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INTRODUCTION

The aim of this paper is to investigate the eigenvalues of nonlinear operators.
Let A: R" > R" be an operator in the real Euclidean n-space. We shall suppose
that the operator A is real analytic, this is the essential assumption in the whole
work. A number 1 is said to be an eigenvalue of the operator A, if there exists a vector
x € R", x + 0 such that Ax = Ax. The spectrum of the operator A is the set of all
its eigenvalues. It is well known that the spectrum of a linear symmetric operator is
a finite set. OQur aim is to prove an analogous assertion also for nonlinear operators.

For n = 1, Ax = x*, the spectrum of A is the whole real line. Hence it is clear
that in the above form the assertion on the discreteness of the spectrum does not hold.
We must hence distinguish “discrete’ and “‘continuous” components of the spectrum
in such a way that we restrict the set of those x € R” — {0} among which we seek
eigenvectors. It will be seen that it is suitable to consider the sets

M(f) = {xeR"[f(x) = r},

where r > 0, f(x) = 4|x|>. The connection of the function f with our problem is
obvious, f is the potential of identity operator.

Let us set
G = {[r, 2] € R? | there exists x € R" such that Ax = Ax, f(x) = r},

there is a question, if the set G,, = {[r, 1] € G | r = r,} is finite.

First, nothing can be done without assumption that the operator A is potential.
For example, we can choose

A:x, y] = [x3 x%y] .
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Then clearly every vector from R? is an eigenvector, A(x, y) = x* and the set G has
the following shape:
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/7 777777/
777777 777
(777 77
[/ 777777 /7
777 7 i
ya / //
177 17777
7777 77
Vodaaasaaasaaaod
7777777777777 R

Similarly, we can choose arbitrarily the function A(x) on R" and define the mapping
A xg, o x,] [3xg A%), - 3x, A(X)]

Then again every vector from R” is an eigenvector and the function A(x) can be quite

arbitrary. (On the contrary, if A is a potential operator and if every x e R* — {0}

is eigenvector, then A(x) is constant on M,(f) for all r > 0, i.e. the set G, is a one-
point set for all r, > 0.)

In the particular case when the operator 4 is b-homogeneous, b > 0, it was
proved in [FNSS 1—6] that the set G,, = G n {[r, 2] | r = ro} is at most finite
for all r, > 0. The sets G, correspond to one another by the relation

G, =r""'G,.

For a linear operator, the set G has the following shape:

A

and, for a homogeneous operator A:

A
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In these figures, the discrete and the continuous components of the set G are seen
very clearly: we obtain the set G if we take the set G,, r = 1 and change it continuously
together with the number r (a multiple of an eigenvector is again an eigenvector).
The proper aim of this work is to show that also in the nonhomogeneous case the
““discrete” and “continuous” components of the spectrum can be obtained by means
of the system M,(f).

In the nonhomogeneous case there is generally no relation between the sets G,
and Gy, hence it is natural to suppose that the parabolas from the graph correspond-
ing to a homogeneous operator will change into some analytic curves, for example

It will be seen that this idea is roughly correct, but somewhat too simple. Let us
give some example which show, what can happen.

1) The curves in the figure need not be generally the graph of a function. Let

905 5) = 15 = 35 + (= ) (v — 1)
ie.

Vg(x, y) = [x* — x* + (3x* — )(y—1), x> - x]
and the equations for eigenvectors have the form
x*=x2 4+ (Bx* = 1)(y - 1) = ix
x> —x=41y.

" It is clear that each point of the line B, = {[x, y] | y = 1} is an eigenvector and
it holds

Wx, 1) = x(x* = 1), f(x,1) =3 +1).
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The set G, = [f, 2] (B,) has the following shape:

A

2) The curves in the figure can be closed curves and need not be smooth. Let
g(x. ¥) = x(by® + 39x° — Gt

2 32
+16x* — ).,
then the equations for eigenvector have the form

1y 4+ B0 — 64x* +48x2 — 2 = ix, xp° =4dy.

It is easy to see that each point of the ellipse B, By = {[x, y]|x* + }y* = 1}
is an eigenvector of this problem. For [x, y] € B, it holds

f=1304-3x% =31 +3y°)
x?=34-2f), y=42f-1),
hence
Hw3) = £150T — 1) Y3 - ).
The corresponding set G; = [f, 2] (B;) has then the following shape:

A

N|~A
n
3
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3) We cannot hope to prove that the sets G, are finite as in the homogeneous case,
for fixed r, > O the set G, can contain an interval. Let

gx, y) = x(x* + y* = 1)

then equations for the eigenvectors have the form
3x2 4+ 2 — 1 = 2x4,

Then there are two possibilities.

2xy = 2yA.
a) If y = 0, then it follows from the first equation that

A=3x2—1

2x
— 2
= x“, we have

PR i
2 /r

hence for all x € R, x = 0 the vector [x, 0] is an eigenvector and for f(x, 0) =
b) If y + 0, then x = ) and

3x2 4 y2 — 1 =2x%
circle.

hence x2 + y> = 1. The second branch of eigenvectors is hence the unit
The set G has the following shape:

\ 1
// \\\ \
/
/
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Generally, if (p(x) is a real analytic function on R" and if we choose

9(x) = o(x) [f(x) = 7]

then clearly for every point x € M,(f) it holds
V(x) = o(x) Vf(x) + Vo(x) [1(x) = 1] = o(x) V/(x) -

Hence the whole sphere M,(f) lies in the set of eigenvectors B. Values of the function
A(x) for x € M,(f) are then equal to ¢(x). Hence if we take a sphere M,(f) and
prescribe the values of function A(x) on it so that A(x) = @(x)ly,(s)» Where ¢(x) is
an real analytic function in R” then we can choose a function g(x) in such a way that
the points x € M,(f) are eigenvectors of this problem and that the corresponding
eigenvalues 4 = A(x) are equal to the prescribed number.

Hence the parabolas from the homogeneous case change into parametric curves,
they can have isolated singularities, moreover, they can include vertical line segment.
We can imagine that the set G can have e.g. the following shape:

The sets G, generally need not be finite for all r > 0, but it holds:

There exists a discrete set R < (0, o0) such that for all r € (0, c0) — R the set G,
is at most finite and for r € R the set G, consists of at most finite number of (possibly
degenerated) closed line segments.

The essential fact is that the set G cannot be of the following shape:

A

® H[l[]]

619



Le. it does not contain, roughly speaking, two-dimensional parts (in patricular, for
example, vertical line segments form a locally finite collection).

In this work we consider a slightly more general case, when instead of the function
f (x) = %|x|2 we can take a general nonhomogeneous, nonquadratic function such
that its gradient is similar (in some sense) to the identity operator. The discreteness
of the sets G, is proved for homogeneous operators in [FNSS 1—7] also for the case
of operators in infinite dimensional spaces and extensive applications to integral,
differential and integrodifferential equations are also given. The method of those
papers is different from that used here. In the homogeneous case it is sufficient to
show that the set of all critical levels is a discrete set, since there exists a simple rela-
tion between the set of critical levels and the set of eigenvalues. However, this relation
does not hold for nonhomogeneous operators. The results which are proved here
for finite dimensional spaces can be transferred to infinite Hilbert spaces, too. This
can be done by the methods used in [FNSS 2] under similar assumptions and the
results can be again applied to differential and integral equations. There are only
technical difficulties if we attempt to transfer the result to operators in Banach spaces
(as in [FNSS 1—7]), but the method is the same. We intend to devote further papers
to this problem.

In Chapter I we introduce notions and theorems which we shall use in the following.
Especially, as this article is intended mostly to the readers which are not specialists
in the theory of functions of several complex variables, we recall basic notions and
some theorems from the théory of analytic sets.

In Chapter II an analogue of Morse-Sard theorem for holomorphic functions on
an analytic set is proved. We use these results in the following chapter. For the
algebraic case a similar theorem was proved in [M], for holomorphic functions in C",
this theorem was proved in [S—S].

In Chapter III we prove the basic Theorem 3.10. The method of the proof is the
following. The analytic set B of eigenvectors can be divided into irreducible branches
and the collection of the branches again into two groups. The first group consists of
the branches which are contained in some M,(f). The discrete set R is then formed
by those r for which M,(f) contains such a branch while the corresponding graph
in G is formed by vertical line segments. For the branches from the other group, we
shall prove, (see Theorem 3.8), roughly speaking:

If the point x € B moves in B in such a way that f(x) is constant, then A(x) is also
constant.

A trouble arises if the point x € B n M,( f) at which we investigate the relation
between B N M,( f) and B is a singular point of B. Hence we must use the theorem
on local parametrization of an analytic set and Lemma 3.4 on tangent vectors for
analytic sets.
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In Chapter IV we prove an assertion analogous to that in Chapter III for operators
in Hilbert spaces. In the proof we use the usual method from the theory of bifurcation,
which uses the Fredholm property of the operator 4 Vf — Vg. For purposes of this
chapter, it is necessary to prove a generalization of Theorem 3.8.

Chapter 1.

A. NOTATION, CRITICAL POINTS

Let us denote R" (resp. C") the n-fold Cartesian product of the field of real (resp.
complex) numbers. We denote by # the involution % : z — Z on C". The set R"
will be imbedded into C" by means of the mapping [xy, ..., x,] - [x; + 0, ...

., X, + 10] and the set C* (0 < k < n) into C" by

[z4, - ze] = [z oo 200 0, .., O]

For a polydisc 4(0,7) = {ze C"||z;] < r;; 1 £ j < n} we shall denote by 4,(0, r)
the set

40,1) =40, 1) C ={zeC"||z| <r;, j=1,..0k; zx4y = ... =z, =0}.
Further, we denote by IT the projection IT : C* — C":

[z4, - za] > [215 -+ 0s 200 05 .., 0]

and by Vf(z) the gradient of f at the point z. The symbol Q will be reserved for open
subsets of R"(or C").

Let us recall that the real function f is said to be R-analytic in Q = R" if each point
x € 2 has a neighborhood U, x e U = Q such that the function f has a power series
expansion in %.

Let ¢ = [gy, ..., g,] be a holomorphic (resp. R-analytic) mapping of a neigh-
borhood of p in C" into C" (resp. of a neighborhood of p in R"). The set {q,}}
is said to be a coordinate set at p, if g(p) = 0;i =1,...,nand if det J(p) + 0
(where J,(p) is the Jacobian matrix of the mapping g at the point p).

