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Czechoslovak Mathematical Journal, 26 (101) 1976, Praha 

HEREDITARY AND COHEREDITARY PRERADICALS 

LADISLAV BICAN, PAVEL JAMBOR, TOMAS KEPKA, PETR NEMEC, Praha 
(Received April 4, 1974) 

In the last years, several authors have studied torsion theories and related idem-
potent radicals. Great emphasis was laid on hereditary radicals (see e.g. [9], [10], 
[11], [13]). J. A. BEACHY [2] has defined the dual notion, which he has called 
a cotorsion radical. However, the situation seems to be more lucid within the frame­
work of the general theory of preradicals. In this paper, we are going to study 
hereditary preradicals together with the related dual problems. The first section 
provides (without proofs) a brief summary of the results from the theory of preradicals 
which are needed in the following parts. The second part is devoted to the investigation 
of the basic properties of hereditary preradicals, showing e.g. that a hereditary 
preradical is uniquely determined by its values on injective modules. We also discover 
a one-to-one correspondence between two-sided ideals and hereditary preradicals 
with torsion modules closed under direct products. In the third part we examine the 
hereditary closure of a given preradical r, i.e. the least hereditary preradical con­
taining r. The following two sections deal with dualizations of these concepts. We 
investigate cohereditary preradicals, the one-to-one correspondence between the 
cohereditary preradicals and two-sided ideals and the cohereditary core. The final 
section includes some examples. 

1. PRELIMINARIES 
R always stands for an associative ring with identity and R-Mod is the category 

of all unitary left R-modules. The injective hull of a module M is denoted by £(М), 
the direct product (sum) is denoted by f ] M,- ( [ j M,-, M^ @ M2)- Let M G R-Mod 

iel IG / 

and let iV be a submodule of M. N is called essential in M if К n iV Ф 0 for every 
nonzero submodule К of M. In this case, M is said to be an envelope of N, Dually, 
a submodule iV of a module M is called superfluous in M, if К = M whenever 
К + N = M. Then M is said to be a cover of MJN. A ring R is called left perfect if 
every module has a projective cover (see [ l ] for the details). 
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Let se be a class of modules. We shall say that se is 

— hereditary if se is closed under isomorphisms and submodules, 
— cohereditary if ,я/ is closed under epimorphic images, 
— stable if every module Ae se has an injective presentation O - ^ ^ - ^ Q - ^ i ^ - ^ O 

with б e ^ , 
— costable if every module Ae se has a projective presentation 0 - ) > L - ^ P - > ^ - > 0 

with P e se. 

A preradical r for i^-Mod is a subfunctor of identity, i.e. r assigns to each module M 
its submodule г{М) in such a way that every homomorphism of M into N induces 
a homomorphism of r{M) into r{N) by restriction. Obviously, г(К) is a two-sided 
ideal. We shall denote by ^^{^^ the class of all modules M such that r(M) = 
= M{r{M) = 0). Modules from ^J{^^ are called r-torsion (r-torsionfree). A pre­
radical r is said to be idempotent (a radical) if for all M e Я-Mod, r(r{M)) = 
= r{M) {r{Mlr(M)) = 0). 

Let Г, 5 be preradicals. We shall say that r ^ 5 if r(M) Ç S(M) for all M e i^-Mod. 
Obviously, if r ^ 5 then ^^ ç ^^ and ^^ Ç J^^. Conversely, if r is idempotent 
and ^^ Ç ^ 5 then r ç 5, and if г is a radical and J^^ — ̂ r then r ç 5. 

Let г be a preradical. Then ^^ is a cohereditary class closed under direct sums 
and ^r is a hereditary class closed under direct products. If r is idempotent (a radical) 
then ^^{^^ is closed under extensions. For every M e jR-Mod, put г(ЪА) = ^ X , 
where К runs through all submodules iC of M with г(Х) = К, and г(М) = Ç\L, 
L running through all submodules L of M such that r(MlL) = 0. Then r is an idem-
potent preradical, г is a radical, .T,. = ^p, ^^ — J^p, and if s is an idempotent 
preradical with s ^ r (a radical with v ^ s) then s <=,? (f ^ i). Thus r is called the 
idempotent core and r the radical closure of r. 

