x contains all but finitely many x,.
By 1“* we shall denote the topological modification of 1 and by sL the sequential
modification (L, 2°*) of (L, u). If (L, u) is a sequential space, then we have u = A”'.
We shall use the following notation: R denotes the real line, E a subspace of R,
N natural numbers, [0, 1] the closed unit interval, and {0, 1} the two-point isolated
space. If (L, u) is a space, then C = C(L) denotes the set of all continuous functions
on L, C; = C the set of all continuous functions on Linto E, and C, a subset of C.

Definition 1.1. We say that a convergence space (L, ) has the property p with
respect to Cy if

(p) For each two sequences {x,»>{V»> Of points of L such that (2 U(xa) N
N (AU(yn)) = 0 there is a function fe C, such that lim f(x,) = 1im f ()
does not hold.



Notice that if in (p) we have y, = y, n € N, then we obtain the definition of the
C,-sequential regularity for convergence spaces (cf. [8]).

Definition 1.2. A C,-sequentially regular convergence space (L, A) is called Co-
sequentially complete if (L, 2) is a closed subspace of each sequentially regular
convergence space in which it is Cy-embedded.

Theorem 1.3. A Cy-sequentially regular convergence space (L, 1) has the proper-
ty p with respect to C, iff it is Cy-sequentially complete.

The proof of this theorem will appear in [4].

Corollary 1.4. A convergence space (S, o) is a Cy-sequential envelope of a Coy-
sequentially regular convergence space (L, i) iff

(i) (L, 2) is a sequentially dense (i.e. 1*'-dense) Co-embedded subspace of (S, o).
(ii) (S, o) has the property p with respect to Co(S) = {f e C(S) : f|[Le Co}.

Corollary 1.5. A C,-sequentially regular space has the property p with respect
to C, iff it is a Cy-sequential envelope of itself.

Notation 1.6. If Cy = Cg, E < R, then we speak of E-sequentially regular (com-
plete) convergence spaces and if E = R, then we simply speak of sequentially regular
(complete) spaces. Similarly, we speak of the property pg, resp. p, and E-sequential
envelope (L), resp. sequential envelope o(L).

Lemma 1.7. Let (L, 2) be a convergence space having the property p. Then for
each two sequences {(x,», {y,» such that (A U(x,)) 0 (A U(y,)) = 0 there are sub-
sequences {x,» of {x,» and {y,» of {y,» and a function f € Co 1, such that for each
neN we have f(x;) =0, f(y,) = 1.

Proof. By the assumption, if (4 U(x,)) n (4 U(y,)) = 9, then there is a function
g € C such that lim g(x,) = lim g(y,) does not hold. Consequently, there are sub-
sequences {x,» of <x,» and {y,> of {y,> such that U(g(x,)) n U(g(»;)) = 9. From
the normality of R it follows that there is a function h e Cp ;(R) such that for
each ne N we have h(g(x,)) = 0, h(g(y,)) = 1. Since f = g o h € Cjo,4,(L), the proof
is finished.

Let (L, ) be a convergence space having the property p with respect to C; and
let C; = C, = C. It follows immediately that (L, 2) has the property p with respect
to C,.

Corollary 1.8. Let E = R contain an interval. Then the properties p and py are
equivalent.
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Lemma 1.9. Let E < R do not contain any interval and let (L, 2) be a convergence
space having the property pg. Then for each two sequences {x,»,<{y,» such that
(AU(x) 0 (AU(ra)) = 0 there are subsequences {(x,» of {x,»> and <{y,> of {y,»
and a function f € Cyo 4, such that for each n € N we have f(x,) = 0, f(y;) = 1.

