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TERNARY RINGS WITH ZERO ASSOCIATED
TO DESARGUESIAN AND PAPPIAN PLANES

DaLiBor Krucky, Olomouc

(Received November 19, 1973)

The article is an immediate continuation of [6]. Let us recall some necessary
notions introduced there. Under coordinate system in an affine plane P(n)') we
understand any couple of bijections (x, 1)

n:82 > A, 1:S2 5B,

where S is a set whose cardinality equals the order of P(n), A is the set of proper
points of P(n), B is the set of lines of P(n) which do not pass through the given direc-
tion (improper point) V. The direction V will be called vertical direction of the co-
ordinate system (r, 4). If a ternary operation t on S is given so, that (S, t) is a planar
ternary ring (abb. PTR) in sense of [5] or [6] *) we shall always require

(x, y) € (a, b)* <y = 1(x, a, b) .

In this case we say that PTR (S, t) coordinatizes the affine plane P(n) or that (S, t)
is a PTR of P(n). We also say that (S, t) corresponds to the coordinate system (, A).
An affine plane P(n) is said to be a translation plane, if the group of translations
operates transitively on A.

Let (S, t) be an arbitrary PTR of a given affine plane P(n). The following statement
is proved in [6]:

P(n) is a translation plane if and only if the following conditions are fulfilled:

(A) (S, +) is a group (in this case, (S, +) is abelian).

1) n is the improper line (the line in infinity) of P(n).
2) i.e. with a zero element 0, but not necessarily with the unit.
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(B) Va, b, c€eS,
tla,b,c)=a.b +c?)
holds.

(C) For arbitrary a, b, c € S the equation
am+b.m=c.m

either has only the trivial solution or it is fulfilled identically (cf. [6] Corollary 4 of
Theorem 2).

The purpose of this article is to formulate and prove analogous conditions for P(n)
to be desarguesian or pappian plane.

For any proper point B of P(n) let us denote by H(B) the group of all (regular)
homotheties with fixed point B.

Definition. An affine plane P(n) will be called a desarguesian plane, if for any
proper point B and for any affine line p> B the group H(B) operates transitively
on p\{B}. Moreover, if H(B) is an abelian group for each point B, then P(n) will
be called a pappian plane.

The following facts are well known:

(a) Every desarguesian plane (and, consequently, every pappian plane) is a trans-
lation plane.

(b) A translation plane is desaguesian if and only if there exists a proper point B
and an affine line p> B such that the group H(B) operates transitively on
p~{B}.

(c) A desarguesian plane is pappian if and only if there exists a proper point B
such that the group H(B) is abelian.

Theorem 1. Let P(n) be a desarguesian plane and let (S, t) be its arbitrary PTR.
Then the following condition is fulfilled:

(D) For arbitrary a, b, c € S the equation
(1) m.a+m.b=m.c
either has only the trivial solution or it is fulfilled identically.

Proof. Let i be a non — trivial solution of (1) and m € S\ {0}. We may assume
that @ + 0, b # 0. Consider the homothety » e H(0)*), x :(m, 0)* > (m, O)~.
Let p, p be two parallel lines with the same first coordinate a such that p> (m, 0)",

3) -+ and . are binary operations on S defined by a.b = t(a, b,0); a4 b= t(a, e, b),
where ey = 0 and for a ¥ 0, e, is the solution of the equation a. x = a.

4) In the sequel we shall denote by O the point (0, 0)".
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p3(m, 0)". Hence, it follows: p = (a, — (M .a))’, p=(a, — (m.a))*. Put 7 =
=(c, —(m.a)", qg=(c,— (m.a)* Clearly x(p)=p=1x:(0, — (m.a)"
— (0, = (m . a))* = () = g. Let Y be the point lying on g with the first coordi-
nate m and let Y be the point lying on g with the first coordinate m. It is obvious that
% : Y~ Y, hence Y, Y lie on the same line (r, 0)* passing through 0. We have {Y} =
=g n (r,0)%, {Y} = q n (r, 0)* which implies

(2) m.r=m.c—(m.a), m.r=m.c—(m.a).

By the assumption /i .b = fi.c — (M .a) = r = b and the second relation of (2)
yields (1).