Let se be an arbitrary class of i^-modules. For every M G Я-Mod, we define 
r^{M) = X Im/, / G Нот i^A,M\Aesé and r'^iU) = Ci^^rf, fe Нот (M, Л), 
Л G .й/. Then r ,̂  is an idempotent preradical, s/ ^ ^ ^ ^ and ^^.^ consists of all 
epimorphic images of direct sums of modules from s^. If s^ is hereditary then J^^^ 
is stable, and if s^ is a cohereditary class closed under extensions and direct sums 
then Vj^ is an idempotent radical. Further, v^ is a radical, s/ Ç J^^^ and ^^J^ 
consists of all submodules of direct products of modules from s^. If J3/ is a hereditary 
class closed under extensions and direct products then r"^ is an idempotent radical. 
If г is a preradical then r = r̂ -̂  and r = r^". 

The assertions listed above are presented without proofs, since a detailed study 
of these and related problems will appear in [6]. 

An /-subpreradical (p-subpreradical) .s is an application that assigns to every 
injective (projective) module M its submodule s{M) in such a way that every homo­
morphism of M into an injective (projective) module N induces a homomorphism 
of S{M) into S[N) by restriction. 
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A preradical r is called hereditary (cohereditary) if for every M e R-Mod and every 
submodule N ^ M, r{N) = N n r{M) {r{MlN) = {r{M) + N)IN). Let / be a two-
sided ideal of a ring R, We shall say that / satisfies the condition (a) if x e Ix for every 
xel. 

Finally, we shall need the following simple assertion: / / / is a two-sided ideal 
then there exists a largest idempotent two-sided ideal contained in 1. 

2. HEREDITARY PRERADICALS 

2.1. Proposition. The following conditions on a preradical r for R-Mod are 
equivalent: 

(i) r is left exact as a functor, 
(ii) r /5 hereditary, 

(iii) r /5 idempotent and ^^ is hereditary. 

Proof, (i) implies (ii). If Л/ is a submodule of a module M then, by (i), the sequence 
0 -> r{N) -• r{M) -> r{MlN) is exact, so that r(N) = N n r{M). 

(ii) implies (iii). We have r(r{M)) = r(M) n г{М) by (ii) and r is idempotent. 
If M e ^r and N is a submodule of M then r{N) = N n г{М) = N n M ^ N, 
Thus N e ^r and ̂ ^ is hereditary. 

(iii) implies (i). Let 0 -^ A -^^ ß ->^ С -> 0 be an exact sequence. We are going to 
show that the sequence 0 -^ r{Ä) -^^ r(B) -^^ ̂ {C), where / and g are restrictions of / 
and g, is exact. The exactness in r{Ä) is clear as well as the inclusion I m / ^ Ker g. 
Let X e Ker g be an arbitrary element. Then x G I m / n г{В) = г{В) ~ r ( l m / n г{В)) 
by (iii) and r ( l m / n r{B)) ç r(lm / ) = Im fas desired. • 

2.2. Proposition. Let r be a preradical for jR-Mod. Then 

(i) if r is hereditary then ^^ is stable and closed under envelopes, 
(ii) if r is a radical and ^^ is stable then r is a hereditary radical. 

Proof, (i) For F G #", we have 0 = r{F) = F n r{E{F)) and r{E{F)) = 0, F,being 
essential in F ( F ) . 

(ii) We shall show that r satisfies the condition (iii) of Proposition 2.1. Consider 
the commutative diagram 

0 > r{M)lr{r{M)) > Mlr{r{M)) 

i 
Q*-

194 



with exact row and column, where Q is an injective module from ^^, the existence 
of which follows from the stability of J^,. Thus/(r(M)/r(r(M))) = h{r{M)lr{r{M))) ç 
ç= h{r{MJr{r{M)))) Ç r{Q) = 0, showing г{М) = г{г{М)). Now let iV be a sub-
module of a module M e ^^, The stability of ^^ yields the existence of the following 
commutative diagram with exact row and column where Q is an injective module 
from J^^: 

0 

0 ^ N\r{N) > M\r(N) 

Q 

Now Mlr{N) 6 ^^ , Qe ^ , yields /i = 0 so that / = 0, N = r(N) which completes 
the proof. 

2.3. Corollary. The radical closure of a hereditary preradical is a hereditary 
radical. 

Proof. Since J^^ = ^f, it suffices to use Proposition 2.2. 

