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1. Introduction. In [2], the notion of measure of irreducibility u(4) of a doubly
stochastic matrix 4 was introduced and the distance of the “nonstochastic’ eigen-
values of A from 1 was estimated from below by a function of u(4).

F. SALZMANN [ 7] observed that if a nonnegative matrix has trace zero and multiple
Perron root then a proper non-void subset of its eigenvalues has sum zero. In the
present paper, we shall find a quantitative extension of this fact for symmetric
stochastic matrices using the mentioned measure ,u(A). In the proof, properties of so
called additive compound matrices will play a substantial role. Since these matrices
seem to be of interest for themselves, a brief sketch of their theory is included. Related
questions have been studied in [4].

2. Generalized compound matrices. Let X be an n-dimensional vector space over
afield K. Let k be a fixed integer, 1 < k < n. Denote by A®X, the k-th exterior power
of X, the vector space of all k-vectors, i.e. of all linear combinations (over K) of
exterior products of k vectors in X:

Xi AXyg Ao AXy, X;€X, j=1,..,k.
For the exterior products, the following rules are assumed: (cf. [1]):

R1 If P=(j,....J) is any permutation of indices 1,...,k, o(P) is the sign
of Pand x;eX,i = 1,..., k, then

Xjp AXj; A e AX; =0(P)Xg A Xy Aol A X
R2 (¥ Y1) A X3 A el A X =
=X AXs A AX F YL AXZA LA X, X;€EX, yiEX;

R3 (Ax) A Xy Ao AXp=AMxy A Xy Ao AX), x€X, AeK;
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. n
R4 There exist linearly independent vectors x;, X,, ..., X, in X such that the (k)

vectors

Xip A Xy Al AX

s 1S i <ip<...<ip=n,
are linearly independent in A®X.

From these rules the following propositions follow easily:

P1 The space A¥X has dimension <Z\) and, for any basis ey, ..., e, of X the
/
k-vectors

e; Ne

. PR NI 15, <i,<...<ig=n,

ir »
form a basis of APX.

P2 Ifx;eX,i=1,..,k thenx; A Xy A ... A X, is zero in APX iff xq, ..., X,
are linearly dependent in X.

P3  IfX'isadual space to X with respect to a bilinear form {x, x> then A®X’
is dual to A®X with respect to the bilinear form determined by

X A cd A X XL A A Xy = det ((xg, x5))

Moreover, if ey, ...,e, and e, ..., e, are dual bases (i.e. (e, ey = 5:‘;)
then e; A ... Aey, ei, A ...Ae, 1 <0y <...<i = n, form also dual
bases.

P4 If X is unitary (over the field of complex numbers) with the inner product
(x, y) then AWX is also unitary with respect to the inner product determined
by

(X1 A voi A Xy Y1 A e A Y = det (x5, 7)) -

Let now Y be an m-dimensional vector space over the same field K and assume that
the integer k also satisfies 1 < k < m. Let &/ be a linear operator from X into Y;
we shall write this & € L(X, Y). Then the k-th compound operator &/® is the linear
operator in L{A®X, A®Y) defined by

AO(xy A Xy Al AX) =X A Axy AL A A
for any k vectors x4, ..., x, in X.
The following propositions follow then easily:

PS5 If k does not exceed dimensions of any of the spaces X,Y, Z and if o/ €
e L(X,Y), B eL(Y, Z) then

(.@d)(k) = @R &)
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P6 If e L(X, X) is the identity operator then #&) ¢ L(A(k)X A(k)X) is the iden-
tity operator. ’

P7  If o e (X, X) is nonsingular then so is /% gnd
()1 = (1)

P8 If #T ¢ L(Y’, X') is the transpose operator to of € L(X, Y), ie. (lx, y'> =
=<{x, &Ty"y for all xeX, y' €Y', then (4T € L{ADY’, APX") is the
transpose operator to o/* € L(A®X, APY).

P9 If X is a unitary space and o/ € (X, X) is symmetric (unitary, normal)
then oA® e L(A®X, A®X) is symmetric (unitary, normal) as well.

Let now MGL(X,X) where X is a general n-dimensional vector space. If 1 £ k <
Snand m=0,1,2,..., k, we define the generalized k-th compound operators
AP e L(APX, AVX) as linear operators determined by

AP(X) A Xy Al A X)) = y AL NALN A AE
(&1,000,8k) , £:€{0, 1}
Sei=m
1

(where &/° = #, the identity).
In particular, &% is the k-th compound operator, &/ = #®. The operator «/{
will be called additive k-th compound operator and denoted by /™.

The following propositions are immediate:
P10 For o e (X, X), # € L(X, X), we have
(o + B)H = ™M + 21
P11  For k fixed, the operators A% commute with each other.