Proof. By the assumption, if (A U(x,)) n (2 U(y,)) = 0, then there is a function
g € Cg such that lim g(x,) = lim g(y,) does not hold. There are two possibilities. I.
One of the sequences {g(x,)>, <g(».)>, say <g(x,)>, is unbounded. Then there is
a subsequence (x,» of {x,> such that the sequence {g(x,) is strictly monotone, say
increasing, and has no limit point in R. Then there is a sequence {r,» in R — E such
that for each n e N we have g(x,) < r,< g(x;.,). Denote by E; =En(U(ra,-1, ran))
and by E, = E — E,. Since E = E, U E,, there is a subsequence {y,> of {y,> such
that {g(y,)> is contained in E;, i € {1, 2}. Define a function h on E as follows:

h(z) = 0 for zeE,; and
h(z) =1 for ze E — E,.

I1. Both sequences <{g(x,)> and <{g(»,)> are bounded. Then thzre are subsequences
{xhy of (x,» and {y,» of {y,> and numbers a, b € R, a * b, such thata = lim g(x’,j),

= lim g(y;). Consequently, there are numbers p, g€ R — E such that a € (p, q),
b ¢ (p, q). Define a function h on E as follows:

h(z) = 0 for ze E n (p, q) and
h(z) =1 for ze E —(p, q).

In both cases I and II the function h is continuaus on E, f = g o he Cyy 4)(L),
and for some subsequences <{x,» of {x,» and {y,> of {y,» we have f(x,’,) =0,
f(»,) = 1, ne N. This completes the proof.

Corollary 1.10. Let E < R contain at least two points and do not contain any
interval. Then the properties pg and pyo 1, are equivalent.

Example 1.11. The real line R has not the property p,o ;. For, if x, ye R, x % y,
then there is no continuous function f : R — {0, 1} such that f(x) = 0 and f(y) = 1.
On the other hand, R has the property: p.

Denote by ¢ the relation defined on the set of all subsets of R containing at least
two points .as follows: E ¢ F if the properties p; and p, are equivalent. Then ¢ is
clearly an equivalence relation. From the above considerations it follows that there
are only two equivalence classes. One contains [0, 1] and the other {0, 1}. Moreover,
it is easy to see that E g F iff E-sequential and F-sequential regularities are equivalent.
To sum up we have the following

Theorem 1.12. Let (L, 1) be an E-sequentially regular (complete) convergence
space. If E contains an interval, then (L, 1) is [0, 1]-sequentially regular (complete).
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If E does not contain any interval, then (L, )y) is {0, 1}-sequentially regular (com-
plete).

In [7] it was proved that the sequential and {0, 1}-sequential regularities are con-
vergence productive and hereditary properties. It was also proved that a convergence
space (L, 2) is [0, 1]-sequentially ({0, 1}-sequentially) regular iff it is homeomorphic
with a subspace of some convergence power [0, 1]” of [0, 1] ({0, 1}™ of {0, 1}).
In the same way it can be proved

Theorem 1.13. A convergence space is E-sequentially regular iff it is homeo-
morphic with a subspace of some convergence power E™ of E.

We shall prove similar representation theorems for E-sequentially complete spaces.
First we prove a generalization of Theorem 12 in [5].

Theorem 1.14. Let (L, u) be a normal topological space. Then the associated
convergence space (L, 1) has the property p.

Proof. Let {(x,> and {y,) be sequences such that

() (AU(x) 0 (AUQw) = 0.

There are two possibilities: I. (u U(x,)) n (u U(y,)) = 0. Since (L, u) is normal, there
is a function fe C(L,u) = C(L, %) such that for each ne N we have f(x,) = 0,
f(ya) = 1.

I1. There is x € (u U(x,)) 0 (u U(y,)). From () it follows that there are an open
u-neighborhood U of x and a closed u-neighborhood ¥V < U of x and subsequences
{xpy of {x,» and {y,» of {y,> such that U(x;) = Vand U(y,) = L— U. It follows
from the normality of (L, u) that there is a function f e C such that f[V] =0,
f[L — U] = 1. Thus for each n € N we have f(x,) = 0 and f(y,) = 1.

In both cases I and Il lim f(x,) = lim f(»,) does not hold. This completes the
proof.

Lemma 1.15. Let E be a subspace of the real line. Then E has the property pg.