A subset M of C" (resp. R") is called a complex (resp. real) submanifold, if to
every p e M there corresponds a coordinate set ¢ = {g; }1 at p such that in some
neighborhood # of p

Ma%={ze¥|q+1(z) = .. = q,(z) = 0}

for a positive integer k. This number k is independent of the choice of the coordinate
set and is called the dimension of M at p.
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If f is holomorphic (R-analytic) function on a submanifold M < C" (ev. R"), the
point p will be called a critical point of f on M if

aLf(=(2))] —0: =
T‘(q(zo)) =0; i=1,..,k,

(where {q;}] is the corresponding coordinate set from the definition of the sub-
manifold M).

It is clear that the property of being a critical point is independent of the choice of
the coordinate set q.

Suppose further that f is complex (or real) function on a set V < C" (or V < R").
The point a € V will be called a metric critical point of f onV, if

tim 702 = /(@) _
o |y, —al
for all sequence {y,} such that

yneV9 y'l_ya'

It is easy to see that if M = Q@ = C" is a (complex) submanifold and f is holo-
morphic in Q, then

a e M is a critical point of f on M iff a is a metric critical
point of fon M .

Of course, the same is true in the real case.

Theorem A 1. Suppose that Q = R", Q* < C" are (open) sets such that
Q=0Q*R".

Let M* = Q* be a (complex) submanifold, the dimension of which is at every
point equal to p. Suppose further that M* is symmetric, i.e. JJ(M*) = M*.
Let f* be a holomorphic function on Q* such that

f=1*a
is a real function.

Then
M=M*NnQ

is a real submanifold the dimension of which at every point is p and if we denote
N* = {z e M* | z is a critical point of f* on M*},

N ={xeM |x isa critical point of f on M},
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then
N=N*n@Q.
Proof. Let z5 € M be fixed.

1) We can choose a coordinate set {¢; } in a symmetric neighborhood €* < g+
such that
M*m(O*={ze(D*|q:+1(5)= - =q,(z) = 0} .

We shall show that we can suppose that g}|once are real functions. Indeed, if this is
not the case, we can define functions

0/2) = a}(x) + i) T =1 m,

V() = i[q}(z) - af@)].
These functions are holomorphic in ¢* and §0j|gh@«, lpj‘gn(rt are real functions. The

set M* is symmetric, hence the functions @p+ 1> Yp+1» - @ ¥, are equal to zero
on M*. It holds

(1.1) ranka((p”“’l//"”""(p"’lll")(z)Zn—p

0(zys s Za)
for we can write qf = 4[¢; —iy;], j = p + 1,...,n and {q]}] is the coordinate
set at z,.

Further, the function ¢,  is a combination of the functions gy . -... ¢ (in a small
neighborhood), i.e.

R CERICTHCE

where h; are holomorphic functions. This follows immediately from the Taylor
expansion of the function ¢,  in the variables g7, ..., g; and from the fact that @»+1
is equal to zero on M*. The same is true for the functions ¥/, . ..., @ ¥,, NN

0((pp+ 1 l//p+1a sy (0,., l//n)
Zg) S n—0p.
zyys s 2p) (zo) < m—»r

From this and from (1,1) it follows that we can choose functions #,. 1, ..., 1,
the functions @+ 1, Wp+ 15 - -+ Pn» ¥, such that

rank

from

rank

a((pp+ls lpp+1’ LRRT] (pm ll’n)
<n-p.
Azy, ..o 2,) (z0) = nor

In the same way as the assertion (1,1) we can show that

rank — 22 T Ay, - !//") (z0) =13
d(zy, ..
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hence we can choose functions 7y, ..., 5, from the functions ¢y, Vis oo Oy Y,y In
such a way that {n,}} is the coordinate set at z,.

It is sufficient now to show that in a small neighborhood of z, it holds

M* = {z|n,.4(z) = ... = n,(z) = 0} .

However, {1;}} is the coordinate set at z,, hence in a small neighborhood of z, the
set {z | mp+1(z) = ... = n,(z) = 0} is a submanifold of the dimension p.
Clearly this submanifold contains the submanifold M* the dimension of which at z,
is also p. Hence in a small neighborhood of z, these two submanifolds are equal (this
assertion is contained — for analytic sets — in Theorem B 5). Hence we can suppose
that g; = g} |gne~ are real functions.

Then @ = 0* n Q is a neighborhood of z, in R",

(1,2) MnO={xe0]|qg,,,(x)=... = gq,(x) = 0}

and the mapping g = {g;}] is nonsingular at p. Hence M is a real submanifold of R"
the dimension of which at z, is p.

2) Further, the function f* being holomorphic, we can write f*(q}, ..., q;) =

= Y a. att ... gin, where a;, ,; are real numbers.

1t follows immediately from the definition of critical points that
Zoe€N*<«a; =0 for i=[1,0,..,0],..,[0,...,1,...,0] < z,eN.
»

Hence N = N* n Q.

B. ANALYTIC SETS IN C"

A collection {4}, of subsets of C” (or R") is said to be locally finite, if for each
point z € C" (or z € R") there exists a neighborhood %, such that

AU, + 0

holds only for a finite number of indices i € I.

A function f is said to be locally constant on a set X < C" (or R") if each point
x € X has a neighborhood %, such that f is constant on N X.

A subset V = Q = C" is said to be an analytic set (complex) if for every z in Q
there are a neighborhood %, and functions f;, ..., f; holomorphic in %, such that

Vad,={yeu, |fi(y)=...=fy) =0} =V(fr, ... [5) .
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This definition implies immediately that finite union and finite intersection of
analytic sets is again an analytic set. It is also clear that if {V,}, is a locally finite
collection of analytic sets, then also |J V; is an analytic set. Further, it can be proved

iel
(see [G—R], p. 86, Theorem IILE.3) that the intersection of any collection of anlytic
sets is again an analytic set.

Suppose X = C", z € C”", then the germ of the set X at z will be denoted by [X]:.
It is clear that intersection, union of two germs, as well as inclusion betwee n them,
are well defined operations on germs.

Similarly, if f is defined in a neighborhood of z, then the germ of the function f
at z will be denoted by [f],. The set ,0, of all germs of holomorphic functions at z
form an integral domain (,0, inherits its algebraic structure from the global objects
from which it is derived).

We say that [f], vanishes on [X 1., if [X]. = [V(/)]..

A germ [X]z is said to be the germ of an analytic set, if there are elements
[fi]e - [fi]: € 40 such that

XL =[fil:0-..0[fu]:-

The collection of ail germs of analytic sets at z will be denoted by ,G,. This collection
is clearly closed with respect to finite unions and finite intersections (see [G—R],
p. 87, Proposition 1L.E.7).

Let [V]. € ,G.. The ideal of [V], is defined to be the set

id[V]. = {[f]. €.0. | [f]). vanishes on [V].}.
Let A < ,0,. The locus of A is defined to be

loc 4 = N[V(f)].,

where the intersection is taken over all [f], € 4.

It holds that id [V]z is an ideal of ,0,, loc 4 is a well defined germ of an analytic
set and locid [V], = [V], (see [G—R], Theorems ILE.9, ILE.11(v)).

A germ [V], € ,G, is said to be irreducible, if [V], = [V,], v [V,]. for [V 1., [V.]. €
€,G, implies that either [V'], = [V,], or [V], = [V,].. The germ [V], is irreducible
if and only if id [V'], is prime (see [G—R], p. 89, Theorem ILE.13).

Suppose that 2 is a prime ideal in ,0,. A coordinate set z, ..., z, ..., 2, 1S said
to be a regular system of coordinates for the ideal 2, if the following conditions are
satisfied:

(i) 2 N0, = {0}, where ,0, is the collection of all germs of functions depending
only on variables z, ..., z,

(ii) the factorring ,0,/2 is integral over ,0,,
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(iii) if [z441] €400/2 is the element corresponding to the element [z444]o € ,Co
and if #,, #, are quotient fields of 0o/ and ,0,, respectively, then F, is gene-
rated over &, by the single element [z, ,].

The integer k is called the dimension of 2. It can be seen that it is independent of the
coordinate choice. The regular system of coordinates for # can be, for example,
found as follows:

Theorem B 1. Suppose that [V], is an irreducible germ of an analytic set and
that dim id [V]O = k. Suppose further that

[VIon[{z]zi= ... = 2 = 0}]o = [{0}]o -
Then there exists a linear transformation

Zy=3 aj;z;, j>k
i>k
such that z,, ..., 2, Zhy1» -+ 2, is the regular system of coordinates for id [V1o-

(For the proof see [G—R], Theorems III.C.5 and 1II.C.7.)

Let X, X be topological spaces, p : X — X continuous mapping. The mapping p
is said to be a simple covering map, if p~*(X) is a disjoint union of open subsets of X
such that the restriction of p to each of them is a homeomorphism onto X.

A map p : X - X is said to be a covering map, if every point x € X has a neigh-
borhood % such that p restricted on p~*(%) is a simple covering map.

A map p: X — X is said to be a proper mapping, if for every compact set K = X
the set p~!(K) is again a compact set.

The following theorem is of basic importance for the investigation of local geometry
of analytic sets.

Theorem B 2. (Local parametrization of an analytic set.)

Let [V]o€,Go be an irreducible germ. Suppose that zi, ..., z, ..., z, form
a regular coordinate set for id [V],.

Then there exist (arbitrarily small) r = [ry, ..., r,] and a function d = d(z,, ...
-+ zi) holomorphic in A(0, r) such that (if we denote D = {z € 4(0, r) | d(z) = 0})

(i) the mapping
n:V 40, r) > 4,0, r)
is a proper mapping,
(i) the mapping
n:(Vad)ND - A4\D

is a covering map,
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(i) each point a € A, — D has a neighborhood %, = A\ D such that
n:Van Y u,) - U,

is a simple covering map and each of the disjoint sheets of the setV n n™'(%,)
can be described by a holomorphic mapping

G:U,~n ' (u,),
Gilzisoomz] = 2/ [21s oo Zho Giia(2)s 0 90(2)] -

(Proof of this theorem follows from the assertion of Lemma III.A.9 and Theorem
I11.A.10 of [G—R], since the ideal id [V'], is prime.)