P12 If #eL(X,X), #eL(X,X) are commutative, /B = B, then all
AL, BY commute with each other.

myg>

P13 If X is unitary and o/ € L(X, X) is symmetric (normal) then o4 are all
symmetric (normal).

Let us proceed to square matrices. Since any square matrix can be considered as
matrix of a linear operator with respect to a basis, assume that X is an n-dimensional
vector space, X’ its dual with respect to a bilinear form {x, x') and let ey, ..., e,,
€y, ..., e, be dual bases. If o € L(X, X), its matrix A = (a;) where, as usually,
a;; = (Ae;, e;y. We can then define analogously the k-th compound matrix A%

394



of a matrix 4 as matrix of the operator &#® with respect to the basis e;, A e;, A .

.Ane,, 120 <i,<...<i, = n. Similarly, the generalized k- th compound
matrices of A4, denoted by Af,{‘), are matrices of &% with respect to the same basig
as before.

Let us show that A® coincides with the usual k-th compound matrix of A (see e.g.
[5]). We shall use abbreviations (i) = {is,....3,}, 1 < i, <i, <...<i, <n,
() = {Jus--odip> 1 Sy <jaoor <ji < n; A ;) will then denote the entry of 4®
with row “index” (i) and column “index” (j).

P 14 We have

ARy = det A((0); (j))

where A((i); (J)) is the submatrix of A consisting of rows with indices iy, ..., i,
and columns with indices j, ..., ji.

Proof. By P 3,
AR 5y =<A®e;, Ao Nep), € A AeL) =
=<{Aej, A ... N Slej, € A A€ =

Jir Tt

= det ((He;,, ;) = det(a; ;) = det A((i); (j)) -

From general properties of matrices of linear operators and from P 5, P 6 and P 7
the well known properties follow:

P 15 If A and B are n X n matrices then
(AB)® = A©B®
if I is the n-rowed identity matrix then I® is the <Z>-rowed identity matrix

and if A is nonsingular then A% is nonsingular and
(A9) = (470

Let us order now the vectors e;, A e;, A ... A e; according to the lexicographical
ordering of indices. Then the following proposition holds:

P 16 If the matrix A = (a;)) of o € L(X, X) is triangular (i.e. a;; = 0 for i > j)
then all generalized compound matrices A% are triangular as well. The
diagonal entry of A corresponding to the index (i) = (iy,...,0), 1=
< iy <...iy £ n, is equal to E,(a,;, ..., a;;) where E,(&y, ..., &) denotes
the m-th elementary symmetric function of &, ..., &

Proof. Let (i) = {iy,.e0 i)y ()= {tseendi)y 1501 <...<ikEm 1=
<j, < ... <ji £ n. Then the entry of A% in the posxtlon @), (J) is
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k (k) ’ rN
(Afn))(i),(j) = (A (ej1 Ao A ejk)’ e A ... Ae )=
€ Ek ’ !’ —
_—_( Y o 1)<M‘eh/\.../\d €€, Ao ALy =
£1,0.0,8k), £i€{0,

k
Yei=m
1

= Y det (e, , €] >)

(€15.--58k), £i€{0, 1}
K

Yei=m
T

where ((%%;,, e; >) are k x k matrices, p,q = 1,..., k.

Let now (i) > (j) in the lexicographical ordering. Then there exists an index s,
1 £ s < n, such that i, = jy, ..., ii—y = je—1, is > j,. Denote, for a moment, by
% P> 4 = 1, ..., k, the entries of one such matrix ((o/*%; , e; ). We shall show that
o,, = 0 whenever p = s = g which will imply, by the Laplace expansion theorem,
singularity of this matrix. Thusif p = s = g then

i, Zig>js2J,-

If &, = 0 then o), = {e;,, ;> = 0. If &, =1 then o, = (Ae;,e;> =a
since i, > jg.

=0

ipiq
Consequently, (4%°);),;, = 0 and A% is triangular.
To prove the last assertion, let (i) = (j). Then, by triangularity of 4 and A%,

(A% iy = > det (Cof™e;,, €f,>) =

(&1,...58), £i€{0, 1}

3
Yei=m
1

k
- &
= Z H aigi, = Em(ai;il’ EE aikik)
(e1,..58K), £€{0, 1} p=1
k

Tei=m
1

(by definition, ag, = 1). The proof is complete.

We are able now to prove
Theorem 2,1. Let A be an n X n matrix over a field K with eigenvalues o, ..., o,.