Proof. From Theorem 1.14 it follows that E has the property p. If E contains
an interval, then, by Corollary 1.8, E has the property pg. If E consists of a single
point, then the theorem is trivial. Finally, let E contain at least two points u and v
and do not contain any interval. If (x,>, {(),> are sequences in E such that m a)
N U()T) = (), where the closure is taken in E, then there are three possibilities. I. One
of the sequences contains a strictly monotone unbounded subsequence.

1. There are numbers a, b € R, a #+ b, and subsequences {x,» of <{x,» and {y,»
of {y,» such that a = lim x,, b = lim y,.

ITI. There is a point a € R — E such that lim x, = a = lim y,.
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In all three cases a function h € Cy, ,,(E) = Cg(E) can be constructed in a similar
way as in the proof of Lemma 1.9 such that lim h(x,) = lim h(y,) does not hold.

Lemma 1.16. The property pg is convergence productive.

Proof. Let (L,, 4,), x €I, be convergence spaces having the property py and let
(L, %) be their convergence product. If {x,»> and {y,) are sequences of points x, =
= (x5, ael), y, = (¥} ael), such that (2 U(x,)) n (A U(y.)) = 0, then there is an
index B € I such thatlim x? = lim y% does not hold in L;. Thus, there are subsequences
(xb % of {x&> and {y&> of {y4> such that (2, U(x5)) n (; U(¥%,)) = 0. Then, by the
assumption, there is a function g € Cg(L,) such that lim g(x4) = lim g(y5,) does not
hold. Since the function f defined on L by f(<{x* aeI)) = g(x*) belongs to C(L),
the proof is finished.

Lemma 1.17. Let (L, 1) be a convergence space having the property pg and let
(M, p) be a closed subspace of (L, ). Then (M, p) has the property pg.

Proof. Let ¢x,», {y,> be sequences in M such that (u U(x,)) n (zU(y,)) = 0.
Since M is closed in (L, 2), we have (1 U(x,)) n (A U(y,)) = 0. Thus lim g(x,) =
= lim g(y,) does not hold for some g € Cg(L). But f = g/M € C¢(M) and the proof
is complete.

Corollary 1.18. Let (L, 1) be a convergence product space of convergence spaces
(L 4,), @€l If (L, 2) has the property pg, then for each a el the factor space
(L, 4,) has the property pp.

Theorem 1.19. A convergence space (L, 1) has the property pg iff it is homeo-
morphic with a closed subspace of some convergence power E™ of E.

Proof. I. Let (L, ) have the property pg. From Corollary 1.5 it follows that
(L, 2) is an E-sequential envelope of itself. By Theorem 3 in [8] ¢ : L > R™, where
o(x) = {p/(x), fe C), ¢(x) =f(x), and m is the cardinal number of Cg(L),
is a homeomorphism of Lonto a closed subspace ¢[L] of the convergence power R™.
It is easy to see that @[ L] is actually a closed subspace of the convergence power E™,

II. From Lemma 1.15, Lemma 1.16, and Lemma 1.17 it follows immediately that
a closed subspace of the convergence power E™ has the property pg.

From Corollary 1.8, Theorem 1.13, and Theorem 1.19 we obtain

Corollary 1.20. Let E = R contain an interval. Then a convergence space (L, A)
is E-sequentially regular (complete) iff it is homeomorphic with a (closed) subspace
of some convergence power [0, 1]™ of [0, 1].

From Corollary 1.10, Theorem 1.13, and Theorem 1.19 we obtain
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Corollary 1.21. Let E = R do not contain any interval. Then a convergence
space (L, 2) is E-sequentially regular (complete) iff it is homeomorphic with
a (closed) subspace of some convergence power {0, 1}™ of {0, 1}.

We conclude this section with a result announced in [2].

Theorem 1.22. Let (L, u) be a realcompact space. Then the associated convergence
space (L, 2) has the property p.

