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A GENERALISATION OF ALMOST-COMPACTNESS,
WITH AN ASSOCIATED GENERALISATION OF COMPLETENESS

A. J. WARrD, Cambridge
(Received June 19, 1973)

FLETCHER and NAIMPALLY [3] have recently shown that for quasi-uniform spaces
one can define properties, called almost-completeness and almost-precompactness,
which bear to almost-compactness a relationship similar to that of completeness
and precompactness to compactness. Examination of Katétov’s proof [4] of the
existence of a canonical almost-compactification or H-closure of a given Hausdorff
space, bearing in mind that a filter has an open base iff it is round in the associated
Pervin P-proximity ([5], pp. 106—107, 19.7 and 19.14)), shows that it has many
similarities to, but some differences from, the standard process of compactification
of a (symmetrical) proximity space by maximal round filters. These considerations
have led the present author to define, for P-proximity spaces and quasi-uniform
spaces respectively, weak analogues of compactness and completeness, which we
call P-compactness and P-completeness. These reduce on the one hand, for (sym-
metrical) proximities or uniformities, to ordinary compactness and completeness
respectively, on the other, for the Pervin quasi-uniformity and its P-proximity, to
almost-compactness and almost-completeness (though in general almost-completeness
is not reducible to P-completeness). After discussing the elementary properties of
these notions, we consider the problem of constructing Hausdorff P-compactifications
and P-completions of a given Hausdorff P-proximity or quasi-uniform space. We
show that these always exist, but are not unique, and are not necessarily in one-one
relationship to each other for a given P-precompact space. Finally, we obtain some
results concerning ordinary completions which arise naturally from our methods.

1. DEFINITIONS AND ELEMENTARY RESULTS.
Our notation is in general that of [5]. We point out two main differences: first,
we always write relations on the right, so that, e.g., the set {x; Ja € 4, (a, x) e V}

is written A o V or for brevity AV, not V(A); secondly, we write P-proximities on
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a space X in terms of the relation < defined in terms of ((5), 19.2) by (c.f. (5), 3.1,

p. 15)
A <B iff Anonf(X — B).

We note that a P-proximity space is a topogeneous space as defined in (1) As in the
case of an ordinary proximity, a filter &# issaid to be round if Ae & = 3A4,, A, € &,
A; < A. Just as for proximities, a round filter is maximal round iff A < B implies
that either X \ 4 or B is in the filter ((5), 6.8, p. 35).

(1.1) Definition. If & is a filter, # o r will denote the filter {B; 34 e #, 4 < B}.

(1.2) Definition. Let (X, <) be a P-proximity space, with the associated topology.
For xe X, A < X, we say that x is P-adherent to A iff A< B=x¢€eB, x is P-
adherent to a filter & on X iff x is P-adherent to every set 4 of &, and & is P-
convergent to x iff {x} < N, (X\4) < (X\N)imply A€ #.

(1.3) Proposition. The following are equivalent:

(a) x is P-adherent to &,

(b) x is adherent to F or; _

(c) 3F, o F, F, P-convergent 10 x.

Proof. The equivalence of (a) and (b) is immediate. Now (a) can be written thus:
if Ae # and 4 < B, then {x} < N implies B ¢ (X \N), as N is a neighbourhood
of x. Equivalently, Ae # = A4 < (X\N), or (X\C)<(X\N)=Cn A4 +0,all
A e . The equivalence with (c) now follows in the standard way on varying 4, N
and C. '

(1.4) Proposition. The following are equivalent:
(a) Every filter has a P-adherent point;

(b) Every round filter has an adherent point;
(c) Every filter has a P-convergent refinement;
(d) Every maximal round filter has a limit.

These follow immediately from (1.2) and (1.3) since & is round iff # = F or,
and & - x< % or - x, while xe Ad #, # maximal round, implies # — x.

(1.5) Definition. A space (X, <) with the properties of (1.4) is called P-compact.

We note that P-compactness is not a topological property since it depends on the
proximity relation; however, it is clear that for a symmetrical proximity P-com-
pactness reduces to ordinary compactness.

Now suppose that the P-proximity is derived from a quasiuniformity ¥". We shall
say that a set A = X is radially V-small (r.V —s)in X iff 3xe X, xV > 4. As
in (3), a Cauchy filter is one which contains ar. V — s set for every Ve 7.
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(1.6) Definition. (X, ¥") is P-complete iff every Cauchy maximal round filter has
a limit, and P-precompact iff every maximal round filter is Cauchy.

We have immediately, since & Cauchy = & . r Cauchy:

(1.7) Proposition. (i) A quasi-uniform space is P-compact (in its associated P-
proximity) iff it is both P-precompact and P-complete.

(ii) The following are equivalent:
(@) (X, ¥") is P-complete;
(b) Every Cauchy round filter has an adherent point;
(c) Every Cauchy filter has a P-adherent point.

As usual, we can express P-compactness and P-precompactness in terms of
coverings, though this expression is not very elegant in general.

(1.8) Proposition. (X, <) is P-compact iff given any indexed family of pairs
of sets {(G;, H,); i eI} such that the G; form an open covering of X and X\ H; <
< X\ G, for each i, there exists a finite covering of X by {H r=1,2,. n} say.

If there exists a filter # with no P-adherent point, then to each x we can associate
an open neighbourhood G, and a set 4, of & such that A, < X\ G,. Putting
H, = X\ A,, no finite subfamily {H,;r = 1,2,...,n} can cover X. Conversely,
if there exists a family {G;, H,); i eI} as in the statement above but with no finite
cover of X by H-sets, the sets of the form X \(H;, U H,), n finite but arbi-
trary, generate a filter with no P-adherent point, since thc G, cover X.