Proposition 1. Let P(n) be a desarguesian plane and let (S, t) be its arbitrary
PTR. Let x € H(O) be given by

3) % (u, 0 1> (@, 0), u,@ieS~{0}.
If % : (w, 0 - (W, 0, w, w e S\ {0}, then for any me S
4 w\(u . m) = W\(@ . m) ®)
holds.

Proof. We may assume m =+ 0. Putting k = w\(u . m) we get w. k = u . m and
we have to prove

(4a) w.k=u.m.

Let p, p be two parallel lines with the same first coordinate m such that p > (u, 0)~,
P20 =p=(m —(u.m)’, p=(m —@.m). Put q=(k —(u.m)*
g = (k, — (i . m))*. Clearly %(p) = p =% :(0, — (u.m))* (0, (@ . m))" = x(q) =
= g. Using w. k = u . m we obtain (w, 0)" € g, hence (% . 0)" € § = (4a).

Proposition 2. Let P(n) be a desarguesian plane and let (S, t) be its arbitrary
PTR. Let x € H(O) be given by (3) and let w, W, m be three non-zero elements of S.
If (4) is true, then x : (w, 0)" i (w, O)".

Proof. Suppose x : (w, 0)* - (', 0)" and put
k=wu.m).

By the assumption w.k = i . m, by Proposition 1 w .k =u.m=w = w'.

5) For any couple (a, b) € Sz, b + 0 we shall denote by b\a the solution of the equation b . x =
= q and by a/b the solution of the equation x . b = a.
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Proposition 3. Let P(n) be a desarguesian plane and let (S, t) be its arbitrary
PTR. Then the following condition is fulfilled:

(E) For arbitrarily given u, i, w, we S\ {0} the equation
(5) w\(u . m) = w\(i . m)
either has only the trivial solution or it is fulfilled identically.

Proof. If m is a non trivial solution of (5), then the homothety x € H(O) given
by (3) maps (u, 0)* into (W, 0)* (Proposition 2). It follows then from Proposition 1,
that (5) is fulfilled identically.

Lemma. Let PTR (S, t) satisfy the condition (A)—(D). Then for arbitrary a, b,
ceS,c+0
(6) a.(c\(=b)) = — (a.(c\b)
holds.

Proof. Put
k=c\(=b), s=c\b

then ¢. k + ¢.s = 0. The condition (D) gives a . k + a.s = 0 which implies (6).

Consider an arbitrary PTR (S, t). Let u, ii, m be three non-zero elements of S.
Letf:S —> S, g:S — S be functions defined by

7 fx)=@.m)(x\(u.m)), if x+0, f(0)=0
g(y) =u.(u\y).

Proposition 4. Let P(n) be an affine plane and let (S, t) be its arbitrary PTR
satisfying the conditions (A)—(E). Then the mapping x : A — A defined by

%2 (x, ) (f(x), ()
is a homothety of H(O) such that x : (u, 0)" 1~ (ii, 0)".

Proof. x is obviously a non-singular transformation (permutation) of A with the
fixed point O carrying (u, 0)* into (17, 0)". Furthermore, » maps every vertical affine
line®) again onto such a line. It remains to prove that for every non-vertical affine
line p its map p is a affine line parallel with p.

Consider a point (x, y)* # 0. It follows from (7) that

(8) x\(u.m) = f(x\(@.m).

%) i.e. the affine line with vertical direction.
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According to the condition (E), we obtain from (8) that for any i € S

(9) X\(u . ) = f(x)\(@ . 7).
Choose

(10a) i = u\(—y)

and put

(10b) b = x\(u. m)
(10a) and (10b) imply

(11) y=—(x.b).

Using Lemma, (9), (10a), (10b) and the definition of the function g we get

(12) a(y) = — (f(x).b).

Let p = (r, g)* be an arbitrary non-vertical affine line. We shall prove that x maps p
onto p = (r, g(q))"

A. First suppose that ¢ = 0 and (x, y)"e p. Then g(q) =0 and y = x.r. We
obtain from this and (11)

(13) x.b+x.r=0,

the condition (D) gives
(14) fx).b+f(x).r=0.