Suppose that [V], is an irreducible germ of an analytic set and that zy, ..., z;, ..., z,
form a regular coordinate set for id [V]O. Then the number k is independent of the
choice of regular coordinate sets (see [G—R], remark preceding Theorem II1.C.1).
This number is called the dimension of [V]O and it will be denoted by

dim[V], = k.
By translation into origin we can define similarly
dim [V],

if the germ [V], is irreducible.
Further, let us consider a germ [V]Z € ,G, and suppose that

V). =[]0 o[Vl
is the decomposition of [V]z into its irreducible branches. Then we denote

dim [V], = max dim [V;]. .
1

<i<S§S

The following theorem on the dimension of germs of varieties will be useful in the
sequel:

Theorem B 3. Let [V].€,G. be an irreducible germ and [f].€,0.. Suppose
that f(z) = 0 and [f]. ¢id [V]..
Then
dim[Vn{z|f(z) = 0}]. = dim[V], — 1.
(For the proof see [G—R], Theorem 1I1.C.14.)
Let V < Q = C" be an analytic set. We denote
dimV = sup dim [V], .

ZeV
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A point z € Vis said to be a regular point of V, if there exists a neighborhood %,
such that V' n %, is a complex submanifold of C".

A point z € Vis said to be a singular point of V, if it is not regular.

The set of all regular points of ¥ will be denoted by .@(V) It can be proved that
(V) is a dense subset of V (see [H], Theorem 5, p. 107).

The set #(V) of all singular points of V is again an analytic set (in Q) and

dim (V) < dim v
(see [H], Theorem 6, p. 117).

We say that analytic set V = Q < C" is irreducible, if it cannot be written as
the union of two analytic sets, both different from it.

It can be shown that a germ [V/], is irreducible if there exists a fundamental system
of neighborhoods {#%},; of the point z such that ¥ n %; is irreducible (in %;) for
all i eI (see [H], Corollary 2., p. 124).

For the reader’s convenience, we introduce a theorem, which will be used in the
following.

Theorem B 4. Let V, W = Q = C" be analytic sets. Suppose that S = &(V) is an
open connected subset of R(V) such that S is not contained in W.

Then S\ W is connected.

Proof. See [H], Assertion 4, p. 64.

Theorem B 5. Let V = Q = C” be an irreducible analytic set. Then
(i) Vis connected,
(ii) dim [V]. is constant for all z €V,
(i) let W = Q = C" be an analytic set and let for a point z €V the germ [W].

contain one of the irreducible components of the germ [V]z, then

WoV.

Particularly, if f is holomorphic in Q and for a point z € Vthe germ [f]z vanishes
on [V]., then
f=0 on V.

(iv) for each analytic set W = Q the set V\ W is an irreducible analytic set in
QN Wand the set V\ Wis either empty or dense in'V.

(v) if W <= Qis an analytic set and if W<V, W % V, then

dim [W], < dim [V],
for all zeV.

Proof. See [H]. Corollary 3, p. 124.
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Theorem B 6. (The decomposition into irreducible branches.)

Let V.= Q = C" be an analytic set. Let us denote by {W,} the (countable) collec-
tion of connected components of the set A(V) of all regular points and by W, the
closure of W, in Q.

Then {W,} is a locally finite collection of irreducible varieties and

The sets W, will be called irreducible branches of V.

Proof. See [H], Theorem 8, p. 126.
Suppose that V = Q < C"is an analytic set. If we denote M, = 2(V), we can write

V=M, u V)

and since #(V) is again an analytic set (in Q), the dimension of which is less then the
dimension of V, we can repeat the same procedure with (V') and by induction we
obtain a (disjoint) partition of V into submanifolds:

(1,2) V=M,u..uM,,
dim M, > ... > dim M,

where M; are submanifolds of C".

We can divide every submanifold M; into its connected components M;,, M,,, ..-
and in this way we obtain another (disjoint) partition of V into connected sub-
manifolds

(1.3) V= UM, oM, u..].
i=1

We say that a (disjoint) partition
V=UM;

iel
is a strict partition, if {M,} is a locally finite collection and if for all i eI the sets
(closure are considered in Q)
M.

i

M\ M,

i

are anlytic sets in Q.

It can be easily shown (see [W], p. 536) that the partitions (1,2) and (1,3) are strict.

Moreover, if V is a symmetric set, i.e. #(V) = V, then it is easy to see that (V)
(and hence also #(V)) are symmetric sets. From this it follows immediately that the
partition (1,2) is a partition of ¥ into symmetric submanifolds.
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C. REAL ANALYTIC SETS

Suppose V= Q = R".
The set Vis said to be a (real) analytic set in Q, if for each point x, € Q there exists
a neighborhood #,, = @ and functions f, ..., f,, which are R-analytic in %, and

such that
Uxusz {xEUxolfl(x) = e =f’(x) = 0} :

The set V' is said to be a C-analytic set in, Q if there exist functions f;, ..., f, which
are R-analytic in the whole Q and such that

V=1{xeQ|fi(x)=...=f[(x)=0}.

Hence every C-analytic set in Q is a (real) analytic set in @, the converse not being
true.

For any (real) analytic set ¥ = @ < R", a point x is said to be a regular point of V,
if there exists a neighborhood %, of x such that

U. NV

is a (real) submanifold of R". The set of all regular points of ¥ will be denoted by 2(V).

It can be shown (see [W —B], Prop. 2, p. 141) that every analytic set ¥ = Q < R"
is locally arcwise connected (i.e. every point x €V has a fundamental system of
neighborhoods {#};;; of » such that for all i € I, any points y;, y, €V 1 %; can be
joined by a continuous curve in V n %).

A great advantage of C-analytic sets is the possibility to define global decomposition
(i.e. decomposition in Q) into irreducible branches, while for (real) analytic sets
such decomposition can be done only locally (i.e. on compacts). There is also the
following characterization of C-analytic sets:

Theorem C 1. A set V,V < Q = R" is a C-analytic set iff there exists a neigh-
borhood Q* of the set Q in C" and a complex analytic set V* in Q¥ such that

Q=0*nR" and V=V*nR".

Moreover, if V is C-analytic set in Q, then the set V* can be chosen in such a way
that V* is symmetric.

Proof. See [W—B], p. 153.

A C-analytic set Vin Q is said to be C-irreducible, if V cannot be written as a union
of two C-analytic sets in Q, which are different from V.
Again, some theorems on C-analytic sets, useful in the following, will be recalled.
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Theorem C 2. Let V < Q = R" be a C-irreducible C-analytic set and let Q* be
a neighborhood of Q in C" such that Q = Q* n R" and that there exists a complex
analytic set V¥ < Q* for which V = V* n R" holds.

Let us define
wx = yv*

where the intersection is taken over all (complex) analytic sets V* in Q*, which
contain V.

Then W* is an irreducible analytic set in Q%*.
Proof. The set W* is an analytic set, being the intersection of analytic sets. If
W* = Wi o Wy
where W,*, Wz* are analytic sets in Q%*, different from W*, then denoting
W,=WSnR'", W,=WSnR"

we have V = W; n W,. And, since W* is the least analytic set in Q* containing V,
it is true that W, and W, are different from ¥ which is a contradiction.

Theorem C 3. For every C-analytic setVin Q there exists a locally finite collection
of C-irreducible C-analytic sets {V;} ;. such that

V=UV, and ViV, for i+j.
iel

The sets V; are called C-irreducible branches of V.

Proof. See [W—B], p. 155, Proposition 11.

Theorem C4. Let V < Q = R" be a C-irreducible C-analytic set. Then V is con-
nected.

Proof. It follows from [W —B], Corol. 2, p. 148 and Remark on p. 146 that there
exists a continuous mapping, which maps a connected set onto V, hence V is also
connected.

Chapter 1I.

MORSE — SARD THEOREM

Let f be a real function defined on R". Let us denote
N = {xeR"]Vf(x) = 0}
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the set of all critical points of f. A well known problem in analysis is the problem
how large the set f (N) can be. If the function f is n-times continuously differentiable,
then the (Lebesgue) measure of f(N) is zero (see [S]). When increasing the smoothness
of f, the set f(N) becomes smaller (which can be measured by Hausdorff measures,
see [K]).

In the case of an R-analytic function f, the set f(N) is at most countable, moreover,
the function f is locally constant on N (hence f(N n K) is a finite set for all compact
sets K, see [S—S]).

The generalization of the Morse-Sard theorem for the set N of all critical points
(in some sense) of f with respect to an analytic set Vis very useful for the investigation
of analytic functions on analytic sets. For algebraic case similar theorem was proved
in [M], p. 23. In this chapter we prove such a theorem for analytic case. First we
prove this theorem for the complex case. And then use the result to prove the real
case.

Theorem 2.1. Let V = Q <= C" be an analytic set and let f be holomorphic in Q.

Let us denote

N = {ze (V)| z is a critical point of f on Z(V)} .

Then N (closure in Q) is an analytic set in Q and f is locally constant on N.

First we prove this theorem in a special case:

Lemma 2.2. Let M < Q = C" be a connected submanifold of C" and let V=M
(closure in Q) and V\ M be analytic sets in Q. Suppose that f is holomorphic in Q
and let us denote

N = {zeM | z is a critical point of f on M} .

Then the set N is an analytic set in Q and the function f is locally constant on N.
Moreover, it holds that N n M = N.

Proof. We must prove that for every point z € Q there exists a neighborhood
U, = Q such that N n 4%, is an analytic set in %, and that f is constant on N n %..
If z ¢ N, then this is trivial.

Suppose that z, € N is fixed.

The theorem on the coherence of the sheaf of ideals of an analytic set (see [G—R],
Corollary IV.D.3) implies that there exist functions g, ..., g, is a neighborhood %,
such that the germs [g,],, ..., [g,], generate id [V'], for each point y € %,,. Clearly
it holds

McaV)cV=M,

hence #(V) is also connected and by Theorem B6 V is irreducible in Q.
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It follows from Theorem BS (i) that dim [V], is constant for y eV provided
dim V = j. Further, the sets M and #(V) are open dense subsets of V, hence M
and #(V) are equal in a small neighborhood of any point from M.