Proof. Let ¢ be the evaluation mapping of (L, u) into the topological power R™
of R, where m is the cardinal number of C(L). Then ¢ is a homeomorphism and ¢[L]
is closed in R™. It can be easily proved that ¢ is also a homeomorphism of (L, 1)
into the convergence power R™ of R. Since ¢[L] is sequentially closed in R™, the
assertion follows from Theorem 1.19.

2.

In [2] we announced that C*-sequential and C-sequential envelopes of a sequential-
ly regular convergence space are homeomorphic and the homeomorphism leaves the
original space pointwise fixed. In this section we shall prove more general results.

Notation 2.1. Let (L, 1) be both E-sequentially and F-sequentially regular con-
vergence space and let ox(L), resp. 65(L), be an E-sequential, resp. F-sequential,
envelope of (L, 2). By 64(L) = o5(L) we mean that there is a homeomorphism of
ag(L) onto ox(L) that leaves L pointwise fixed.

Lemma 2.2. Let (L, A) be an E-sequentially regular convergence space and let
S, 0) = og(L). Then
(S, 0) = ox(L)

(i) Ci(S) = CK(S), where C(S) = {g € C(S) : g/Le C¢(L)}.

(i1) og(L) has the property pg.

Proof. (i) By Corollary 1.4, (S, o) has the property p with respect to Cg(S). We
shall prove that Cg(S) = Cg(S). From the Extension theorem in [4] it follows that
if f is a continuous mapping of (L, 4) into an F-sequentially complete convergence
space (M, p) and for each h € Cx(M) the composition f o h belongs to Cg(L), then f
can be extended to a continuous mapping g of ox(L) into (M, p). From Lemma 1.15
and Theorem 1.3 it follows that E is E-sequentially complete. If we put (M, p) = E,
then each fe Cg(L) can be extended to a continuous function g of ox(L) into E.
Hence C(S) = Ci(S). Since clearly Cf(S) = C(S), we have Ci(S) = Cx(S).

(i) follows immediately from (i).

Theorem 2.3. Let (L, 1) be an E-sequentially regular convergence space. Then
(i) 1f (L, 2) is not {0, 1}-sequentially regular, then og(L) = o(L).



(i) 1f (L, 4) is {0, 1}-sequentially regular and E contains at least two different
points a, b € R but not an interval, then 6g(L) = 64 1,(L).

Proof. (i). From C; < C it easily follows that (L, 1) is Cp-embedded in o(L).
Since o(L) has the property p it has, by Theorem 1.12 and Corollary 1.8, the proper-
ty pe. Since clearly Cg(a(L)) = Cx(a(L)), by Corollary 1.4, ¢(L) is an E-sequential
envelope of (L, Z). Thus, by Theorem 5 in [8], we have o4(L) = o(L).

(ii) Using Lemma 2.2 we can prove the second statement in the same way.

Corollary 2.4. (i) A sequentially regular convergence space (L, ) which is not
{O, 1}-sequenrially regular has a unique E-sequential envelope.

(i) 4 {0, 1}-sequentially regular convergence space (L,2) has at most two
different E-sequential envelopes: o(L) and oy 4,(L).

Problem 2.5. Is there a {O, 1}-sequentially regular convergence space (L, 2) such
that o(L) + a9 4,(L)?

3.

In the sequel we shall frequently use the simple statement that if (M, u) is the
convergence space associated with a topological space (M, v), then for each L = M
the convergence space (L, u/L) is associated with (L, v/L). Recall also that for L
open or closed in M we have (¢/L)”' = (u®')/L and therefore (L, (u/L)"') is a sub-
space of (M, u®"). '

Definition 3.1. A topological space X is said to be C,-sequentially regular if the
convergence of sequences in X is projectively generated by C, = C(X), Le. {(x,»
converges to x in X whenever for each f e C, we have f(x) = lim f(x,).

This is a generalization of Definition 2 in [3].

Definition 3.2. A C,-sequentially regular sequential space is said to be C,-sequen-
tially complete if it is a closed subspace of each sequentially regular sequential space
in which it is Cy-embedded.