(1.9) Proposition. The following are equivalent:

(@) The quasi-uniform space (X, ") is P-precompact;
(b) For every F and every Vo€ ¥, Axq suchthat Ae F, VeV = AV N xoVy + 0;

(c) If to each x is assigned a member V, of ¥~ there is a finite covering of X by
sets of the form aVyV; 1!,

Proof. (a)= (c).

Suppose (c) is false; then there exists a filter & containing all sets of the form
X \aVyV, '. Since (X\ aVoV; ')V, = X\ aV,, the round filter & o r contains all
sets of the form X \ aV,. By Zorn’s lemma & o r is contained in a maximal round
filter .#, which cannot contain any r. ¥V, — s. set.

() = (b).

Suppose that for given &, ¥, no x, exists as requxred Then for each x, 3V, e v,
A, e F with xVonAV——Q) so that xVoV;'n A, =0 and X\xVone,/
This clearly means that no cover of the type stated in (c) can exist, for this choice of V.
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(b) = (a)-

Suppose (b) holds; let .# be a maximal round filter and let V, € 7" be given;
IV, e v with V3 < V,. Given any Ae.#, 3Be ./, Ve v with BV c A since M
is round. But by (b) 3x, (independent of 4, B) such that BV n x,V; =+ 0, all Be ./,
Ve . Thus Ae M/ = An xV; £ 0, so that X \x,V, ¢ #. Since .# is maximal
it follows that (x, V) V; < x,V, is in ., so that .# is ¥ -Cauchy.

Local P-compactness and countable P-compactness. There is more than one
plausible definition of local P-compactness; the following will be adopted for the
purpose of this paper.

(1.10) Definition. (X, <) is locally P-compact (X, ¥") locally P-complete) at x,
iff there exists a neighbourhood N of x,, in the induced topology, such that every
filter (every Cauchy filter) with N as a member has a P-adherent point, not necessarily
lying in N. .

In general, if & is a countably- based filter, & o r is not countably based. For this
reason, we define countable P-compactness only for spaces whose P-proximity is
quasimetrisable.

(1.11) Proposition. In a quasi-metric space, the following are equivalent:

(a) Every sequence has a P-adherent point;

(b) Every sequence has a P-convergent sub-sequence;

(c) Every countably-based filter has a P-adherent point;

(d) Every round countably-based filter has an adherent point;

(¢) Every round countably-based filter has a round countably-based convergent
refinement.

By a P-adherent point or P-limit of a sequence we mean of course the corresponding
idea in relation to the filter defined by the sequence. The proof of the proposition is
straightforward and is omitted.

(1.12) Definition. A quasi-metrisable P-proximity space with the properties (1.11)
will be called countably P-compact. Similarly, if for a quasi-uniform space with
a countable uniformity base (i.e. quasi-mstrisable) wz insert ‘Cauchy’ in each of the
statements of (1.11), we obtain a set of equivalent statements defining a countably
P-complete (quasi-metrisable) space.

2. P-COMPACTIFICATION OF A GIVEN P-PROXIMITY SPACE.

By an imbedding i of a P-proximity space (X, <) in another, (X*, <*) we mean
in this section a dense proximity imbedding; that is, a one-one map of X into X*
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such that Xi is dense in X* and 4 < B iff 4i <* Bi u (X* \Xi). An imbedding
will be called relatively T2 (relatively T1) iff any two distinct points x, x; of X*,
not both in Xi, have non-overlapping neighbourhoods (resp. each has a neigh-
bourhood not containing the other) in the topology induced by <*. (Cf. CsAszARr,
[2] where ‘relatively separated’ corresponds to ‘relatively T0’.)

(2.1) Definition. An imbedding of (X, <) in a P-compact space will be called
a P-compactification of (X, <).
" It is trivial to construct a one-point P-compactification (indeed, compactification)
of any P-proximity space if we neglect separation conditions, since all filters can be
made to converge to one ‘ideal’ element. We seek relatively T2 compactifications,
and show that we can always construct at least two such, in general topologically
distinct; one of these, analogous to the Katétov H-closure, we call the fine P-com-
pactification, and the other, which reduces for a-symmetrical proximity to the clas-
sical compactification, the natural P-compactification. Some of the ideas used, more
particularly in lemma (2.2) and Theorem (2.6), are outlined in (2), but are there
applied only to a symmetrical structure derived from the original one.

If X,X*, and f:X -» X* are any sets and any function, and &%, #* filters
on X, X" respectively, we write #f for {B* < X*; 34, Ae #, Af = B*} and
Frf lfor{A c X;3B* e F*,B*f"! < A}. Then F*f 'isafilterif B* e F* =
= B*f~! & 0; this is easily seen to hold in particular if X * is a P-proximity space,
F* is round, and Xf dense in X*, as then Int B* % Q. If f is one-one then
(#f)f~! = &, though in general f and f~' are not inverse operators.

(2.2) Lemma. If i is an imbedding of (X, <) in (X*, <) then (i - r") |./” and
i"‘l A" are reciprocal one-one functions mapping the set M of all maximal
round filters in X onto the set M~ of all such filters in X*.

(Here r* is the operator (1.1) for (X*, <™).)

Corollary. If #ir* — x* and x* € A* <™ B, then B*i"' e M.

Proof. If #* is maximal-round and B; <™ B;, bothin .#*,then® + Bfi™! <
< Bfi!so that #*i~! is a round filter. Given 4 < B in X then either X* \ 4i
or Biu (X*\Xi)isin .#*, whence either X \ 4 or Bisin . *i~! which is therefore
maximal round. Finally, By i~ 'i = B; <* B{ so that (#*i™")ir* o 4™, which
is maximal.