First part of proof. Let z; e %_,, z; € M. There exists a neighborhood %_, <
< ,, of the point z; and a coordinate set w = {w;}] at z; such that

Uy "M =U,, " RV) = {zeU., |w;i(2) = ... = w,(z) =0} .

Let ¥~ = w(%.,). For the sake of brevity we shall denote the functions g(z(w)),
f(z(w)) shortly by g; = gi(w), f = f(w). Since the matrix

a(g,,. ’gs) ( )
AWy, w,)
is the product of the matrices
5(91, s Gs ) (”)
Azy, .
and
Nzyy oo ‘.,,) (0)
Wiy w,)
and since J,, z(0) # 0, it holds

(91 ’g)(l)=rank (gla- ’gs)()

rank
zys ey 2p) a(wy,

and by the same argument we obtain

a(gl" ’gs’f)( 1) — rank a(gla“ sgsaf)()
Nzyy ooz awy, ...

(2.1) rank

The functions g,(z) vanish on V n %__, hence in ¥~

z0?

giwy e w;, 0,..,0) =0, i=1,...,5

i

and also

%(0) =0; i=1.,5; k=1L..,j.
aw,

The matrix

a(gn ceey gs»f) (0)

oWy, .oy W,



has the form:

ow, ow; 0Wjs ow,
We have
‘;
(2,2) rank (_(gl’—’&) (O) =n-—j
AWy, ..o w,

since it follows immediately from the form of this matrix that its rank is less or equal
to n — j while the converse inequality follows from the fact that [wj+ Y
... [w,]:, vanishes on [V], ; hence we can write in a neighborhood of the point z,

we(2) =i/:‘1hk(z) gi(z) ie. w, =:§1hk(z(w)) gw); e=j+1,..,n,

where h,(z) are holomorphic functions.
Consequently

0 S, oh S o

ey g Y ey, e=j 41 mn, m=1,...n,

ew,, k=10w, K=10w,,

but g,(0) = 0, k = 1, ..., s and therefore

n — j = rank AW 12 - W) 0) = rank-——a(gl’ 2 9) (0).

Wiy ey W, Wy seeny W,

Now we have

of of
z;eNe—(0)=...=— =0
1€ 6w1( ) ow; (0)

a(gl’ L] gs,f)

<> rank oovrs o wr) (0)=n—j (by(22)
g5 - G . ‘

.bmkH(o) <n—j (by (1)

arankw(%) sn—j.

zysoees 2y)
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Hence in the whole neighborhood %,

N, = {zeM[rank%'_‘gs’f)(;)g n _j}_

Ty eees Zy)

Let us define the analytic set Win %, by
W={ze.,|zeV, D(z) =0},
where D, are all k x k subdeterminants of the matrix

Nzyyens 2,
where k = n — j. From the above reasoning it follows that in %_.

WnM=N.

Second part of proof. Let us denote H = V'\ M; then H is an analytic set
in Q. By Theorem B6 the set Wcan be decomposed in %_, into its irreducible branches

w=nNWw,
i=1

i

where {W,.}f° is a locally finite collection of irreducible analytic sets in ..
We can suppose that

zoeW; for i=1,...,1,
2o W, for i=1+1

and that (for some t, 0 < t < )

(2,4) (W, « [H]., for i, 1<

(W], = [H]., for i, t+1

IIA
IIA

t,

IIA
IIA

and denote W' = ) W, (i.e. the set W’ is empty if ¢

1gist

0).

I

For every component W;, i = 1, ..., t it holds in %,:

@(W,) ¢ H;

hence by Theorem B4 (where we put V=W, S = (W), W= H and Q = %,)

the set 22(W;)\ H is connected. In %,, we have further (by (2,3))

(2,5) AW)NHcNcM; i=1..,t.

635



Let zo € Z(W;)\ H be fixed. We can choose a coordinate set {g;} in a neigh-
borhood % of z such that it holds in %:

Il

RWINH = {ye| q:(y) = ...

M={yel|q(y)=...

4.(y) = 0},

9.(y) = 0},

where k < j.
The set N is the set of critical points of f on M, hence

of(z(q))
a4, (‘1 1

'~~9qk50,-~-,0)=0; 1=1,,_]

for [qy, ..., 4, 0, ..., 0] from a sufficiently small polydisc 4,. Hence the function
f(z(q)) is constant on 4,. Since the point z can be arbitrary, the function f is locally
constant on the connected set 2(W;)\ H and hence f is constant on %(W;)\ H.
Further, if we put @ = %, \ #(W,),V = #(W;), W = H 0 %, in Theorem B5 (iv),
we conclude that the set Z(W;)\ H is dense in #(W,) (for i, 1 < i < t). However

the set %(W;) of all regular points of W, is dense in W;, therefore (closure is taken
in %,

RW)NH =W,
and f is constant on W;.

By (2,4) and by Theorem BS (iii) we have W, = H for i, t < i < . The collection

13

{W} is locally finite, hence we can choose a neighborhood %, < %., such that

W=nNW,

1

T~

in %/ . This implies by (2,3) that
(2,6) N=MaW=MnaW in %,
where W' = {:] W..
i=1
From (2,6) it follows that (closures in %, )
N=MaWcVaW =W (n%,).
However, on the other hand, (2,5) implies (closures in %)

AW)NH =W, =N (nu), i=1..,¢t,
hence also

W =AW, cN (in%).
T1=1
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So we have
W' =N (in%.)

and the function f is constant on W', since f is constant on all W; and z, € W; for
i=1,..., ¢t

Proof of Theorem 2.1. If V is irreducible, then 2(V) is a connected submani-
fold C" and we can use Lemma 2.2 for M = (V).

In the opposite case, by Theorem B6 we can write the decomposition of V into
irreducible branches in Q:

V=UV:, Vi=K
iel
where K; are connected components of #(V) and K; are their closures in Q.

Let us denote by N and N, (i € I) the set of all critical points of f on (V) and on K,
respectively.

Clearly it holds
2,7 N = UN;.

iel

The collection {N,};; is locally finite, since N; = V;, i eI (closure in Q). Hence
it follows immediately from (2,7) that also (closure in Q)

(2.3) N=UN,.

iel
Further we shall show that
VNK;=V;n .V(V) .

The inclusion ¥; n #(V) = V;\ K, follows from the definition of K;. On the other
hand, if z e V;\K; then z e #(V), for if z € #(V) then there exists i, €I such that
zeK;, but zeV; = K,, z ¢ K; which contradicts the fact that K, K;, are two dif-
ferent connected components of (V).

Hence V; and V;\ K; are analytic sets in Q and Lemma 2.2 implies that N;, iel

are analytic sets in Q and that f is locally constant on N;.

The collection {N},.; is locally finite, hence N is also an analytic set in @ and f
is locally constant on N.

Theorem 2.3. Let V < Q < C" be an analytic set in Q and let f be holomorphic
in Q.

Suppose that V = \J M, is a strict partition of V into submanifolds of C".

iel
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Let us denote
N; = {xeM,|x is critical point of f on M} .
Then f is locally constant on the analytic set ) N,.
iel

Proof. A) Suppose first that all submanifolds M, are connected. From the defini-
tion of strict partition it follows that (closures in Q) M; and M;\ M, are analytic
sets in Q. From Lemma 2.2 it follows that N, i € I are analytic sets in Q and that f
is locally constant on N;. The collection {N;} is locally finite, hence (J N, is an analytic
set in Q and f is constant on this set. el

B) If some of M; are not connected, then we can write these M, as countable union
of connected submanifolds

M; :UMik'

kel ;

We shall show that the partition
V=[UMy]n[UMy]u...
kel kel>

is a strict partition of ¥ into connected submanifolds.

The sets M; and S; = M;\ M; (closures in Q) are by the assumptions analytic
sets in Q. The set 22(M) can be also written as union of its connected components

#(M) = UK,.

leJ;

By Theorem B6 the sets K (closure in Q) are analytic sets in Q. Clearly M; = #(M)),
hence for each k €I; there exists only one [, € J; such that

My <K, ;
moreover we have
M, < K, \S, = M,.

However, by Theorem B4 (where we put S = K,,, V= M;, W = §;) the set K, \ S;
is connected. The set M, is a connected component of M, hence

M!'k =K,k\S,-.

Further, Theorem BS (iv) (where we put @ = Q\ #(M,),V = K,,, W = S;\ ¥(M))
implies that K, \ S; is dense in K,,; hence (closure in Q)

My = sz
and therefore M, and M \ M, are analytic sets in Q.
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By Theorem B6 the collection {K,} is locally finite, so that also {M} is a locally
finite collection.

Let us denote now

Ny = {zeM,| z is critical point of f on M} .
Clearly
N;=UNy and N;=UN;.
kel ; kel;
Hence from the previous part of the proof we conclude that the function f is locally
constant on the analytic set

U UNik :L{N,».

iel kel;

Theorem 2.4. Let V = Q < C" be an analytic set and let f be holomorphic in Q.
Let us denote

N = {z € V| z is a metric critical point of f on V} .
Then f is locally constant on N.

Proof. Let
V=UM;
iel
be an arbitrary strict partition of V into submanifolds (we can take for example the
partition (1,2) from Chapter I). Further let us denote

N; = {ze M| z is a critical point of f on M} .

If z € N, then there exists i, € [ such that z € M, , but z is also a metric critical point
of f on M, hence ze N,.
We have

and it is sufficient to use Theorem 2.3.

Remark. From the above theorems it is clear that the set N of all critical points
of fon %(V) is contained in the set of all metric critical points and this again is con-
tained in the set N, defined by an arbitrary partition of ¥ into submanifolds. Further,
the finer is the partition of V the greater is the set N. Hence the best information can
be obtained by means of Theorem 2.3. However, it has no sense to consider very
fine partitions of ¥V, for we can take, for example, an arbitrary isolated set in ¥ and
to consider its point as new submanifolds M;. This points will be then in N, but we
obtain no new information about the function f.
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Theorem 2.5. Let V = Q < R" be a (real) analytic set. Let f be an R-analytic
function in Q. Let us denote

N = {x eV|x is metric critical point of fon V} .
Then f is locally constant on N (closure in Q).

Proof. Let z, € V be fixed. It is sufficient to show that there exists a neighborhood
U., of z, such that f is locally constant on m (closure in U,,)-

By definition there exists a neighborhood %, of z, such that #, nVis a C-
analytic set in %,

Let us denote

Uy "V=V", U,,nN=N".