As a rule, if Cy = Ci, E = R, then we speak of E-sequential regularity, resp.
completeness, and if E = R, then we omit the letter E.

Theorem 3.3. Let (L, u) be a sequential space and (L, /) the associated convergence
space. Then (L, u) is Cy-sequentially regular iff (L, %) is Co-sequentially regular.

Proof. The convergence of sequences in (L,u) and in (L, %) is the same and
C(L. u) = C(L, 7).
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Corollary 3.4. A sequential space X is E-sequentially regular iff it is homeo-
morphic with the sequential modification sY of a subspace Y of some topological
power E™ of E, or equivalently iff X is homeomorphic with the topologlcal modifica-
tion of a subspace of some convergence power E™ of E.

Corollary 3.5. Let E = R do not contain any interval. Then a sequential space X
is E-sequentially regular iff it is homeomorphic with the sequential modification sY
of a subspace Y of some topological power {0, 1}™ of {0, 1}, or equivalently iff X
is homeomorphic with the topological modification of a subspace of some con-
vergence power {0, 1} of {0, 1}.

Theorem 3.6. A Cy-sequentially regular sequential space (L, u) is Co-sequentially
complete iff the associated convergence space (L, 1) is Cy-sequentially complete.

Proof. I. Let (L, u) be ' Cq-sequentially complete. Suppose that, on the contrary,
(L, ) is not Cy-sequentially complete. Let (S, o) be a Cy-sequential envelope of (L, 2).
From Theorem 1.3 and Corollary 1.5 it follows that there is a point xe oL — L.
Then (L, ) is a Co-embedded sequentially dense subspace of a sequentially regular
convergence space (M, u), where M = LU (x) and u = o/M. Since 4 = p/Land L
is open in M, we have A°' = (p/L)*' = u'[/L and (L, 2*') is a dense subspace of
(M, p®). From C(L,%) = C(L, ") it follows that (L,2”') is C,-embedded in
(M, ') which is, by Theorem 3.3, sequentially regular. This is a contradiction.

II. Let (L, u) be not. Cy-sequentially complete, i.e. (L, u) is a proper dense Co-
embedded subspace of a sequentially regular sequential space (M, v). Let (M, u) be
the sequentially regular convergence space associated with (M, v). Then (L, /L) is
associated with (L,u) and hence p/L= . Since C(L,2) = C(L, ') and vL=
= u”’L = M, it follows that (L, 1) is a Co-embedded sequentially dense proper
subspace of a sequentially regular convergence space (M, u). Thus (L, ) is not
C,-sequentially complete.

Corollary 3.7. A sequential space X is E-sequentially complete iff it is homeo-
morphic with a closed subspace of the sequential modification sE™ of some topo-
logical power E™ of E, or equivalently iff X is homeomorphic with a closed subspace
of the topological modification of some convergence power E" of E.

Corollary 3.8. Let E = R do not contain any interval. Then a sequential space X
is E-sequentially complete iff it is homeomorphic with a closed subspace of the
sequential modification s{0, 1}" of some topological power {0,1}" of {0,1}, or
equivalently iff X is homeomorphic with a closed subspace of the topological
modification of some convergence power {0, l}'" of {0, 1}.

Using the example of a sequentially regular convergence space L;; given in [7]
for which o(L,,) # L,,, we can construct a sequentially regular convergence space
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(L, A) such that if (S, o) is its sequential envelope, then S — Lconsists of a convergent
sequence {X,» — X, L contains a double sequence {x,,> such that for each me N
we have {(Xu,» = x,, and no sequence in L converges to x. Since (S, ¢) is also
a sequential envelope of (M, ¢/M), M = LU (x), and (M, (¢/M)"*) is not a sequential
subspace of (S, 6!), it follows that the theory of sequential envelopes cannot be
applied to define a sequential envelope in the category of sequentially regular
sequential spaces. However, using the theory of multisequences, developed by
P. KRATOCHVIL in [6], this is possible for some subcategory of sequentially regular
sequential spaces. This will be done in a forthcoming paper.
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