Conversely, given .# maximal round, A, < A4;, both in ., then A,i <™ A,i U
U (X*\Xi) so that A4;iv (X" \Xi)eMir*, A;e(Mir*)i™!, and so M c
< (Mir*)i™'; but Lir* < Mi so, i being one-one, (Mir*) i~ < (Mi)i™' = M.
It remains to prove Zir* maximal round; if not, let #/* > #ir* be maximal round
so that #*i~' is maximal round in X and includes (ir*)i™' = .. Thus
M*i™' = M and we have shown that this implies Zir* = 4.
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The Corollary follows from the fact that B* is a neighbourhood of x* and so
belongs to ir™.

(2.3) Notation. .#, will denote the set of all those maximal round filters on (X, <)
which do not converge to any point of X. For given A < X, Aj denotes {/# € M ,;
Ae M }

(2.4) Theorem. If X* = X U .M, then writing A* <* B* iff 34, B, A < B(<=X),
A* € AU Aj, Bu A* < B*, the identity map i, of X into (X*, <*) is a relatively
T2 P-compactification of (X, <) which we call the fine P-compactification. If
it X —>(X+, <*) is any other relatively T2 P-compactification, then the map
g :X* > X* defined by g | X = i, Mg = lim Mir* for M € M, is onto X* and
proximity continuous.

Proof. It is easily verified that <* is a P-proximity (e.g. if A* B*, A, B are as
above and A < C < B, then 4* <* C U A* <* B* since 4j = Cj), that A < B <
<A <*B< A<*BuU M, and that X is dense in X* because {.#,} <* B*
implies 3B + 0, B = B* n X. We note that since X < X we have X <* X so that X
is (one-sidedly) remote from X*\X = #,. If M, * M,, say M, & M, and Ay €
€M\ M, then 34, < Ay, A; € M, While X\ A, € #, since Ay ¢ M ,. Then
as M, and M, are round we easily see that {./#,} <* A, U {M,}, {M,} <*
<*(X\A4,) U {4,}, so that 4, M, have disjoint neighbourhoods in X*, in fact,
X*N\X is discrete. Similarly, given x, and , since .#, +> x, we can find Ay, 4,
with Ao ¢ Mo, {xo} < A, < Ao, and A4,, (X \A,;) U {M,} are disjoint neighbour-
hoods of x, and .#,. Thus i, is a relatively T2 imbedding of (X, <) in (X*, <*).

We next show (X*, <*) P-compact. If .#* is maximal round in this space, then
by (2.2) A*iy " is maximal round in (X, <). If #*i5 ' — X, in X then, as i, is an
imbedding, x, € Ad #* in X* and in fact .#* — x, since .#* is maximal round.
If #*i; " has no limit in X it is an element .#, of X* \ X. Given any neighbourhood
B* of M,, 3BT, {M,} <* BT <* B*, and hence 34,, B;, A; < By, My€ A,j
< B,j, B; U {{#,} = BY. Thus By, as a subset of X*, belongs to .#,i, and satisfies
B, <* B*, whence B* € M yior* = M*. That is, M* — M, so in either case .#/*
converges in X*.

Finally, any element x* of X* \ Xi is the limit of at least one maximal round
filter #* (its neighbourhood filter if this is maximal round, or otherwise a refinement
thereof). Let Mo = M *i™}, M* = Myir* . M, cannot converge in X since M, — x
implies i, and so A yir* = M+, convergent to xi + x*, impossible as the imbed-
ding i* is relatively T2. That is, #, € M, and # g = x* (and is uniquely defined).
The map g, which obviously covers Xi, is therefore onto X *.

It remains to prove only that A* <* B* implies A¥g~! <* B*g~!. For this we
take C*, A" <* C* <* B*, and write B¥i™! = B, C*i"! = C. Then A*g~! =
= A%i iy U (4* \Xi) g™, since an argument like that above but starting with ./,
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rather than " shows that e X*\ Xi, implies .#og ¢ Xi. By (2.2), Corollary,
(A*\Xi)g~! < Cj, so that A¥g~! = Cio U Cj (= C Y Cj). Now C < B as iis
a proximity imbedding, and clearly B U A*g~1 = B*g~'. Hence A*g~' <* B*g~!
as required, and g is proximity continuous.

The following converse of the last part of (2.4) is almost immediate.

(2.5) Proposition. If g is a proximity continuous map of (X*, <*) onto a P-
proximity space (X*, <*), then (X*, <™) is P-compact and Xiyg is dense in X*.
Hence if g | X is one-one and A < B implies Ag <* Bg U (X*\Xg) then iyg,
(X*, <*)is a P-compactification of (X, <).

(We recall that i, is the identity imbedding of X in X*, so that the symbol i, can
be omitted when the context makes clear in which space we are working.) To prove
(2.5) it is necessary only to remark that #* round in (X*, <™) implies # *g~!
round in (X*, <*), so that Ad (#*g~') & 0 and hence Ad #* + 0 in X*, g being
proximity continuous. The rest follows at once from the data and definitions. In
particular, we can construct another' canonical P-compactification of (X, <).

(2.6) Theorem. If X, X* are as in (2.4) then writing A* <, B* iff 34, B, A <
< B(cX), A* = A v Aj, BU Bj = B*, the identity map i, of X into (X*, <,)
is a relatively T2 P-compactification, which we call the natural P-compactification
of (X, <), such that xo € (X*\X,)™ iff X is not locally P-compact at x,; hence
(x*, <,) is in general topologically distinct from (X*, <*). If ‘<’ is symmetrical
then so is ‘<,’, which therefore yields the ordinary compactification if (X, <) is
also separated.