There exists a neighborhood * < C” of the set %,, and a function f* holomorphic

in Q* such that Q* N R" = %_, and that f*[,, = f (see [N], p. 13, Lemma 1.1.5).

Further, if we assume the neighborhood Q* sufficiently small, then there exists
a (complex) analytic set '

V¥*c Q*, V¥AR'=V'.

We can suppose also that the sets V*, Q* are symmetric. There exists a strict partition
V* = (U M7 into symmetric submanifolds.

iel
Let us denote
M;=M!nu,,,
N} = {z e M} | z is critical point of f* on M}},
N; = {xe M, | x is critical point of f on M} .
By Theorem Al the sets M; are (real) submanifolds of R" and
N;=Nfna,,.

By Theorem 2.3 the function f* is locally constant on the analytic set (J N (closure
iel
in Q*), by (2,9) it holds (closures in %,,)
UN,c[UNf]n%

iel iel

Zo ?

hence f is locally constant on |J N;.
iel
Since V = {J M; is a partition of V for each point x € ¥, there exists a submanifold
iel
M, such that x € M;,. Moreover, if x € N’, then also x e N;,. Hence N =« JN,.

iel
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Since the collection {M?¥},; is locally finite, the collections {N7},.;, {N}ir are
also locally finite and it holds (closure in %, ):

N < UN;
and f is locally constant on N.
Theorem 2.6. Let V = Q < R" be a (real) analytic set. Let f be R-analytic in Q.
Let A(V) be the set of regular points of V and N = {x e (V) | x is critical point
of fon Z(V)}.

Then f is locally constant on N (closure in Q).
Proof. Let x € N be fixed. Then
U RV)=U .V

in a neighborhood %, <= Q, hence x is a metric point of f on V.

The set N is contained in the set of all metric critical points of f on V and we can
use Theorem 2.5.

Chapter I11.

THE STRUCTURE OF EIGENVALUES
Let us denote @ = R" — {0}. Let f, g : @ — R be R-analytic functions and suppose
that
lim f(x) = +o0, f(0)=0, f(x)>0, Vf(x)+0 for x=*0.

|x]= o
(A typical example is f(x) = 3Zx] = 3|x|%.)
In this chapter we shall investigate the set of eigenvectors B and the set of eigen-
values A of mappings F, G where F = Vf, G = Vg. Hence we denote

B = {x € 0| there exists 1 € R such that 2 F(x) = G(x)} .

Since Vf(x) # 0in 0, the eigenvalue A corresponding to an eigenvector x is determined
uniquely and we shall denote it by A(x). Further,

A = {Ae R|there exists x € B such that A = A(x)} .

It will be seen that we can get a very good picture of the structure of the sets B
and A investigating the set

G = [f, 2] (B) = {[r, 2] € R* | there exists x € B such that r = f(x), 4 = A(x)} .

The aim of this chapter is to discuss the structure and 'properties of the set G.
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Lemma 3.1. The set B is C-analytic in 0.

Proof. Let us denote by (x, y) the scalar product in R".
The function

Ax) = (Vg(x), Vf(x)
v/ (x)f?

is R-analytic in @. If x € B is an eigenvector, then clearly A(x) is the corresponding
eigenvalue. Hence

B = {xe 0| Ax)Vf(x) = Vg(x)} .
By Theorem C3 we can divide B in ¢ into C-irreducible branches:

B = UB,
aell

where B, are C-irreducible C-analytic sets in @ and the collection {B,} is locally
finite.

The behavior of the function A(x) on B, depends on the fact whether f = const
on B, or not. Both these cases will be dealt with separately in Theorems 3.2 and 3.9.
The summary of both cases as well as the information concerning the set G is
contained in Theorem 3.10.

Theorem 3.2. Let B, be a C-irreducible component of B such that f % const
on B,.

Then for all r > O there exists only a finite number of 1 such that [r, 2] € G,,
where

G, =[f.2](B,).
In other words, if we denote
M(f) = {xe0|f(x) = r},
then for all r > O the set
Aoy = AB; 0 M(f))
is at most finite.

The essential steps of the proof of this theorem will be done in the following
lemmas. All these lemmas deal with the case when f, g are complex functions of
complex variables.
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Notations and assumptions. In the next lemmas 3.3—3.7 we shall suppose that:

(1) £, g are holomorphic functions in @ = C",
n 2

2 X <—d—f> +0in Q,
i=1\0z;

(3) V = Q is an analytic set and

Az) Vf(z) = Vg(z)

for all z e V, where the function A(z) is defined by

(4) f is not constant on V.

Lemma 3.3. Let the assumptions (1)—(4) be fulfilled. Moreover, let V and M =
=V n {zeQ|f(z) = 0}, be submanifolds of C", V being connected.
Then every point z € M is a critical point of A on M.

Proof. Let z, € M be fixed. Let us denote dim, V' = k. By Theorem B3 we have
dim,, M = dim,, ¥V — 1. The cases k = 0,1 being trivial, we shall suppose 2 <
< k < n. We can choose a neighborhood %, and a coordinate set g = {qi}'{ in%,,
such that

Uy NV = {z€U.,| qrs:(2) =
Uy "M ={zeU,|qfz) =..

a.(z) = 0},
g.(z) = 0} .

I
If

Moreover, we can assume that for some ¢ > 0 it holds
U,y ={zeC||qfz) <& i=1,...n},
re. q(%.,) = A(0,8) = €, . Then
4%y V) = 4(0,8) = 44,
q(%., 0 M) = 4,_4(0,¢) = Ak_; .

On 4 = 4(0, ¢) we shall define functions of variables gy, ..., g, (we shall denote
them again by f, g, 4)

f(a) = 1(z(a))» 9(q) = 9(z(q)), (q) = X(z(q))-
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For the functions f, g it holds (for g € 4)

vaf(a) = V.f(z(q)) - Azss -0 20) etc. ,
( qdis -- ’qn)

v, = (_‘l, i), V.= (i i)
aql aqn azl 62:1

Az(q)) - V.f(2(q)) = V.9(z(q))

for all g € 4,, it holds also

(3.9) Aq) Vaf(q) = Ve9(q)
for all q € 4,.

where

and since

Leti, 1 £i £ k — 1 be fixed, we have to prove that

@ =o.

q=0

From (3,1) it follows that

M) L L (0) = o (@), acd
and

Aq) ) (q) = % (@), ae4,
0q; 0q;

and differentiating these equations with respect to ¢; and g, we obtain

- 2 2
oo L0 _ %9
0q; 0q; 0q,0q;  0q, 0q;
2 2
orof , 0f _ g

aqy 9q;  04;0q,  9q;0q;

However, the second derivatives can be interchanged, which yields
of of
(32) —() ()——() ()

for all q € 4,.

The function f is holomorphic in 4,, hence we can write its Taylor expansion
at 0 e 4,:

@0 Q0,00 = ¥ a4 g
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Further, it holds f = 0 on 4,_;, but f % 0 on 4,. For if f £ 0 on 4,, then f(z) = 0
on %,, NV and by Theorem BS (iii) it holds that f(z) = 0 on ¥, which contradicts
the assumptions.

Hence a;,, ;. _,,=0forall i;, .. i _, =0 and there exists a positive integer
Jo > 0 such that

[0 0 0,..,0) = gl° F(qy, .- q) » q €4,
where F is holomorphic on 4, and
F(q1s - i1 0)%£0 on 4;_,.
Then (3,2) implies that
ol
0q;

o ol OF oA OF
(@)Jjoal> ™" Fla) + —= (@) ai* — (9) = — (@) a* — (q) -
0q; 0q, 0qy 0q;

Dividing by ¢#°~" and setting g, = 0, we obtain

94
0q;

i

(9)jo F(q) =0

on 4,_, (i.e. for g, = 0) but F(q) % 0 on 4,_,, hence 02/0g;(q) = 0 on 4, _,.
Consequently, we have also
oA
—(q)| =0.
0q; 2=0

In the next we shall need the following

Lemma 3.4 Let V be an analytic set in Q, 0 € V. Suppose that [V], is an irreducible
germ and that z,,..., 2z, ..., z, form a regular coordinate set for id [V]O (see Chapter
I). Suppose further that the function d = d(z,, ..., z;) % 0, holomorphic in polydisc
A(0, r), satisfies the assertions (i), (ii), (iii) of Theorem B2 on local parametrization
of an analytic set.

Further, let a = [al, v @1, 0, .., 0] be such a point that

(i) there exists ¢ = [o, ..., ¢] such that A(a, ¢) = 4,0, r) and that in A(a, o)
it holds
Dc{z|z =0}

where D = {z € A0, r) | d(z) = 0};
(i) in A(0, r) it holds

Voa{z|ze=0} ={z|zx = 244y = ... = 2, = 0} .
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Let us denote
A" = {zeAfa, 0)| zx = X + iy Yu > 0} .

Then
Vo d0,r)nni(4t) > 47
is a simple covering map and if G: A* -V
= [Zp cees Zk] e [le cees Zgs yk+1(Z'), ooy g,,(z')]

is a homeomorphism of A* on any sheet of this simple covering map, then the

functions gy 15 - -, g, are holomorphic in A* and

lim %(al,...,ak_l,zk)=0, j=k+1,...n, i=1..,k—1.

zx—=0 OZ;
x>0

Proof. A) First we prove that the functions g4, ---» 9, are holomorphic. By
assumption (i) it holds that
4% < Afa, @)\ D .
Hence by Theorem B2,
n:Van (4%) > 4"

is a covering map and since the set 4* is clearly homotopically equivalent to a point,
7 is a simple covering map (see [Sp], Theorem 2 and 3, p. 89).

Hence there exists a continuous mapping G of 4* on any sheet of this covering.
Let be 4™ be fixed. By Theorem B2 (iii) there exists a holomorphic mapping G, :
: 4,(b, 0) = Vin a polydisc 4,(b, o) such that G,(b) = G(b). And since the mapping n
from (3,3) is a simple covering map, we have

Gy(z) = G(z) in Ay(b,o) N A"
Hence G is holomorphic in the whole 47.

B) Further, we show that
(3.4) Ve > 036 > 0VzeV[n(z) € 4,(a, 30), |z| < 8]

Vi=k+1,..,n is Izj!<e.