2.4. Proposition. Let s be a hereditary preradical, s^ a representative set of 
S'torsion cyclic modules and M = JJ A. Then s = r^ = Гщу 

Proof. Obviously, ^^ еГ, and ^ , r^ ^ ^ s — - ггд,, ^ ^s- ^^ the other hand, every module 
Те ^^ is an epimorphic image of Ц Rx and consequently of a direct power of M. 

xeT 
Hence the assertion follows. 

The following result is well-known (see e.g. J. P. JANS [10]) but we include it here 
for the sake of completeness. 

2.5. Proposition. Let s be a hereditary preradical. Then s is a radical iff there 
exists an s-torsionfree injective module Q such that s = r^^\ 

Proof. It is easy to see that for an injective module Q the preradical r̂ ^̂  is a heredi­
tary radical. Conversely, let j / be a representative set of cyclic s-torsionfree modules 
and Ö = П ^(^)- Obviously, ^ , ç ^ , where / = r^^\ Let Te ^ , -^ ^ , be 

a module. Without loss of generahty we can assume that Te #-, n ^t (take TIS{T) 
instead of Г, if necessary). If Tis non-zero, then it contains a non-zero cyclic sub-
module К isomorphic to some Ae s^. But then X G J^, n ^ , = 0 yields a con­
tradiction. 
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2.6. Proposition. Let s be an i-subpreradical. Let M be a module and Q an in­
ject ive module containing M. Then г(М) — M n s[Q) does not depend on the 
particular choice of Q and r is a hereditary preradical. 

Proof. Let M,N be modules, Q, S injective modules, M ^ Q, N ^ S and 
/ e Н о т (M, N). Then there exists g e Н о т {Q, S) such that the diagram 

commutes. From this it easily follows that r(M) does not depend on the choice of Q 
and r is a preradical. Finally, for a submodule N of M, N ^ M ^ Q, we have 
r(N) = N n s{Q) =^ N r\ M n s{Q) = N n r{M) and r is hereditary. 

2.7. Theorem. There is a one-to-one correspondence between hereditary 
preradicals and i-subpreradicals. 

Proof. By Proposition 2.6. 

2.8. Proposition. Let r be a hereditary preradical. Then the following statements 
are equivalent: 

(i) r is a radical, 
(ii) ^(б/г(С)) = 0, for every injective module Q. 

Proof, (i) implies (ii). Obvious. 

(ii) implies (i). For a module M, let us consider the exact sequence 

0 -> r{E{M))lr{M) -> E{M)lr{M) -> £(M)/r(£(M)) -^ 0 . 

By the hypothesis, r{E{M)jr{E{M))) = 0 so that Г{Е{М)1Г{М)) = г(Е{М))1г{М) and 
consequently, г{М1г{М)) = М1г{М) n Г{Е{М)1Г{М)) = (М n г(£(М)))/г(М) = 0. 

2.9. Lemma. Let r be a hereditary preradical and I == Ç\K, К running through 
all left ideals with r{RJK) = RJK. Then I is a two-sided ideal. 

Proof. For aeR and RJKe.T, we have Rl{K\a)e.T,. Thus I ^ {K : a\ 
la ^ К and consequently la Ç /. 

2.10. Proposition. Let r be a hereditary preradical such that ^^ is closed under 
direct products. Put I = f)K, where К runs through all left ideals such that 
RJK e ^,. Then 

(i) Rjl E ^^ and I is a two-sided ideal, 
(ii) Ter, iff IT =0, 
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(iii) г{М) = {m e M, Im = O}, for every M e R-Mod, 
(iv) r is a radical iff I — i^. 

Proof, (i) There is a natural monomorphism / : Я / / - • П ^ / ^ which shows 
R\1 e ^^, I is two-sided by Lemma 2.9. ^ 

(ii) If T G 5", then Rt ^ Я/(0 : t) e ^ „ for every / e T Hence I ^ (p : t). It = 0 
and consequently IT = 0. Conversely, if / T = 0 then / Ç (0 : t), for every te T, 
and Rt ^ Rl{0 : t) e .Г, yields Те ^,, 

(iii) Since r is idempotent, this follows from (ii). 
(iv) If / = /^ and m + r(M) e г{М\г{М^ is arbitrary, then Im Ç г{М) and /m = 

= I^m = 0 by (ii). Thus m e r{M) by (iii) and г{М\г(М^ = 0. Conversely, /(///^) = 
= 0 yields l\V- e .T^ and hence R\l^ e ^^, since R\l e ^^ and ^^ is closed under 
extensions. Thus / = I^. 