Finally, (12) and (14) imply g(y) = f(x) . r = (f(x), g(»)" € p.

Conversely, if (f(x),g(y))"€p, then g(y) = f(x).r. We may assume (f(x),
9(»))" + 0. Now, (12) implies (14) and according to the condition (D) we get (13).
(13) and (11) give y = x . r = (x, y)" € p.

B. Let g be an arbitrary element of S and let (x, y)" € p. If x = 0 then f(x) = 0,
y = q and (f(x), g(¥))" = (0, g(q))" lies on p. Let x # 0. As y = x.r + g putting

¢ = x\(-a)

and using (11) we obtain

(15) x.r+x.b=x.c.

As the condition (D) is fulfilled, it also holds
(16) fx).r+f(x).b=f(x)-c.
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Furthermore, —q = x.c¢=(x, —q)"e(c,0)* and according to part A we get
(/(x), 9(=a))" € (c, 0)". As g(—q) = —g(q), we have —g(q) = f(x).c. Finally,
(12) and (16) imply that g(y) = f(x) . r + g(q) = (f(x), 9(y))" € b.

Conversely, let (f(x), g(y))* € p. If x = 0, then f(x) = 0 and g(y) = g(q) = y =
=q=(x,y)" =(0,9)" € p. Assume x + 0 = f(x) + 0. Putting

¢ = f(x)\g(-q)
we have f(x).c = g(—q) = (f(x), —g(q))"e(c,0)* and with respect to part A
(x, —q)" € (¢, 0)* which implies x . ¢ = —q. On the other hand, it is
f(x).r +9(q) = 9(y) -

Then we obtain from (12) and from f(x) . ¢ = —g(q) that (16) holds. As the condition
(D) is fulfilled, it holds (15). Finally, using (11) and x .c = —g wehave y = x.r +

+g=(x,y)"ep.
Combining the above mentioned result of [6], Theorem 1 and Propositions 3,4
we obtain

Theorem 2. Let P(n) be an affine plane and let (S, t) be its arbitrary PTR. Then
P(n) is desarguesian if and only if (S, t) satisfies the conditions (A)—(E).

Remark. Suppose that (S, t) has a unity e and that (S, t) satisfies the conditions
(A)—(E). As
a.e+b.e=(a+b).e

and
e.a+e.b=ce.(a+Db)

the validity of both distributive laws follows from (C) and (D). Let a, b, ¢ be arbitrary
elements of S, a + 0. As

a\((a.b).e) = é\(b.e)
is true, then it also holds by (E)
a\((a.b).c)=é\(b.c).

The last relation gives (a.b).c = a.(b.c) ie., the associative law for multiplica-
tion (which holds obviously also in the case a = 0).

Proposition 5. Let P(n) be a desarguesian plane and let (S, t) be its arbitrary
PTR. Then P(n) is pappian if and only if the following condition is fulfilled:

(F) For arbitrary a, b,c€S, ¢ + 0 the identity

(17) a.(c\(b.c))=0b.(c\(a.c))
holds.
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Proof. (17) is obviously fulfilled for a = 0 or b = 0. Suppose a £ 0, b + 0 and
consider homotheties x,, », € H(O) given by

%y (¢, 0)F > (b, 0)", 3, :(c, 0)* 1= (a, O)*.

Put z = (0, c. ¢)” and denote by d,, the second coordinate of (x, . %,) (z) and by d,
the second coordinate of (%, . x,) (z). By Proposition 4 we get

dyy=a.(c\(b.¢), diy=b.(c\(a.c)).

P(n) is pappian if and only if for every a, b, c € S\ {0}, %, %, commute <> d,, = d,
(for every a, b, c € S\ {0}.) < (17) is true (again for every a, b, c € S\ {0}).
Summarizing the results of theorem 2 and Proposition 5 we obtain

Theorem 3. Let P(n) be an affine plane and let (S, t) be its arbitrary PTR. Then
P(n) is pappian if and only if (S, t) satisfies the conditions (A)—(F).

Remark. If PTR (S, t) has a unity e and satisfies the conditions (A)—(F), then
putting ¢ = e in (17) we obtain a. b = b . a for any a, b€ S, i.e., the commutative
law for multiplication.
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