By Theorem B2 the mapping
n:V A0, ) > 4,(0, r)
is a proper mapping. If (3,4) does not hold, then

Jeo >0Vn=1,2,...3z"€V [n(z,,) e 4(a, Yo), |zi| < 1]
n
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such that for example ]z,'(‘HI > ¢g,. We can suppose that the sequence {z"} is chosen
in such a way that {rn(z")} is convergent. Moreover, since = is proper, we can also
assume that z" — z° where z°€ 4(0,7) N V. But then z} = 0, hence by the as-
sumption (ii) zy,; = 0, which is contradiction.

C)Lete>0and i,j,k +1<j=<n 1=<i=k—1befixed Let us choose 4,
0 < & < 1o such that (3,4) holds. Then

|gj(:1, ceos Zh_ 15 ':k)l <e

forall® < z, < 4, |z; — a;] < do,j =1,...., k — 1 and from the Cauchy inequality
for complex functions (see [N], it follows that

0g; 2¢

%9, (@, e -, )| £ =

0z; 4

Lemma 3.5. Suppose that the assumptions (1)—(4) are fulfilled. Let z e M <
c Ve QcC where
M=Vn{zeQ|f(z) =0}.

Suppose that V is an irreducible analytic set in Q and that the germ [V, is an i
reducible germ. Suppose further that M is a submanifold of C".
Then z, is a critical point of 2 on M.

=
1

Proof. Let us denote dim [V],, = k. By Theorem BI it holds that dim [M],, =
= k — 1 (where dim @ = —1). Since the cases k = 0,1 are trivial, we can sup-
pose2 < k < n.

First part of the proof. Suppose in addition to the assumptions of Lemma 3.5

that z, = 0, that zy, ..., z, ..., z, form a regular coordinate set for id [V],, f(z) = z,
and

M = {zeQ]zk =Zy4y =...=z,=0},
ie.

Vn{zeQ|z, =0} =M.

We have to prove

From Theorem B2 it follows that there exists a polydisc 4(0, r) = @ and a function
d = d(z, ..., z;), d % 0 holomorphic in 4(0, r) such that the assertion of the theorem
holds.
Let us denote
D' = {z'eA(0,7)|d(z') = 0} = D n C.
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The set D’ is an analytic set in 4(0, r), hence there exists its decomposition into ir-
reducible branches in 4(0, r):

D' =y D;

iel

where {D,},.; is a locally finite collection. Let us denote

= U D,.
Didk dk-1(0,r)
Then the set D" is also an analytic set in 4(0, r).

Let i el be such that D; ¢ 4,_,(0, r). Suppose that 4,_,(0, r) > D,. Then by
Theorem B5 (v) it holds that dim [4,_4(0, )], < dim [D;]o. But dim [4,_(0, )], =
= k — 1 and dim [D;], < dim [D], < k — 1 which is a contradiction.

Hence, if D; ¢ 4,_4(0, ), then also 4,_,(0,r) ¢ D,. By Theorem B5 (iv) the
set 4,_,(0, r)\ D, is an open dense subset of 4,_,(0, ). Further

4, -1(0, )\ D" = N 4,40 r)\D;.
Didtdk-1(0,r)

Since the intersection of a finite number of open dense subsets of A4, _ is again an
open dense subset of 4,_; and since the collection {D;} is locally finite, the set
Ay \ D" is also an open, dense subset of 4, _,.

Let us denote
Q=4 \D"

and let a = [a,, ..., 4,_1,0,...,0] € Q be fixed.

Then there exists ¢ = [g, ..., ¢] such that 4,(a, ¢) = 4(0, r) and 4,(a, ¢) N D" =
= 0. Hence in 4,(a, ¢) it holds that D < 4,_,. Hence all assumptions of Lemma 3.4
are satisfied. Let us denote

A" ={zed(a,0)| z = x; + iy, yi > 0}
and let G : 4 — V be a holomorphic mapping onto a sheeé of a simple covering map
n:Van (4%) > 4",
G:z' =[zy, 0z = [20 oo Zio Gr1(2)s -0 9(2)] -

The set G(4*) is a connected submanifold and since it is one of the sheets of the set V/
over A%, it is an analytic subset of the open set n~*(4"). Further, the set

GA*)n{z|z =B}, 0<B<oe

is the image of the set {ze 4" I z, = B} under the mapping G which is there non-
singular, hence it is also a submanifold of C".

648



Now we can use Lemma 3.3 setting Q = n~'(4"), f(z) = z, — B (clearly z, is
not constant on G(4*)) and we obtain that G(ay, ..., @y, B, 0, ..., 0) is a critical
point of 2 on G({ze 4™ |z, = B}). Hence for all i = 1,...,k — 1 it holds (b" =
= (ay, ..., a-1, B))

0= a% [z, gis1(2), -.os gu(2))] (B) =

oA, Loo0A , NI
=)+ Y L geri(B), - g(0) (b))
0z; j=k+1 0z; 0z;

Now, we can use Lemma 3.4 and obtain by the limit process f — 0 that

0
o (ag,os -, 0,..,0) =0, i=1,..,k—1.
0z;
However, the point a = [ay, ..., a,_1, 0, ..., 0] € Q can be arbitrary and Q is dense

in 4,_,(0, r) = M n A(0, r). Hence each point from the set M n 4(0, r) is a critical
point of A on M.

Second part of the proof. We shall show that we can choose a coordinate set
at z, so that all assumptions from the 1st part of the proof are fulfilled.

The set M is a submanifold, dim [M],, = k — 1, hence there exist a neighborhood,
U, = Q and a coordinate set {q;} at z, such that

Uy OM = {z€U,| qiz) = ... = q,(z) = 0} .
Since f = 0 on M, each member in the Taylor expansion of the function f(z(q)) in
varables g, ..., g, at 0 must contain a positive power of at least one from the variables

ks ---» 4y hence we can write (in a neighborhood of z,):

(3.6) 16) = ¥ @) al)

where h(z) are holomorphic functions in this neighborhood.

Consequently, the vector Vf(z,) is a linear combination of vectors Vg,(zo), ...
.-+ Vg,(zo) (the members with Vh; vanish for g,(z,) = 0). The vector Vf(z,) being
non zero, it holds (after event. relabeling)

ranka(f—’gw"—)(zo)=n —k+1.
(zy1s s 2y)

Hence the functions {qy, ..., gx—1,f> Gk+1> ---» a} form a coordinate set in a (pos-
sibly smaller) neighborhood %,, and by (3,6) it holds in this neighborhood that the
submanifold

M ={ze¥.,|f(z) = G+1(2) = ... = q,(2) = 0}
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contains M. Since the dimension of these submanifolds are equal and since we can
suppose that M is connected, Theorem B5 (v) implies that M = M’ in %,

If zeV 4, f(z) = 0 then ze M, hence gx+1(2) = ... = g,(z) = 0. From this
it follows that
Volze,, l a:(z) = ... = ax—1(2) = f(z) = 0} = {0} .

Hence by Theorem B1 there exists a linear transformation

n

wi= Y a;q;, j=k+1,...n; wi=4q;, j=1,...k

i=k+1

such that {w;} is a regular coordinate set for id [w(V N %,,)]o. (Clearly w(V n %.,)
is an analytic set in w(%,,) and the germ [w(V N %,,)], is irreducible, since the same
is true for VN %, < U, and [V].,.)
Since .
wiM n2,) = {wew(.,)|wi=...=w,=0}

it holds that
wM N2, = wlV) N {wew(,,)|w. =0}

is a submanifold in w(%_,). If we denote
Fw) = f(z(w)) etc.,

then the functions f, g, X are holomorphic in w(%,,) and (as in the proof of Lemma
3.3) it holds that

A(wW).VF(w) = Vg(w), wew).

Further, as [w(V)], is an irreducible germ, there exists a neighborhood ¥~ <= w(%.,)
such that w(V) n 7" is an irreducible analytic set in ¥".

Moreover, the function f is not constant on w(V) n ¥~ since in the opposite case f
would be constant on ¥ n w™!(¥") and then by Theorem BS5 (iii) f would be constant
on the whole ¥, which is a contradiction.

Now we can use the 1st part of the proof for the open set ¥* = Cj, . the sets
w(V)n ¥ and w(M) n ¥ and the functions f, §, Z. All assumptions are satisfied,
hence 0 is a critical point of 4 on w(M) n ¥~ which implies immediately that z, is
a critical point of 4 on M.

Lemma 3.6. Suppose that the assumptions (1)—(4) are fulfilled. Let V < Q < C
be an irreducible analytic. set. Let us denote (for some zo € V)

W=Vn{zeQ|f(z) = f(z0)} -
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Then each point of R(W) is a critical point of A on R(W).
Proof. Let z, € Z(W) be fixed. There exists a neighborhood #,, = € such that
Wad,=RW)nU.,

is a submanifold of C".

If we denote M = Wn 4., the germ [M]., is irreducible. Then there exists an
irreducible branch [V'],, of the germ [V],, containing [M],, (see [H], p. 53).

Further, we can find a neighborhood %, = %, such thatV’' n %/ is an irreducible
analytic set in %, (and clearly we can suppose V' = Vin %, ). The set M N %, is
again a submanifold of C" and f is not constant on V' n %_, (by Theorem BS (iii)).

From the preceding lemma (where we take f(z) — f(z,) instead of f and %,
instead of Q) it follows that z, is a critical point of A on 22(W).

Lemma 3.7. Suppose (1)—(4) to be fulfilled.
LetV < Q = C" be an irreducible analytic set, zy € V. Let us denote

W=Vn{zeQ|f(z) = f(z)} -
Then A is locally constant on W.

Proof. By the preceding lemma each point from (W) is a critical point of 4
on #(W), hence by Theorem 2.2 4 is locally constant on W.

Theorem 3.8. Let V< Q < R" be a C-irreducible, C-analytic set and let f, g
be R-analytic functions in Q.

Let us suppose that Vf £ 0 in Q and that f % const on V. Let us denote

o _ (V). Vo(x))
) [Vf(x)|?

and suppose that J(x) Vf(x) = Vg(x), x e V.

Then for every x, € Q the function A is locally constant on the set

W=Vn{xe|f(x)=f(xo)} -

Proof. There exists a neighborhood Q* = C” of the set Q such that Q* n R* = Q
and that there exist functions f*, g* holomorphic in Q* such that

fHa=1, g*‘,):g.