2.11. Proposition. Let I ^ R be a two-sided ideal. For every module Me Я-Mod 
put r{M) = {m G M, Im = 0]. Then 

(i) r is a hereditary preradical, 
(ii) Te ^ , iff IT =0, 

(iii) ^r is closed under direct products, 
(iv) r{R) - (0 : I\ = {aeR,Ia= 0}, 
(v) / = f)K, where К runs through all left ideals such that RJK e 5"^, 

(vi) r is a radical iff I = I^. 

Proof. г[М) is a submodule of M since / is two-sided. For eve ry / e Н о т (M, N) 
we have I f{r{M)) = f{l r{M)) = 0 so that f{r{M)) ç r{N) and (i) holds. The as­
sertions (iii), (iv), (v) are obvious and (ii), (vi) follow from 2.10. 

2.12. Theorem. There is a one-to-one correspondence between the two-sided 
ideals of a ring R and the hereditary preradicals r for Я-Mod with T^ closed 
under direct products. This correspondence induces a one-to-one correspondence 
between the idempotent two-sided ideals and the hereditary radicals r with ^^ 
closed under direct products. 

P r o o f follows immediately from Propositions 2.10 and 2.11. 

3. HEREDITARY CLOSURE 

3.1. Proposition. Let r be a preradical. For all M e R-Mod, put h{r) (М) = 
= M n Г{Е(М)). Further, let se be the class of all modules M such that M Ç 
Ç Г[Е(М)) and let ^ be the class of all modules that are isomorphic to a sub-
module of a module from ^^. Then 

(i) h{f) is a hereditary preradical and r Ç /i(r), 
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(ii) // s is a hereditary preradical with r ^ s, then h{r) Ç 5, i.e. h{r) is the least 
hereditary preradical containing r, 

(iii) h{r) = r^ and se = ^/,(,), 
(iv) FeJ^ , ( , ) iffE{F)e^,, 
(v) h{r) = r^ and M = . ^ад , 

(vi) if QJr(Q) is injective and r (2/r(ô)) = 0 for every injective module Q then 
h(r) is a hereditary radical. 

The preradical h[r) is called the hereditary closure of r. 

Proof, (i) follows from Proposition 2.6. 

(ii) If s is hereditary, r Ç 5 and M e i?-Mod, then h{r) (М) = M n Г{Е{М)) ^ 
^ M n s{E{M)) = s{M). 

(iii) It is clear that j / = -^hir) and hence h{r) = h{r) = r^-^^^^ = r^. 
(iv) Obvious. 
(v) The proof is similar to that of (iii). 

(vi) If Q is injective then h{r) (ô//i(r) (Q)) = h{r) (ô/Kô)) = QIKQ) ^ Кб /Кб) ) = 
= 0 and it suffices to use Proposition 2.8. 

3.2. Proposition. Let r be a preradical and let Q) be the class of all modules M 
such that E{M) e J^,. Then 

(i) h{r) is a hereditary radical and r ^ h(f) Ç /i(r), 

(ii) // 5 is a hereditary radical and r ^ s then h{r) ^ s, i.e. h{r) is the least 
hereditary radical containing r, 

(iii) h{r) = r^ and ^^^ = Q), 

(iv) // for every infective module Q, QJr^Q) is injective and r(ß/r(Q)) = 0, 

then h(r) = h{r) = h{r). 

Proof follows easily from Proposition 3.1 and Corollary 2.3. 

3.3. Proposition. Let s be a preradical such that ^^ is closed under extensions. 
Denote by ^ the class of all Te .T^ such that every submodule of T belongs to 5^^. 
Then 

(i) ^ /5 a hereditary cohereditary class closed under extensions and direct 

sums, 

(ii) r.̂  is a hereditary radical and Гс^ ^ s = s ^ s, 
(iii) // / /5 a hereditary preradical and t ^ s then t я r<^. 