Let k, m be integers, 1 < k < n, 0 £ m £ k. Then the generalized k-th compound
matrix AY has eigenvalues E,(o;,, otsy, ..o 0t,), 1 S iy < iy < ... < i, < n.
Proof. In a suitable extension field K’, A4 can be expressed in the form

A= STS™?!

where S is nonsingular and T triangular with diagonal entries o, ..., o,. Hence in
an n-dimensional vector space X over K’, there exist two bases ey, ..., e,and &, ..., &,
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and in (X, X) a linear operator .« such that 4 is the matrix of &/ with respect to the
basis ey, ..., e, and T is the matrix of &/ with respect to &y, ..., &,. The generalized
k-th compound operator (¥ € L(A®X, APX) has then matrices AL with respect
to the basis e;, A ... A e, and T® with respect to the basis &, A ... A &,. By
P16, T? is triangular and its eigenvalues, equal to diagonal entries, are E,(u;,,
Oigs wnvs ac,-k), 1<i,<iy<..<i,Zn Thus % as well as A% has these eigen-
values. The proof is complete.
This Theorem can be generalized as follows:

Theorem 2,2. Let A be an n x n matrix with eigenvalues oy, ..., a,, 1 < k < n.
Let S(&, ..., &) be a polynomial symmetric function of &y, ..., &. If S is expressed
(which is, according to a well known theorem, always possible) as a polynomial in
the elementary symmetric functions E, ..., E;:

S = ®(E,E,, ..., E),
then the matrix polynomial
D(AP, AP, ..., AP)

is a matrix the eigenvalues of which are exactly all numbers S(cti,> %iys - -, ;)
1Si, <ip<..<ig<n

Proof. If A is triangular, the assertion follows immediately from P 16 and from
the fact that the diagonal entries of ®(A{, ..., AP) are ®(E (o, ... #;), - o
v Ef(otis ooy 2,)) = S(os, -5 ;). The general case follows from the decomposition
(in a suitable extension field) 4 = STS™! where S is nonsingular and T triangular.
The proof is complete.

Corollary 2,3. Let A be an n x n matrix with eigenvalues o, ..., , Then the
matrix (AP1)? — 44% (or (A)* — 44%) has eigenvalues (a; — 0))*, 1 < i <
<j=n

Remark. This matrix can be called discriminant of A since its nonsingularity is
equivalent to simplicity of all eigenvalues of A.

-Proofis immediate.

In the sequel, we shall be interested in the k-th additive compound matrix 4%
only. The following Theorem presents the complete description of A™ if 4 is given.

Theorem 2,4. Let A = (a;;) be an n x n matrix. Let 1 < k < n. Then A™ has
the following entry AW . in the row corresponding to the set (i) = {its . iy} and
column corresponding to (j) = {ji».-uji}s 1 i3 <...<ix=n, 1 <, <.
< En
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A=Y au ¥ @d(n0) =k (e if () - )

My = (1Yt F card () () = K — 1, where p = ()~ () (1), 4 -
= ())N(()) 0 () and o is the number of elements in ()
between p and q;

AW =0 if card (i) n (j)) < k — 2.

Proof. Let X be an n-dimensional vector space over the field containing all
elements of 4, e, ..., e, a basis of X, &/ the operator which has A as its matrix with
respect to this basis. Then A™ is the matrix, with respect to the basis e;, A ... A e,
1 £i; <...< i £ n, of the operator &/ defined above. Then

® -
AP e, Ao A€ ) =sle; Ae, AL A e+

i N e, NN e +

and we obtain the entry 4] ;) as the coefficient at the term e;, A e;, A ... A e, in
the expansion of the right hand side as a linear combination of the vectors e,, A ...

n

o 1 S Py <...<p,<n Since e; =) a;;e;, s=1,...,k, the cases

i=1
(i) = (j) and card ((i) n (j)) £ k — 2 are clear. Let now card ((i) n (j)) = k — 1,
() ={50ms-1) 1Ssi<.o<sy =m0 ()= {55 s S P St 15 -+
Se—1)> (J) = {51> -+ 8 @ Sy 15 .-» Si—1}. We obtain the coefficient A ;) from
the term

A€

e

St

Ao Ne ANsle ne A...Ae

Sw+1 Sk —1

only, in particular from the term a,.e, of o/e,. We obtain thus

apfe, Ao Aeg Ae, Al A ANey )=

Sw+1

= (=1 a,le,, A ... Ae, Ae, Aeg,, A oA e )

v+l

where o is the number of indices s, between p and q. The proof is complete.