By the assumptions it holds Y [(9f/0z;) (z)]* + O for z € Q and the set Q* can be
i=1
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chosen so that the same is true also for all z e Q*. If we denote

" of* , | dg*
.-; 5 (Z) 5; (Z)

2) = =

o* \
(L)
i=1 5zi
then also 2*|, = A.

Further, we can suppose that there exists a (complex) analytic set V* < Q* such
that
V¥EnQ =V

and that V* is the least such set, so that by Theorem C2 V* is irreducible.
The set B* of all eigenvectors of f*, g*, i.e.

B* = {z € Q* | A*(z) Vf*(z) = Vg*(2)}

is an analytic set in Q* containing V, hence containing also V*. Clearly f* £ const
on V*.

Let now x, € Q. If W & 0, we can suppose x, € V. By Lemma 3.7 the function A*
is locally constant on

W* =V*n{zeQ*|f*z) = f*(x)} -
However, W < W* and A*!W = A
Proof of Theorem 3.2. Let r > 0 be fixed. Let us denote
W=B,n{xe0|f(x)=r}.

Since lim f(x) = +o0 and f(0) = 0, the set W is a bounded closed subset of R”,

hence it is compact. By the preceding theorem 4 is locally constant on W, hence (W)
is at most finite set.

In the case that the C-irreducible branch B, of the set of eigenvectors B is such that
it holds f = const on B,, then it need not be true generally that 1 is locally constant
on B,. Values of A on this branch can form a closed interval.

Theorem 3.9. Let B, be a C-irreducible branch of B such that f is constant on B,.
Then

A(B,)
is a closed bounded connected (possibly degenerate) interval.

Proof. From Theorem C4 it follows that B, is a connected set, moreover, it is
locally arcwise connected. Further, B, is a closed subset of 0, but f(B,) = {r,} for
some ro, > 0, hence B, is compact.
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Supposing that the set of eigenvectors B is decomposed into C-irreducible branches
{B,} s> We can divide the set of indices ¥ into two parts:

A" = {xe U |fis constant on B,},
A" = {a e A | fis not constant on B,} .
Let us denote similarly

B'=UB,, B"=UB,
aed’ ae”

G =[f.2(B), G =[f,2](8").

Then the form of the set G = G’ N G” and hence also the structure of eigenvalues A
is described by the following theorem:

and

Theorem 3.10. Let us denote M,(f) = {xe 0| f(x) = r} for r > 0.

1) If we denote A = f(B'), then A is a countable, isolated subset of (0, o0) and
the set A(B' n M/(f)) is

a) empty for r ¢ A;
b) union of at most finite number of bounded connected, closed (possibly degerate)
intervals for r € A.

2) For all r > 0, the set
AB" 0 M,(f))

is at most finite.

Corollary. The set A, = A(Bn M/(f)) of all eigenvalues such that the cor-
responding eigenvectors are from M,(f) is at most finite for all r € (0, )\ A.

Proof. 1) The collection {B,},.y is locally finite, hence for all x € 0 there exists
a neighborhood %, = @ such that

U, B, =0

only for a finite number of « € A’'; moreover, we can take the neighborhood %, so
small that if « € W', %, N B, + 0 then x € B,. From this it follows that f is locally
constant on B'. Let us denote 4 = f(B').
The set A is countable and if there exists a sequence r, € B’ such that r, - ry €
€ (0, ), r, = 7o, then for every n there exists x, € B’ such that f(x,) = r,. Since
lim fi (x) = o0, this sequence is bounded, hence we can choose a convergent sub-

=l e

sequence x,, — Xo € R", but then x, + 0 and x, € B'. Then f (xo) = 7o and there
exists a neighborhood %, such that f is constant on B’ n %,,. But then r, = r,
for n sufficiently large, which is a contradiction. Hence 4 is an isolated set in (0, o).
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If r € 4, then only a finite number of B,, o € 2’ intersect the compact set M,(f),
hence it is sufficient to use Theorem 3.9.

2) Let r > 0. The set M,(f) is compact, hence
B, n M/(f) + 0

only for a finite number of indices from A”. Every set A(B, n M,(f)), x € A" is by
Theorem 3.2 finite, from which the assertion of Theorem follows.

Chapter IV

THE INFINITE DIMENSIONAL CASE

Notation. Let H;, H, be real Hilbert spaces, Q. H, an open set. For an operator
F : Q — H,, the usual Frechet derivative of F at x will be denoted by DF(x, *) =
= F'(x). The operator F is said to be real analytic, if:

(i) for every x € Q there exist Frechet derivatives of arbitrary orders D"F(x, ...),
(i) for every x € Q there exists § > O such that for all he H,, |[h| < ditis

F(x +h) =Y i‘ D*(x, h")
n!

n=0
(the convergence being locally uniform and absolute).

For real analytic operators the implicit function theorem holds in the usual form, the

composition of two real analytic mappings is a real analytic map (see e.g. [ FNSS 2]).
For a mapping

F:Qc H  x H, > H;,[x,y]e 1> F(x, ),

the partial derivative of F at [x,, y,] with respect to y will be denoted by F;(x,, yo)
(hence F ;(xo, o) is a linear, bounded mapping from H, into H 3)-
An operator F : Q < H; — H, is said to be Fredholm operator at x,, if:

(i) there exists Frechet derivative F'(x,),
(ii) the kernel of this derivative {h € H, | F'(x,) h = 0} has a finite dimension,

(i) the image F'(x,) (H,) is a closed subspace of H, and the factor space
H,[F'(x,) (H,) is a finite dimensional one.

One can prove that if the derivative F'(x,) of an operator F can be written as
F ’(xo) = J + K where J is an isomorphism H,; onto H, and K is bounded, linear,
completely continuous, then F is a Fredholm operator at x, (see e.g. [G——R],
Appendix B).
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In this chapter we shall deal with the following problem:

Let H be a real Hilbert space.
Suppose that f, g are two real analytic functionals on H. Suppose further that
(i) g’ is strongly continuous (i.e., it maps weakly convergent sequences onto
strongly convergent ones),
(ii) f” is a bounded mapping,
(iii) f(0) = 0, f(u) > O for all u = 0,II 1”1m f(u) = + oo,

(iv) there exists a continuous, nondecreasing function C,(t) for ¢ > 0 such that
forall u,he H

Df(us h, h) 2 C(f(w) 1],
(v) there exists a continuous function C,(r), » > 0 such that

inf f/(x)x = Cy(r) > 0.
xeH
sx)=r

Let us denote (for u e H — {0})
) = g'(u)u .
Au) )

As in the finite dimensional case, we want to investigate the structure of the set
of all eigenvectors

B = {ueH — {0} | Au) f'(u) = ¢'W)}

and the set A4 = A(B) of all eigenvalues by means of its image, i.e., by means of the
set G = R?:

G={[r,2]eR®|r=f(u), A = A(u), ueB}.

The method of generalizing the results from Chapter III to the infinite dimensional
case is based on the Fredholm property of the operator Af' — g’. There are several
points to be observed:

If we want to write the assertion of the main theorem in the same form as in the
finite dimensional case, then the exceptional set R is only a countable set (see Theorem
4.2). Hence we must consider the part G, of the graph G:

G ={[r,A]eG||2 z¢,

for which the exceptional set R, is isolated. This assertion is based on the fact that
the set

B(esry,ry) = {ueB||Au)| 2 & ry, < f(u) <1y}
is a compact set.
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The following local lemma shows that the set G, correponding to the set of
eigenvectors B N % has the same property as in the finite dimensional case if the
neighborhood % is sufficiently small.

Lemma 4.1. Let x, € B be such a point that A(x,) # 0. Then there exists a neigh-
borhood % of the point x, and a finite set R < (0, o0) such that the set

).(B NUN {u |f(u) = r})
is at most finite set for all r ¢ R.

Proof. First part. For the convenience of notation, we shall consider derivatives
f', g’ to be points in the Hilbert space H, i.e.

{f'(x). by = Df(x, h).
First it will be shown that the operator |
®:H->H, &x)=Ux)f"(x)— g (x)
is a Fredholm operator at x,. Indeed,
D®(xo, h) = DAU(xo, h) f'(x0) + Mxo) Df (x5 k) — Dg’(xo, h) -

The operator g’ is strongly continuous, hence its Frechet differential Dg’(x,, *) is
a linear bounded completely continuous operator (see [V], Chapter I, § 4). Further,
the mapping h + DA(x,, h) f(x,) has a one-dimensional range. Finally we have
{Df'(xo, h), B = Cy(f(xo)) | 1]|*- Hence @ is a Fredholm operator at x, (see [G—R],
Appendix B).

Second part. Now we can suppose that H = H, ® H,, where H, is the kernel
of the operator D¢(x0, °), and denote by K the range of this linear operator. From
part 1 it follows that H, is a finite dimensional space and that K is a closed subspace
of H of a finite codimension. We can suppose that there exist &4, ..., £,, € H such
that K = {x e H| <&, x) = 0,i = 1,..., m}. Let us denote further by Px : H - K
the projection of H onto K. For the convenience of notation we shall identify the
space H, with the Euclidean n-space R". Hence we can write for every xe H : x =
= [y, z], where ye R" = H,, z€ H,. Now x € B <> &(x) = 0 <> Py &(x) = 0 and
{D(x), &> = 0, i = 1, ..., m. The Implicit function theorem applies to the equation
Pr®([y, z]) = 0 at the point xo = [y,, z,], since if h, € H, then

D[Px®] ([¥o; Zo]: h2) = Px DB([yo, zo], h2) = DP([ o, zo), 1) -

The mapping
D,[Px®]:H, > K
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is therefore a continuous linear one-one mapping onto K, hence being a linear iso-
morphism. By Implicit function theorem there exist neighborhoods %, and %,
of the point [yo, zo] and a real analytic mapping w : %, — %, such that for [y, z] €
€U, x U, it holds that

Pxd([y, z]) = 0z = w(y).

Clearly we can choose %, %, in such a way that 0 ¢ %, x %,. Hence we obtain
(for [y, z]e ¥y x U;) x = [y,z]e B<(i) yeB,, where B, = {ye ¥, | (®([y,
o(y)]). &> =0,i=1,...,m}, (i) z = o(y).