We first remark that if AT <, B*, A,, B, being associated sets in X as in the defini-
tion, and also A% <, B* by using 4,, B,, then we can take B; with 4, < B; < B,.
Now if .# is maximal round in (X, <) and does not contain B, > Bj then it must
contain X \ Bs; so if such an .# contains (B, U Bs) it must contain B; > (B; U B3) N
A (X \B,). That is, (B, U B;)j < B,j uB,j = B*. Since A; U A, < B, UB,
and A;j U A,j = (4; U A,)j we see that (AT U A3) <, B*. The other axioms
for a P-proximity are easily checked. It is clear that <, is coarser than <* so that
the identity map of X* on itself satisfies all the conditions of (2.5) and hence
io, (X*, <,) is a P-compactification of (X, <). The relative T2 property is proved
very much as in (2.4). It is clear that x, € X has a neighbourhood (in X*) entirely
included in X iff 3B, {xo} < B < X, such that Bj = 0, i.e., every maximal round
filter containing B is convergent in X, and X is locally P-compact at x,. This is not
in general true (e.g. for the space of rational numbers with the ordinary metric
uniformity and proximity) so that (X*, <,) is in general topologically distinct from
(X*, <*). .

Now suppose that (X, <) is a symmetric proximity space, and that A* = A U 4],
A< B, BuBjc B* Choose C,A<C<B,s0 X\B<X\C<X\A. Now
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B¢ .# and X \B < X\ C imply X\ C e .#, so that X*\B* < (X\B)u {M; B ¢
¢ M} = (XNC)uU(XNC)j. Since also (XNA)U(XNA)jcX*\(4uU4j) we
have (X*\ B*) <, (X*\ A*), so that the relation <, is symmetrical.

3. P-COMPLETION OF A GIVEN QUASI-UNIFORM SPACE.

In this section, an imbedding i of a quasi-uniform space (X, “V) in another,
(X*,7"), means a dense (quasi-) uniform imbedding, that is, the sets {(x,, x,);
(x40, x3i) e V*}, for V" e ¥+, form a base of ¥". We remark that it may well happen
that even a complete metric space can be imbedded in a larger P-complete Hausdorff
space. For example, consider the space cf positive integers with all mutual distances
d(m,n) =1 (m # n). Introducing an element w with d(w, n) = 1/n, d(n, w) = 1
all n, we have a compact quasi-metric Hausdorff space, which is a fortiori P-complete.
To avoid such “unnecessary” P-completions we make the following definition.

(3.1) Definition. An imbedding i of (X, ") in a P-complete space (X*, ¥ ")
will be called a P-completion of (X, ) iff .#* maximal round and Cauchy in
(x*,7*) implies .4 *i™" Cauchy in (X, ¥").

We prove a theorem closely analogous to (2.4); there does not however appear
to be any analogue (in general) of (2.6) for P-completions.

(3.2) Notation. We denote by .4, the set of all those Cauchy maximal round
filters in (X, ) which do not converge, and by X 7§ the set X U .

(3.3) Lemma. Let #" be a quasi-uniformity for Xt such that

(i) If * is any Cauchy maximal round filter on (X%, W) then {An X;
A€ M*} is Cauchy in (X, V');

(i) {(Wn(X x X); WeW} =7
(iii) Given any Mye M, and any Woe W, A€ My such that Moo Wy o A.
Then the identity map iy of (X, ¥") into (XT, W) is a P-completion of (X, ¥").

We see from (iii) that X is dense in (X7, #) so that i, is an imbedding in the sense
of this section, hence also in that of section 2, with respect to the induced P-pro-
ximities. Thus if .#* is Cauchy maximal round in (X}, #), #*i; ' is maximal round
by (2.2) and Cauchy by datum (i). As before, if #*ig ' — x, in (X, ¥") then 4#* — x,
in (X7, #). Otherwise, .#*i " is an element .#, of .# . By datum (iii), # iy - 4,
in (XT, #°), hence also /* = M ior* converges to .#,, where r* is the rounding
operation with respect to ¥ so that #yior* = {B* XY ddAet,, IWeW,
Ai,W < B*}. Thus (X7, #") is P-complete.
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(3.4) Theorem. Let f i, - 2%, be any function such that M ofe M for all
M ey, and for VeV let W(f,V) < XT x XT be defined as follows, where
xps X, €X, My, My € Myt

(x1, x2) € WS, V) iff (x4, x5) € V;

(xy, M) ¢ W(f, V) for any M e M,;
(””1’ '/”2)6 W(f’ V) iff My=My;
(A, x))eW(f, V) iff x,e(Myof)V.

Then the sets W(f, V), where f, V are chosen in all possible ways, form the base of
a quasi-uniformity W* for X} such that the identity map iy of (X, ¥") into (X7, #'*)
is a relatively T2 P-completion. If i, (X*, #'*) is any other relatively T2 P-com-
pletion of (X, "), then the map g : (XY, W*) - (X*, #'*) defined by g|X = i,
Mg = lim Mir* for M € M,, is uniquely defined, onto X* and (quasi)-uniformly
continuous.

Proof. It is easily verified that the the sets W(f, V') do form the base of a uniformity:

2

e.g. if V; = V, and f, is given, then [W(fo, V;)]*> = W(fo, V,) while if f;, ¥V; and

f2 V, are given and V=V, nV,, and f is defined by /f = (Mf,) " (Mf,),

we have W(f,V) < W(fy, Vy) n W(f,, V,). The uniformity #°* clearly satisfies

conditions (i) and (iii) of (3.3). It also satisfies (i), since for given V, € ¥ we can
) .

take V, € ¥, V; < V, and then f; such that # o f, is always r. V, —s. Let W; =
= W(f,, V}); then any round Cauchy filter #* on (X}, #™*) contains a set of one
of the forms x, W,, # W, and so #*i5 ' contains a set of one of the forms (x, W;) N
NnX = x,Vy,(#, o f;) V. In either case we have a r. V,—s set in X so that F*ig"
is Cauchy. By (3.3), (X1, #°*) is a P-completion of (X, ¥°). The relative T2 property
is proved very much as in (2.4).