Proof. The class ^ is clearly hereditary, so that J^ = ^ ^ is stable and f,^ is 
hereditary. Now we are going to show ^ = ^= . The inclusion ^ ç ^f^ is obvious. 
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For Te ^f^ -^ ^ there is a submodule X of T such that X ф ^,. Thus X e ^^^^, 
s{X) g X and r^{Xls{X)) ф 0 since r^{Xls{X)) = X/s(Jf) Ф 0. So X contains a sub-
module y, s(X) с У Ç X, 5(X) Ф У with y/s(X) e ^ Ç .^,. Hence У G ^ „ У ç ^(X) 
which contradicts the choice of У 

Now (i) is obvious and (ii) follows from ^f^ = ^ = .^^^. If ( ç s then £Г^ ç ^^ 

and ^t Я ^ = ^r^ since Г is hereditary. Thus t = r^^ ç r<̂  and the proof is com­

plete. 

4. COHEREDITARY PRERADICALS 

4.1. Proposition. The following statements are equivalent for a preradical r: 

(i) r is cohereditary, 
(ii) r preserves epimorphisms as a functor, 
(iii) the functor M -> М\г{М) is right exact, 
(iv) r /s a radical and J^, is cohereditary. 

Proof, (i) implies (ii). For the canonical projection p : M -^ MJN we have 
p{r{M)) = {r{M) + N)lN = r{MlN) by (i). 

(ii) implies (iii). For an exact sequence О - ^ Л - ^ ' Б - ^ ^ С - ^ О we get the com­
mutative diagram 

A ^ > В > С 

Alr{A) > J5/r(ß) ' > Cjr{C) 

where Im / = {i{A) + r(ß))/r(ß) and Ker gf = p~^(r(C))/r(C). It is clear that g is 
an epimorphism and I m / ç Ker ^. Finally, р{г{В)) = r(C) by (ii) so that p~ ^{r{C)) = 
= r(B) + ,-(Л). 

(iii) implies (iv). The sequence г{М)1г{г(М)) -^^ М1г(М) -^ М1г{М)1г{М1г{М)) -> 
-• 0 is exact by (iii) so that г(М1г(М)) = 0, since Im i = 0. 

Further, if M G J^^, N ^ M, then r{N) = г(М) = 0 and (iii) yields the exact 
sequence N -> M -> MlNlr{MJN) -> 0. Thus r{MlN) = 0. 

(iv) implies (i). If TV is a submodule of M then M\{N + r{M)) e J^^ and con­
sequently r{M\N) Ç (N + r{M))\N. 

4.2. Proposition. Lef r be a preradical. Then 

(i) // r is cohereditary then ^^ is closed under covers, 
(ii) if r is cohereditary and R is left perfect then ^ ^ is costable, 

(iii) // r is cohereditary, M e ^j. and 0 -> К -^^ P -^^ M -^ 0 is an arbitrary 
projective presentation of M then P = r[P) + f{K), 

(iv) if r is idempotent cohereditary and R is left hereditary then ^^ is costable. 
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Proof, (i) If N is superfluous in M and MJNe^, then MJN = r{MlN) = 
= {r{M) + N)lN yields г{М) = M. 

(ii) follows immediately from (i). 
(iii) By Proposition 4.1, g induces an epimorphism r(P) -^ г{М) = M. Hence 

for every x e P there is y e r[P) with g[x) — g{y) and x — y e Ker ^ = I m / . 
(iv) Let 0 -• /C -> F->^M -^ 0 be a projective presentation of a module M e .T^. 

By Proposition 4.1, ^ induces an epimorphism r{P) -^ M and r(P) e ^^. is projective 
by the hypothesis. 

4.3. Proposition. Let r be an id empotent preradical and let each Те ^^ have 
a projective presentation 0 -^ K~^^P -> T -^ 0 such that P = r(P) + f{K). Then r 
is an idempotent cohereditary radical. 

Proof. Let ß be a submodule of a module A. By the hypothesis, r(AJB) has 
a projective presentation 0 -^ К -^^ P -^^ K^/^) ~^ ^ ^^^^ ^ = / ( ^ ) + K^)- Then g 
induces the following commutative diagram 

which yields г(Л/ß) = Im ^ = g{r{P)) ^ (K^) + ^ ) / ^ - Now it is easy to see that 
r^MJr^M)) = 0 for every M e J^-Mod, and r^FJA) = 0 for every submodule A of 
a module F e J^„ and it suffices to use Proposition 4.L 

4.4. Corollary. Let R be a left perfect ring. Then the idempotent core of a co-
hereditary radical is an idempotent cohereditary radical. 

Proof. It suffices to use Proposition 4.2 (ii) and Proposition 4.3. 

4.5. Proposition. Let R be a left hereditary ring. Then the hereditary closure of 
a cohereditary radical r is a hereditary cohereditary radical. 