Third part. Now we shall consider the following finite dimensional eigenvalue
problem. Let us define (in %, = R"):

F(y) = f([ys o)) GO) = 9([y> @(»)]) »
A4(») = Ay, 0()]) ,

_(VGOLVRG)
)= Gr vy O *0

If VF(y) = 0 on %, then F(y) = F(y,) for y € %, hence the set
B (Uy x U)o {u|f(u) =r}

is empty for all r + f(yo) and we can choose R = {f(y,)}. In the opposite case, the
set

W= {yeu,|VF(y) = 0}

is a C-analytic set in %, W £ %,. We shall prove that for every y € B, \ Wit holds
that A,(y) = A,(y) and A,(y) VF(y) = VG(y). Let y € By \ W be fixed. First, for
allheR"

4.1) (VE(), B) = <f'([y, @(3)]), [, Doy, B)])
(VG(y), ) = <g'([y, @(»)]), [h, Dox(y, B)]> .

Further, since [y, o(y)] is an eigenvector, it follows that

ALy oGS[y, @)D = ¢'([y, @)D -

If we take u = [h, Do(y, h)] for an arbitrary h € R”, then
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implies by (4,1) that
_ (V6(y). h) "
(4’2) Al()’) = m , heR".

Hence 4,(y) VF(y) = VG(y). If we take particularly hy, = VF(y), then (4,2) implies
Al()’) = Az()’)-

Fourth part. The set B, is clearly a C-analytic set in Q and we can write

B, =V,

iel

its decomposition into C-irreducible branches (in %,). The family {C;} is locally
finite, hence we can choose a smaller neighborhood % < %, of x, such that only
a finite number of C;, say Cy, ..., C, intersect #;. Now the sets C,, ..., C, can be
divided into two classes: we can suppose (after relabeling if necessary) that

F=const.onC;, i=1,...,¢,

F#£const.onC;, i=t+1,..,5s.
From Lemma 4.3 it follows that for every C;, i = t + 1, ..., s we can choose a neigh-
borhood 77; such that

NC:n¥in{xed, |F(x)=r}
is at most finite set for all r # F(y,) = f(x,). Now, if we denote
Ul =S 10 .0, U

then the assertion of the Lemma holds with

R = {f(xo), F(Cy), ..., F(C)} and % = U{ x %, .

Theorem 4.2. Let ¢ be a positive number. Under the above assumption ((i)—(v))
let us denote
B, = {xeB||Ax)| = ¢}
and
G, = {[r,2]eR*|r =f(u), A = A(u), ueB,}.

Then there exists an isolated set R, = (0, 00) such that the set G, o {[r, 2] | r = ro}
is:

1) at most finite, if ro ¢ R,,

2) the union of at most finite number of closed (possibly degenerate) intervals if

ro € R,.
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Moreover, the set
©
R =URy,

n=1

is at most countable and for all r, r ¢ R the set

Go{[rA]|r=ro
is either finite or a sequence of points converging to the point [ro, 0].

Proof. First part.

Let us denote
B(e, rr) =Boa{ue HN{0} | ry < f(u) £ 1y, [Mu)] = &} .

We shall prove that this is a compact set.

Let {u,} be a sequence in B,. It follows from the assumption (iii) that B, is a bounded
set, hence we can choose a subsequence (denoting it again by {u,}) such that u, — u,.
The mapping g’ is strongly continuous, hence g'(u,) = g'(u,), moreover, we have

|A(u,)]| = ¢
Then A(u,) f'(u,) = g'(u,) implies that there exists v € H such that f'(u,) — v.

We can write

<f’(un) - f,(u0)9 u, — u0> =

1
= f {Df'(ug + t(u, — ug), u, — to), u, — uoy dt = K,[lu, — uol?
0

where K, = [§ C,(f(uo + t(u, — u,)))dt > 0. Suppose that lim inf K, = 0. Then

n—o
for a subsequence {K, } it holds K, — 0 and (since f is convex and continuous,
hence also weakly lower semicontinuous)

0=limk,, 2 | €, (lim inf £ (o + t(, — o)) dt = Co(F(ue) 2 0.

Jj— oo 0

Thus f(u,) = 0 and hence u, = 0.
On the other hand,

(f'(un) = f'(o)s tn — uo> = {f'(uy), u> =0
and this is a contradiction with (v) for r; £ f(u,) < r, for all n.
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Second part. Let ry, 7, >0, r; < r, be fixed. Lemma 4.1 implies that for
every x € B, there exists a neighborhood %, and a finite set R, = (0, c0) such that
the set

Gy, n{[r, A]| 7 = ro}

is at most finite for every ro, ry ¢ R,. Now, we can choose a finite covering %,,,, ...
ey Uy, of Be, ry, r,) and define

s
R(g,ry,r)) = UR,,.
i=1

Further, let us denote

R,=U |R(e,n,n +1)UR|eg, 1 ,1 .
n=1 n+1 h

Then clearly for all ry, 7y ¢ R, it holds that the set

G, N {[r, A r=ro}

is at most finite and R, is an isolated subset of (0, c0).

Third part. If r, € R,, then we shall consider the set
V=Bn{ueH|f(u)=r.

This set is locally arcwise connected, for if x, € V, then as in the 2nd part of the proof
of Lemma 4.1 we can choose a neighborhood %, x %, of xo = [y, Zo] such that
for [x, y] e #, x %, it holds that
[x,y]eV<() yeB, = {ye %, | <®([y, o(y)]), &> =0, i =1, ..., m},
(i) z = w(y),
(i) /([y, @()]) = F(3) = ro.

However, the set B, n {y € %, | F(y) = ro} is a C-analytic set in %,, hence it is
locally connected and clearly the same is true also for V' n (%, x %,). Therefore, if

V = UV, is the decomposition of V into its connected components, then there is
iel

only a finite number of V,, say V, ..., V,, which intersect the set B(, ro, ro) and we

have

S
B(e, 7o, 7o) = 91([/' A {u ]| |Au)| 2 €}).
Now if ¥; n {u | |A()| = ¢} is a connected set, then

AV {u | |4(u)] 2 &)

is a closed interval.
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If the set V; n {u | |A(u)| 2 ¢} has more than one connected components, then each
of them must contain a point x for which f(x) = ¢ (in the opposite case the com-
ponent would be closed and open subset of V;, different from V;, which is impossible),
hence its image under the function A is the closed interval {g, &), & = &. Now

AVio {u | [A(w)] 2 ¢})
is the interval (e, sup a).

Therefore, the set A(B, N {u | f(u) = r,} is at most finite union of closed (possibly
degenerate) intervals.

Remark. If the functions f, g satisfy some further assumptions, which are required
in the Ljusternik-Schnirelmann theory (see [F—N]) then the set G N {[r, A] | r =
= 1o} is at least countable for all r, > 0. Hence together with the preceding theorem
we obtain the following assertion:

There exists a countable set R < (0, o) such that the set G N {[r, 1] | r = ro} is:

1) a sequence of points which converge to the point [ro, 0], if ro ¢ R;

2) a sequence of closed (possibly degenerate) intervals which converge (in the
obvious sense) to the point [r,, 0], if 7, € R.

Lemma 4.3. Let V< Q < R" be a C-irreducible, C—a‘nalytic set and let f, g, A
be C-analytic functions in Q. Suppose that f £ const. on V and suppose that for
all x eV it holds A(x) Vf(x) = Vg(x). Then for every x, € Q there exists a neigh-
borhood U of x, such that for every r € R', r # f(xo) the set

Moan{x|f(x)=r})

is at most finite.

Proof. If x, ¢V, then the above assertion holds trivially, hence we can suppose
that x, e V.
Let us denote
W={xeQ|Vf(x) =0}.

From Theorem 2.6 (where we set ¥ = Q) we obtain that the function f is locally
constant on W, hence we can choose a neighborhood # of x, in such a way that
J(x) = f(xo) for all xe W %. ,

If W o V, then the assertion of Lemma holds with the above #, hence we can
suppose that V ¢ W.

First part. First we prove that for every r # f(x,), the function A is locally
constant on the set VN % n {x | f(x) = r}. As in the proof of Theorem 3.8 we can
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choose a neighborhood Q* <= C”" of the set Q such that it holds
() 2* R =0,

(if) there exist functions f*, g*, A* holomorphic in Q* such that

f*|9=f’ g*|Q=g5 j':kl.():'l;

(i) there exists a (complex) analytic set V* < Q* such that V* n @ = V and we
can suppose that V'* is the least set with this property, thus (see Theorem C2)
V* is irreducible,

(iv) the set
B* = {z € Q* | *(2) Vf*(z) = Vg*(2)}

contains ¥ and hence also V'*.

w* = {zeQ*[é(%ﬁ—j)(z):O}.

If W* o B*, then also W* > V*, hence W o V which is a contradiction.

Now, let us consider the analytic set B*\ W* in the open set Q* \ W*. From
Theorem BS5 (iv) it follows that B*\ W* is an irreducible analytic set in Q* \ W*.
The function f* is not constant on B* \ W*, since B*\ W* is dense in B* (see
Theorem BS5 (iv)) and by assumption f* is not constant on V < B*.

Now it is sufficient to use Lemma 3.6. Let r € R', r # f(x,). Then the set V' n
N U o {x | f(x) = r} is contained in the set [V'\ W] n {x | f(x) = r} and hence also
in the set (B* \ W*) n {z | f*(z) = r} but it follows from Lemma 3.6 that A* is locally
constant on this set.

Let us denote

Second part. Let us choose a neighborhood %’ of x, such that %’ (closure in R")
is compact and %' < %.

Let r, r + fl (xo) be fixed. We can suppose that there exists a point y, € %’ such
that f(y,) = r (in the opposite case AV 0 %' n {x | f(x) = r}) = 0).

Then it holds obviously

(*) [(Vou)\W]a{xeu~W|f(x) =f(yo)} =V {xeQ|f(x)=r}

and this set is clearly a C-analytic set in %. Since the set U’ is compact, there exists
at most finite number of C-irreducible branches of this set which intersect %’. Each
such C-irreducible branch is connected and the function 4 is locally constant on the
set (x). Hence

Wou n{xeQ|f(x)=r})

is at most finite set.
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