If (X*, #'*) is another relatively T2 P-completion, the proof that g is uniquely
defined and onto X * is just as in (2.4), the filters concerned being necessarily Cauchy

2

in their respective spaces. If Wg e #'* is given let Wi e W™ satisfy W < Wy

Since #g = lim #ir* we can choose f; such that, for every .# of ., Mf, is

a member A of # with Ai = MgW, and since (X*, #'*) is a P-completion of

(X,¥) we can find V; e with (x, x,) € V; = (x,i, x,i)€ W{. Then (4, x)e
2

e W(fy, Vi) = x e (Mf,) Vy, = xie (Mf i) W < MgW{ = MgWg. Other cases
being trivial, we conclude that (x}, x}) e W(fy, Vi) = (x1g, x39) € Wg, so that g
is quasi-uniformly continuous.

We have the following analogue of (2.5).

(3.5) Proposition. If g is a (quasi)-uniformly continuous map of (XT, W*) onto
a quasi-uniform space (X*, #'*) such that
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(i) g |X is one-one and a uniform equivalence of (X, #'* |X) (=(x, 7)) with
(X9, 97" | (X9));

(ii) #* maximal round and Cauchy in (X*, w*) implies M *(iog)~" Cauchy
in (X, ¥"); then iog, (X*, W*) is a P-completion of (X, ¥").

We observe that X dense in (XT, #*) implies Xg dense in (X*, #*). Thus
(by two applications of 2.2) #* Cauchy and maximal round in (X*, #°*) implies
that *(iog) ™" ior* is Cauchy and maximal round, hence convergent, in (X7}, #'*),
say to xg, so that 4" (iog) ™" ip and A+ = M* (isg)™" iogr converge to xj and
xg g respectively. Hence (X*, #°*) is P-complete.

4. THE RELATION BETWEEN P-COMPACTIFICATION AND P-COMPLETION.

The following easy proposition justifies the name “P-precompact”.

(4.1) If i, (X*, w*) is a P-completion of (X, ¥"), then it is a P-compactification
of (X, ¥") as a P-proximity space iff (X, ¥") is precompact.

Suppose (X, ¥7) precompact. If 4 is maximal round in X* then by (2.2), as
a uniform imbedding is certainly a proximity imbedding, .#, = i~ ' is maximal
round in (X , vV ), and so Cauchy. Hence, ./ i (or strictly, its trace on X i) is Cauchy
in the equivalent space Xi, as a subspace of (X*, #°*), and so certainly #,i is
Cauchy in (X*, #'*). This implies #§ = .#,ir* also Cauchy, so that (X*, #'*)
is P-precompact, hence P-compact being P-complete.

Conversely, if (X*, #'*) is P-compact, and ., maximal round in (X, ¥),
Mt = Myirt is maximal round in (X*, #°*) by (2.2), hence convergent and so
Cauchy, so that #, = .#*i™"! is Cauchy by the definition (3.1).

We have therefore a map of the set of all P-completions of (X, ¥°) into the set of
its P-compactifications, and we naturally ask whether this is a one-one onto map.
There is one case when we can assert that every P-compactification gives a P-comple-
tion, namely when (X ,V ) is totally bounded; that is, for every Ve 77, X can be
covered by a finite system of sets X, with X, x X, = V (hence also = Vn V1)
for each r. For (just as for uniformities) every P-compactification of (X, ¥°) has
a unique compatible totally-bounded quasi-uniformity, %y say, and the quasi-
uniformity for X with base given by sets {(xy, X,); (x,i, x,i) € W} for We #§
is clearly the unique totally bounded uniformity compatible with the given P-
proximity of X, so must coincide with ¥". We show however that this result cannot
be generalised even to pre-compact quasi-uniform spaces (i.e. spaces always covered
by a finite number of r . V—s sets for any Ve 7). '

(4.2) Example. A precompact space (X, ¥") whose natural P-compactification
cannot be induced by any P-completion of (X, ¥").

The elements of X consist of two sequences (p,), (¢,), n = 1,2, ..., of distinct
points.
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The quasi-uniformity %" has an enumerable base {V,; t = 1,2, ...}, where V,
contains the diagonal pairs (x, x) and those pairs (P> Pa) and (P> 4,) wWith n >

>m = t(and no others) It is clear that V = V,and that V., < ¥, so that we have
a quasi-uniformity, which makes X pre-compact as it is covered by p,V, and 2(n -1
single point sets.

Let Q, = {q,; s = n}; then as Q, < Q, any maximal round filter .# on (X, ¥")
contajns either Q, or X \ Q,. Now 4 < X \ Q, implies that A consists only of a finite
number of points. It follows that either .# is a trivial filter defined by, and converging
to, a single point of X, or it is a refinement of the filter with base {Q,; n = 1, 2, }
in fact, the ultrafilters refining this filter are easily seen to be round and to constitute
the set .#, = ./, of (Cauchy) non-convergent maximal round filters.

Suppose that there exists a quasi-uniformity #* on X™ =X* =X U 4,
which defines the natural P-compactification of (X, ¥") and makes the identity
imbedding i, a uniform imbedding. Then given V,, 3IW5, Wy n (X x X) < V,

3

to?