Proof. If Б is a submodule of A then the factor-module E{A)IB is injective by the 
hypothesis and h{r) (AJB) = AJB n Г{Е{А)1В) = AJB n {Г{Е{А)) + ß)/ß = (A n 

n r{E{A)) + B)lB = {h{r) (A) + B)lB. 

4.6. Proposition. Let s be a cohereditary radical and let j ^ be a representative 
set of S'torsionfree cocyclic modules. Then s = r^^ = r^^^ where M = J~[ Л. 

Proof. Obviously, r^ = r̂ ^^ and se <^ ^^ implies that J^^^ ç J^^. Let F e^^, 
me F Ы arbitrary and let С e R-MoA, f e Н о т (F, С) be such that С is cocyclic 
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and / ( m ) Ф 0. Then I m / is an s-torsionfree cocyclic module. Thus every s-tor-
sionfree module can be imbedded into a direct product of modules from j / , i.e. 

4.7. Proposition. Let R be a left perfect ring and s an idempotent cohereditary 
radical for R-Mod. Then there is an s-torsion projective module F such that s = Г|р|. 

Proof. Let j / be a representative set of s-torsion cocyclic modules, let P be the 
direct sum of projective covers of modules from s^ and let t = r^p^. It is easy to see 
that t is a radical and #", is cohereditary. Further, .F^ с j ^ ^ since 5^, ^ ^^. Suppose 
there is a module F e ^^ ~ .W^. Then В = 5 (F ) Ф О, ß e ^^, s being idem­
potent. Now В has а factormodule BJC isomorphic to an element from j ^ and 
Н о т (P, BJC) Ф 0, a contradiction to the previous assumption. 

4.8. Proposition. Let r be a cohereditary radical for JR-Mod and r[R) = / . Then 

(i) r{M) = / M for all M E R-Mod, 

(ii) Te.r, iff FT = T, 

(iii) F G ^ , iff IF = 0, 

(iv) if I is finitely generated as a right ideal then J'^ is closed under products, 

(v) г is idempotent iffP = / , 

(vi) r is hereditary ijf satisfies the condition (a). 

Proof, (i) For M e Я-Mod, let 0 -> К -^ P ->^M -> 0 be a projective presentation 
of M. We have r{P) = IP, P being projective, and consequently r(M) = g{r{P)) = 
= g{lP)==Ig{P)=IM. 

(ii) and (iii) follow immediately from (i). 
n 

(iv) Suppose / = X «fe^' ^i ^^r> i^ï and t = (r,),.^j ^ Г = [ ] Г .̂ Then t^ = 
nti n k= \ n iel 

"^ Z ^ijUj = Z ^k^'ik a^d ^ = Z ^k^b where t,^ = (t'ik)içiy which shows T = IT and 

Te £Г^, 

(v) If r is idempotent then P = I • r{R) = r{l) = r{r{R)) = L Conversely, P = I 
yields r{r{M)) = РМ = IM = г{М). 

(vi) Let / satisfy the condition (a). With respect to Proposition 2.2 it suffices to 
show that ^^ is stable. If I • E(F) ф 0 for some F e J^^, then there exists / e E(F) 
and X e I with x / ф 0 and therefore 0 Ф axfe F for some ae R. The condition (a) 
yields the existence of kel such that ax = kax and axf = Icax/ = 0 impHes 
a contradiction. Conversely, for x e / we have Rx ^ I = r(R) and consequently 
Rx = r{Rx) = IRx = /x. 
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4.9. Corollary. Let r be a cohereditary radical for jR-Mod and ^[^{R)) = r[R). 
Then r is idempotent. 

Proof. Obvious. 

4.10. Proposition. Let I ^ R be a two-sided ideal. If we put г[М) = IM for every 
module M then r is a cohereditary radical and r(jR) = /. 

Proof, r is clearly a preradical and for every submodule N of a module M, 
r(M/N) = /(M/N) = (/M 4- N)lN = {r{M) + Л/)//У. 

4.11. Theorem. There is a one-to-one correspondence between the two-sided 
ideals of R and the cohereditary radicals for /?-Mod. This correspondence induces 

— a one-to-one correspondence between the idempotent two-sided ideals and the 
idempotent cohereditary radicals, 

— a one-to-one correspondence between the two-sided ideals satisfying the con­
dition (a) and the hereditary cohereditary radicals. 

Proof. By Propositions 4.8 and 4.10. 

4.12. Proposition. Let r be a preradical for R-Ыое. The following statements 
are equivalent: 

(i) r is exact as a functor, 
(ii) r is right exact as a functor, 
(iii) r is hereditary and cohereditary, 
(iv) г is an idempotent radical, ^^ is hereditary and #"^ is cohereditary, 
(v) the functor M -^ MJr^M) is exact, 

(vi) the functor M -> М\г{М) is left exact, 
(vii) r{R) satisfies the condition (a) and г{М) = r{R) • M for all M e R-Mod. 

Proof. The conditions (i), (ii), (iii) and (iv) are equivalent by Propositions 2.1 
and 4.1 while (iii), (vii) are equivalent by Propositions 4.8 and 4.10. 

(iii) implies (v). The functor M -^ MJr^M) is right exact by Proposition 4.1. 
A monomorphism f : A -> В induces g : Alr(A) -> BJr{B). If x + r{A) e Ker g 
then f{x)Ef{A) n r{B) = r{f{Ä)) = f{r{A)). Thus xe r{A), since / is a mono­
morphism, and Ker g = 0. 

It remains to prove that (vi) implies (iii) since (vi) follows from (v) trivially. The 
inclusion i : A -^ В induces a monomorphism AJr^A) -> В1г{В) which yields the 
inclusion A n г{В) Ç r{A) and r is hereditary. If 0 -> Л ->^ ß ->^ С -^ 0 is an exact 
sequence then 0 -> ^ / K ^ ) -^ ^ /K^) "^ ^ /K^) is exact by the hypothesis and 
g~\r{C)) =f{A) + r{B), which yields g{r{B)) = r{C) and r is cohereditary by 
Proposition 4.1. 
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4.13. Proposition. Let shea p-subpreradical and let for every module M e R-Moâ, 
0 -^ К -^ P ->^M -^ 0 be a projective presentation of M. If we put г(М) = f(s{P)) 
then r(M) does not depend on the particular choice of the projective presentation 
and r is a cohereditary radical. 

Proof. Let M, iV G Я-Mod, h e Horn {M, N) and let 0-> X-> P - ^ ^ M ^ 0, 
0 - ^ L - > Q -^^ N -^ 0 be projective presentations of M and N, respectively. Then 
there exists к e Н о т (P, Q) such that the diagram 

commutes. Hence the independence of г(М) of the particular choice of the projective 
presentation and the fact that r is preradical immediately follow. Moreover, if h is 
an epimorphism then r(iV) = hf{s{P)) = h{r{M)) and the proof is complete. 

4.14. Theorem. There is a one-to-one correspondence between the cohereditary 
radicals and the p-subpreradicals. 

P r o o f follows from Proposition 4.13. 

5. COHEREDITARY CORE 

5.1. Proposition. Let r be a preradical and let se be the class of all modules M 
possessing a projective presentation 0 -> К ->^ P -• M -> 0 with r{P) Ç f{K). For 
every M e P-Mod, put ch{r) (M) = r(P) • M. Then 

(i) c/i(r) is a cohereditary radical and ch{r) ç r, 

(ii) / / s is a cohereditary radical and s ^ r then s ^ ch{r), i.e. ch{r) is the 

largest cohereditary radical contained in r, 

(iii) if M e P-Mod and 0 -> iC -> P ->^ M -> 0 is its projective presentation 

then ch{r) (M) = g{r{P)), 

(iv) ch{r) = r^ and î ^Mr) = ^ ^ 

(v) ch{r) is idempotent iff r[R) is an idempotent two-sided ideal, 

(vi) if r[R) is a projective module and r{r[R)) = r(P) then ch(r) is an idempotent 

cohereditary radical, 

(vii) if Ra is projective and r-torsion for all a e r(P), then ch{r) is a hereditary 
cohereditary radical. 

The preradical ch{r) is called the cohereditary core of r. 
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Proof, (i) follows from Proposition 4.10. 

(ii) If s Ç r is a cohereditary radical then Proposition 4.8 yields S(M) = s(R) • M ^ 
с r{R) • M = ch{r) (M). 

(iii) For P projective we have r(P) = r(R) • P. Then, by (i) and 4.1, g(r(P)) = 
= g{r{R) • P) = g(ch(r) (P)) - ch{r) (M). 