Take W{ e #'* with Wi = Wy, and find t,, V,, =« W{ n (X x X). By supposition,

for any m, p,V,, <, puVy,W{, so 3C,, D,, in X with C,, < D, p,V;, = Cn U Cpj,

D, v D,j < p,V,,W{. Then p,V, < C, (being a subset of X) so that (p,V,,)Jj =

< C,j. If now m = t, then all #,e .#, contain Q, so that M, = Q,j <
2

< (puV:,)j < Cpj = D,j = p,W{. We know that .#,i,r*, hence certainly . i,
converges to .#, in (X*, <*), so that also . yiy — .4, in the coarser P—prox1m1ty <p
supposed induced by # *.

3

That is, given 4, € Mo, JAg€ My, Ag = MW < p, W < p,We (allm 2 t,),
so that as 4y = X, Ay < p,V,,, all m = t;. This is clearly a contradiction.

We next show that there always exists on the set X* = X% a P-completion of a P-
precompact space (X, ¥°), in general different from (hence necessarily coarser than)
that of (3.4), which yields the fine P-compactification (<*) of (2.4); thus the relation
of P-completions to P-compactifications is not in general one-one, for by (2.4) the
P-proximity given by the P-completion #* of (3.4) cannot be strictly finer than <*.

(4.3) Theorem. If (X, ¥") is P-precompact and X* =X U My =X U M, as
before, then defining, for any Ve¥ and any A c X, WI(A, V) = W(fA, “I/)
where Mf, = A if Ae M,X otherwise, the sets W,(A, V") form the sub-base of
a quasi-uniformity W for X*, in general distinct from W*, which induces on X*
the P-proximity <* derived from that induced on X by ¥ as in (2.4), and which
makes iy, (X*, W) a P-completion of (X, ¥").

To show that we have a sub-base of a uniformity with #'f < #™* we need check
2
only that given A, V, we can find a set W, of #'{ with W, = W,(4,, Vo). As before,
2
this is satisfied, if V; = V,, by W, = W,(4,, V;). Since #' W™, i, is clearly
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a dense uniform imbedding of (X, ¥") in (X*, #}) so that conditions (i) and (ii)
of (3.3) are satisfied by (2.2), since (X, 77) is P-precompact. Since (iii) has been proved
to hold for #* it must hold also for the coarser quasi-uniformity %°7. Thus iy,
(x*, #7) is a P-completion of (X, ¥"). (Alternatively, we could use (3.5) with g
as the identity mapping.)

Now suppose A* <* B* and that A4, B are as in (2.4), so that 3Ve 7", AV < B.
Consider A*W,(A4, V); we have at once A*W (4, V) M, = A* M ,. If now
x;€A* N X < Aand (x, x,) € Wy(4, V)thenx, € AV < B, whileif # e A* n M,
and (Mo, x) € Wi(A4, V) then Mye Aj so that Ae #,, Mof, = A, x€ AV < B.
Thus A*W,(A, V) = A* U B = B*, so that the P-proximity defined by #'7 is at
least as fine as that given by <*. It therefore certainly gives a relatively T2 imbedding
by i, and so by (2.4) must coincide with <*.

We note that in defining the sets W;(4, V) it is sufficient to select V from a base
of . To show that #*, #F are in general distinct, we consider the following
development of the example of (4.2). The elements of X consist of a sequence (p,),
n=1,2,...,and a set Q of all points q,, where r is any rational satisfyingn < r <
<n+1% for some positive integer n. ¥~ has as base the sets V,, t = 1, 2, ..., where
V, consists of all pairs (x, x)(x €X), all pairs p,, p, with n = m = ¢, and all
pairs (p,. ¢,) (r rational), with r = m = 1, together with all pairs (gq,, g,) with
|r - s| < 27'. Much as before, this makes X a precompact quasiuniform space,
and if Q,={q,r = n}, n integral, we still have Q, < Q,, the subspace Q
having in fact the ordinary metric uniformity. The maximal round filters now
fall into two sets; those which refine the filter with base {Q,; n =1,2,...} and
those which contain X \ Q, for some n. The latter may or may not be convergent;
those which are not convergent may be labelled .#,, where « is any irrational satis-
fyingn < @ < n + 4 for some positive integer n,and {g,; 0 — 6 < r < a + 6} € M,
for all 6 > 0. Clearly .#, is not P-convergent in (X, ¥").

Dcfine f; by #,f, = {gsn <r=<n+4} if n <a<n+4; for those non-
convergent .# of the other type .#f, may be an arbitrarily chosen set Q,. Now

k

consider any basic set W = () W;(4,, V() of #'1. Let y be any subset (possibly
s=1

empty) of the set 1,2,..., k and let B, = {a; 4, M, iff sey}. For some y,, B,,
is not bounded above, and hence {r; g, € (| 4,} is not bounded above. Hence, taking

SEY0

any fixed o, € B,, we can find » so that g, ¢ .4, f,V; while ¢, € N A, so that

SE€Y0

q, € M, W; it follows that W(f,. V;) includes no set of #'% and that %'} + #°*.

Finally, we show that (in spite of (4.2)) there does in ‘general exist a relatively T2
P-completion of a P-precompact space which is topologically coarser than those
given by (3.4) and (4.3).

(4.4) Theorem. With (X, ¥") and X* as in (4.3), defining (forany Ve ¥, 4 < X)fA
as in (4 3) and W*(4, V) as follows:
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(X1, x2) € WH(A, V) iff (x1, x5) € V5

(x, M) ¢ WH (A, V);

(#,x)e W*(A,V) iff xe(Mfq)V;

(My, M) e WH(A, V) iff (M fa) Ve My

and writing W+ for the quasi-uniformity with these sets as a sub-base, then ios
(X*, #*) is a relatively T2 P-completion of (X,¥"), in general topologically
distinct from (X*, W'*).