(iv) j ^ = ^^^^,) by (iii) and ch(r) = ch{r) = r'̂ ^̂ '̂'̂  = r"^. 

(v) ch(r) (R) = r(R) by (iii) and it suffices to use Proposition 4.8. 

(vi) By (iii) we have ch{r) {ch{r) (R)) = ch{r) {r(R)) = r{r(R)) = r{R) = ch(r) (R) 
and it suffices to use Corollary 4.9. 

(vii) For every a G r(R) we have r(R) a = r(R) • Ra = ch(r) (Ra) = r(Ra) = Ra 
by (iii) and Proposition 4.8 completes the proof. 

5.2. Proposition. Let R be a left hereditary ring and r a preradical for i^-Mod. 
Then 

(i) ch{f) = {ch{ry) is an idempotent cohereditary radical, 

(ii) h(r) = h{r), 

(iii) h(ch(r)) Я ch(h(r)) are both hereditary cohereditary radicals. 

Proof, (i) Obviously ch(r) ^ ch{r) ^ r and Proposition 5.1 yields ch(r) ^ 
с ch{ch{r)) Ç ch{r). 

(ii) follows immediately from Proposition 3.2. 

(iii) r ^ h(r) yields ch(r) ^ ch(h(r)). Now ch(h(r)) is a hereditary cohereditary 
radical by Proposition 5.1 (vii) and hence /i(c/i(r)) ç ch(h(r)) by Proposition 3.1. 
Further, ch(r) я ch(h(ch(r))) ^ h(ch(r)) gives h{ch(r)) = ch(h(ch(r))) by Proposi­
tion 3.1, since ch(h(ch(^r))) is hereditary. This shows that /î(c/?(r)) is a hereditary 
cohereditary radical. 

5.3. Proposition. Let r be a preradical for jR-Mod, / the largest idempotent two-
sided ideal contained in r(R) and let s be the cohereditary radical defined by 
s{M) = IM for all M e Я-Mod. Then 

(i) s is an idempotent cohereditary radical and s ^ ch(r), s ^ ch(r) с r, 

(ii) /'/ t is an idempotent cohereditary radical with t ^ r then t ^ s, i.e, s is 
the largest idempotent cohereditary radical contained in r, 

(iii) if R is left perfect then s = ch(r) = r^ and ^^ = J / , where se is the class 
of all modules Те ^^ with a projective presentation 0 -^ К ->-^P -> T~-> 0 
such that P = r{P) + / (X) , 
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(iv) / / R is left hereditary then s = ch(r), 

(v) if r[R) is projective and r{r(R)) = r[R) then s = ch(r) = ch(r) = ch{r). 

Proof, (i) follows from Propositions 4.8 and 4.10. 

(ii) t(R) is an idempotent ideal of Ĵ  contained in r(R) by Proposition 4.8 and hence 
t{R) Ç s{R), t Ç s. 

(iii) s == ch{r) by Corollary 4.4 and (ii). It is easy to see that se = ^^ and r^ is 

cohereditary. Thus r^ <^ s, se ^ 5" ç 

. (iv) follows from Proposition 5.2 (i). 

(v) By (i), (ii) and Proposition 5.1 (vi) we have s Ç ch{ry^ ch(r) = ch{r) ç s. 

6. EXAMPLES 

In this final section we present some examples illustrating some of the above results. 
Let n be a positive integer. For every abelian group G we define 

r{G) = nG . s{G) = {gsG, ng =0} , 

t{G) - r{G) + 5(G) , v{G) = r{G) n s{G), 

Soc (G) as the sum of all minimal subgroups of G, J(G) as the intersection of all 
maximal subgroups of G (J(G) = G if there is no such subgroup). Then r, s, t, v, 
Soc, J are preradicals for the category of abelian groups. Moreover, 

(i) r is a cohereditary radical and ^ ^ is not costable, 

(ii) s is a hereditary preradical with ^^ closed under direct products, 

(iii) Soc is a hereditary preradical, 

(iv) J is a radical, 

(v) t is neither idempotent nor a radical and J^^ = 0, 

(vi) V is neither idempotent nor a radical and ЗГ^ = 0, 

(vii) г is not cohereditary, 

(viii) /î(J) = id, ch(j) — zer, where id (zer) is the identity (zero) functor, 

(ix) C\K = 0, where К runs through all ideals К of the ring of integers Z such 
that ZJK E ̂ soc-
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