2
To check that #'* is a quasi-uniformity we remark that if ¥V, < V, and W} =

2
= W*(4, V}) n W (AVy, V}) then W{ < W*(4, V,). Since #* < #* but differs
from it only as regards pairs (., .#5) the proof of (4.3) shows that it gives a P-
completion by i, (we recall that (X, ¥") is given P-precompact). Easy examples (e.g.,
when (X, 77) is the space of rationals in [0, 1] with the ordinary metric uniformity)
show that the subspace .#, = 4, is not in general discrete in J(# +) as it is
in 7(w*) = 7(#7T), but the relative T2 property is easily established as before.

We remark that, except when the original space is totally bounded, we have not
been able to construct any P-completion without imposing the apparently unnatural
condition that Xi is remote from (though dense in) its complement; neither has
the author been able to.find any analogue for non P-precompact spaces of the con-
structions of (4.3) and (4.4), so that in general our methods have yielded only one
P-completion, that of (3.4).

5. THE QUASI-METRIC CASE.

Except in specially simple cases, the constructions of (3.4), (4.3) and (4.4), applied
to a quasi-metric space, yield quasi-uniformities which have no enumerable base
and are therefore not quasi-metrisable. The following result may therefore be of
some interest, though it yields only a relatively T1 imbedding.

(5.1) Theorem. Let (X,0) be a quasi-metric space; write V, = {(x, X5);
o(x4, x,) < 27"}. Let € be the set of all the Cauchy round countably-based filters
on (X, @) with empty adherence. For each such filter F select a base of F, {B,;
n=1,2,...} in such a way that B, is r . V,-small and B, > B, > ... and write #f,
for the set B, selected from . Let X, = X U € and define W, = X, x X, by

(x4, x2) € W, iff (x4, x3) € V,,;
(xy, #) ¢ W, for every F €G;
(7,x)eW, iff xe(Ff,) V:
(F1. Zo)eW, iff Fy = F,.
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Then {W,:n = 1,2,...} is the base of a countably P-complete quasi-uniformity
W on X, such that the identity imbedding i, is a dense uniform relatively T1
imbedding of (X, @) in (Xo, #Wo). If F, is any round Cauchy countably-based
filter on (Xo, W), then Fyig* is a round Cauchy countably-based filter on (X, o).

2

Proof. It is easy to see that W,,; = W, so that #7, is indeed a quasi-uniformity,
and that i, is a dense uniform imbedding; hence &, round in (X,, %,) implies
Foig ' a round filter in (X, ), countably-based if & is. By construction (x,W,) iy

2

is 1.¥,-small and (#W,) iy ! always r. V,-small, so that #, round and Cauchy implies
Foig ! Cauchy.

Given xe X, # €€, then as Ad¥ = 0 in X, Im, X\ xV, e #. As & is round
dAe % and some n such that AV, = X \xV,, and then some p with Ff, = A.
Thus for g = max (m, n, p) we have xW, n FW, = 0 so that the imbedding is
relatively T2 as concerns such pairs of points; hence it is clearly relatively T1 in
general as € is a discrete subspace of X,. (However, if &, is a round refinement
of the round Cauchy filter #, € €, # ,W,, and & ,W, always meet as &, f,,and Z,f,
are both members of #,).

It remains to prove that (X,, #7) is countably P-complete. Let #, be round
Cauchy and with countable base {4,; n =1,2,...} in (X, #), where we may
suppose A; > A, o .... Then F,ig" has similar properties in (X, ¢) with basic
sets A,ig ' = A, N X. As before, if x, € Ad(F iy ') in (X, o) then xoip = X, € AdF,
in (Xo, #). If no such x, exists then Foig ' €€ and for any p, Eln(p) such that
0+ A, 0 X < (Foig ') f, for all n = n(p). That is, A, meets (Fois ') W, (in some
point of X) for all n = n(p) and since the sets 4, form a nested base of Z it follows
that F i, ' € AdF, in (Xo, #,). This completes the proof.

6. EXISTENCE OF T1 AND T2 COMPLETIONS.

The methods used above also yield considerable information about the existence
of (ordinary) T1 or T2 completions of a given quasi-uniform space. For T1 we obtain
a neat necessary and sufficient condition; for T2, however, the condition obtained
seems unlikely to be of any real use as it would be extremely difficult to test in any
particular case. Our arguments, being closely similar to those used in the constructions
for P-completions, will be somewhat abbreviated.

(6.1) Theorem. Let (X,¥") be a quasi-uniform space, such that J(¥°) is TO
on X. Then a necessary and sufficient condition that there exists a dense uniform
imbedding i of (X, ¥°) in a complete space (X*, #*), with T(# *) T on X*, is:
for every ¥"-Cauchy filter F, xo € AdF in T(¥ ') implies xo € AdF in T (V).
If this is satisfied it is possible to choose (X*, W*) in such a way that i Cauchy
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on (X*, w*) implies that F is a Cauchy filter on (X, ¥"). Moreover, if a Cauchy
filter on (X, ¥") has a limit in (¥ ") then it has a unique limit in both T(¥")
and T (v 71).

Proof. We show first that the condition is necessary. If the imbedding i, (X *, #°*)
exists and & is Cauchy in (X, ¥), xo€ AdZ in 7 (¥ ') then 3F, o F, F, - X,
in 7(¥~'). Then #{ = &,i is Cauchy in (X*, #*) and converges to x,i in
T (w* 1) since it has a base lying entirely in Xi, on which % *~! is equivalent to
¥ ~1. By completeness, a refinement %, of #{ converges in J(# %) to some
point x; say. We show that x{ must be xqi. For, given Wy e #'*, let V, e ¥ be
such that (xy, x,) € Vo = (x4i, x,i) e Wg; 34, € F,, A; e F5 such that 4,
c xoVo', AT = x{W¢. Then A ie #{ and so meets A7 in a point xi say, where
(x, x0) € Vo so that (xi, xoi) € Wg. Hence (x7, xoi) € (Wg)?. Since Wy is arbitrary
and X* is T1 in 7(#*), we have x{ = x,i as stated. Moreover, &, must have
a base in Xi (as it refines #) so that #; i~ ! is a filter on X, refining #, and &
which converges to x, (so that x, € AdF) in 7 (¥).

The same argument shows that if the given & converges to xo in 7~ (»~'), and i is
Cauchy in 77, it converges to x,, and to no other point, in 7(¥"), since otherwise %
has a refinement with a base lying entirely outside some neighbourhood of x,, so
that we could find a convergent refinement % whose limit could not be x,i. Thus x,
must be unique.

We now suppose the condition satisfied and construct the required completion.
We let %" be the set of all Cauchy ultrafilters on (X, ¥°) with no limit in (X, 7(¥")),
and write X§ = X U %™*. We define #'§ by means of basic sets Wy(f, V), where f
assigns to each % e #* a member %f of % and, very much as in (3.4);

(x1, x5) € Wo(f, V) iff (x4, x5) € V3
(1, %) ¢ Wo(S, V)s

Wy, Us) e Wo(f, V) iff U, = Uy;
(%, x) e Wy(f, V) iff x e (uf) V.

This is a quasi-uniformity making the identity i, a dense uniform imbedding. To
show 7(#°§) Tl we need prove only x, ¢ {x,}” if x; + x, and % ¢ {x}~, other .
cases being obvious. If x; € {x,}~ then x, € x,V~! for all Ve ¥, so by the data
x, € AdZ, where & is the filter with base {x,}, in 7(¥"); that is, x, € {x,} 7; as X
is given TO this gives x; = x,. Again, given %, x we know % +> x in 7 (7") so by
the data % + x in (¥ ~*). (As % is an ultrafilter, adherence implies convergence.)
We can therefore find fo, V,, with %f, = X \ xVg ! so that x ¢ (%f,) Vo = UW,(fo Vo)

Now let % be an ultrafilter on X, Cauchy in # . We have to prove that every
set of %y meets X so that %g iy * is a filter on X, except in the trivial case when %

has as base a single point of %;. We know that %4 has a member of one of the
forms xoWy(f, V), %oWy(f, V). The first lies entirely in X, and the second meets
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X& \X only in %, itself, which proves our statement. Just as in (3.4), every Cauchy
filter #* in (Xg, #§) for which 0 ¢ #*ig' makes #*i~! Cauchy in (X, 7).
For %, «§iy" is clearly an ultrafilter on X. An argument like that of (3.3), but
without any rounding operation, then shows that % ig'i, = %¢ converges in
(Xg, wg), either to (lim g iy ") iy, if this exists, or to %g ig " itself, as an element
of Xg, if this filter has no limit in (X, 7(¥")). Thus (X, #°5) is complete.

(6.2) Theorem. A necessary and sufficient condition that there exists a dense
uniform imbedding i of a quasi-uniform space (X, “//) in a complete space
(x*, w™*), with 7(w*) T2 on X* and Fi Cauchy in (X*, W) iff F is Cauchy
in (X, ¥"), is the following:

There exists a family s of round Cauchy filters on (X, ¥") such that

(i) every neighbourhood filter on (X, 7(¥")) is in £,

(i) every Cauchy ultrafilter on (X, ¥") is a refinement of just one member of <.
If this condition holds, and if % is a Cauchy filter on (X, ¥") which P-converges
to x,, then & converges to x, and so x, is unique.

Proof. To prove necessity we have only to take for & the family of all filters
W *i™1, where & F is the filter of neighbourhoods in I (#*) of an arbitrary point
of X*, for if % is a Cauchy ultrafilter on (X, ¥°) then i is a Cauchy ultrafilter,
hence convergent, on (X *, #°*), with unique limit as (X *, 7(#°")) is T2. Moreover,
if a Cauchy filter & P-converges to x, and % o %, %i converges to x* say in
(X", #w™*). For all Ve¥", xoVV ™ 'eZ and hence for all W" e # ™, (xiW* n
N Xi) W™ A Xi, a fortiori xoiW*W* ™' A Xi, is in Fi. Again, x* W™ is in %i,
so these two sets meet, whence (x,i) W™* meets x*(W™*)? for all W*; by the assumed
T2 property this gives x* = x,i.

For the sufficiency we proceed just as in (6.1) adjoining to X the set of all those
members of &/ which are not neighbourhood filters in (X, 7(7)), with the quasi-
uniformity defined as in (6.1) with & (esf) substituted for %. (Alternatively, we
could take the set of all members of «, imbedding X by making xi = neighbourhood
filter A", ; this is a closer parallel to the classical case but not so similar to our previous
constructions.) The T2 condition is satisfied because if &, # , are distinct members
of & there must exist 4, € #,, A, € #, with 4, n 4, = 0, otherwise they would
have a common ultra-refinement. As %, &%, are round we can find B, € &,
B,e F, and Ve ¥ with B,V n B,V = 0 and then take (if neither &, nor &, is
a neighbourhood filter) f such that &,f = B,, &,f = B,. Similarly, taking &,
as 4, we obtain the T2 condition for x, #,. The proof of completeness is just as
before, except that if %giy" fails to converge in (X, ¥ ) then %g converges
in (X*, #*) to the unique member % of &/ such that %gis' > #. (Here %y is
of course supposed Cauchy.)
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