Corollary 2,5. Let A = (aik) be a real n x n matrix, 1 £k < n. Let M =
={i, ..}, 1 iy <...<i,Zn. Then the sum of squares of all the off-
diagonal entries of the matrix A™ in the row corresponding to indices in M is equal
to

al;.
ieM, j¢M

Proof. It follows from Theorem 2,4 that the non-zero off-diagonal entries of the
row of A™ corresponding to M are of the form +a,, where p e M and q ¢ M, each
pair (p, q) occurring exactly once,

ra
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3. An application to symmetric stochastic matrices. In this section, all vectors and
matrices will be real. We shall be using vector and matrix norms (see e.g. [3]). By
the norm |x| of a column vector x = (x, ..., x,)" we shall mean the euclidean

n
norm, i.e. x| = (Xx})"/?. If Cis an n x n matrix then its norm ||C|| is, as usual,
1

defined as sup |Cx|| which is well known to be equal to the nonnegative square
lIxll=1

root of the maximum eigenvalue of CCT.

Let us also recall that a stochastic matrix is a nonnegative square matrix with all
row-sums equal to one, a doubly stochastic matrix is a stochastic matrix with all
column-sums equal to one. For such a doubly stochastic n x n matrix A = (a;;),
the measure of irreducibility 1(A) was defined in [2] as

w(A) = min Y a

@+McN,M*N icM,j¢M

J

where N = {1,2, ..., n}. It was proved in [2] that every nonstochastic eingevalue A
of A satisfies the inequality

) [1-122 (1 — cos g) u(A) .

We shall need the following particular case of a theorem by L. MIrsky [6]:

Let A, B be symmetric n x n matrices with eigenvalues oy 2 ... Z o,, f; = ...
... = B, respectively. Then,

max |o; — B < |4 — B .

i=1,..,n

From this we shall derive easily
T

agy a4

a; A,
form, A,, being (n — 1) x (n — 1). Then at least one eigenvalue of A is contained

lai -

(a1 O

a-(20).
0 af

c_(alo).

Corollary 3,1. Let A = ( ) be a symmetric n X n matrix in a partitioned

in the interval

IIA

Jay, =

Proof. We put

Then A — B = C where
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Since

T 0
ccT = (414
(0 a,alT

has eigenvalues ||a, |?, ||a,|? 0, ...,0, |4 — B| = |a,||. The matrix B has an eigen-
value f = ay,. It follows from the preceding theorem that for some eigenvalue «
of A

| o~ = |4 - B],
- 0y — o] < Jau].

The proof is complete.

We shall prove now the following generalization of this Corollary:

Theorem 3,2. Let A = (ay) be a symmetric n x n matrix. Let 9 + M ¢ N =
= {1,2,...,n}, card M = m. Then there exist m eigenvalues A, ..., A, of A such
that

M

m
| Yaw—=Yul=( ¥ app)t.
ieM i=1 ieM, j¢

Proof. It suffices to prove this for M = {1, ey m}, 1 <m =< n— 1. Then the
additive m-th compound matrix 4™ has, according to Theorem 2,4 and Corollary

2,5, 3 aj; as its upper left corner entry and . a}; as the sum of squares of all
ieM ieM,j¢M

the off-diagonal entries in the first row. Since A™ is symmetric by P 13, it follows

from Corollary 3,1 that there exists an eigenvalue w of A™!in the interval

| Yaw—x[=( Y ap)'.
ieM ieM ,j¢M

However, all eigenvalues of A" are sums of m eigenvalues of A by Theorem 2,1.
The proof is complete.

In the following two theorems, the matrix 4 will be a stochastic symmetric matrix
(and therefore doubly stochastic).

Theorem 3,3. Let A = (a;;) be a symmetric stochastic n x n matrix with eigen-
values .y, ..., A,. Then there exist two non-void proper subsets M, M, of N =

= {1, ..., n} with the same number of elements such that
0= ) ay— 3, 4= u4).
ieMy ieM2

Proof. According to the definition of u(A) there exists a non-void proper subset M,

of N such that
wA)= 3 ay.

ieMo,j¢Mo
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By Theorem 3,2, there exists a subset M of N, with the same number of elements
as M, such that

Izau lew( Yoapts ¥ oay=puA).

ieMo ieMo,j¢Mo ieMo,j¢Mo
If Y a; — Y 2,2 0,weput M; = My, M, = M; in the other case, we put M| =
ieMo ieM

= N\ M, M, = N\ M. The proof is complete.

Theorem 34. Let 1 =1, =2 1, =

. = A, be the eigenvalues of a symmetric
n x n stochastic matrix. Then

/11——/12—&—2(1—005%)(2/1,-— min Y2)20.

ieN M#*N,g*McN, ¥ A4;20 ieM
ieM

Proof. Let 4 = (a;) be that symmetric stochastic matrix. By Theorem 3.3, there

exist two non-void proper subsets M, M, of N with the same number of elements
such that

0= Zaii_ Zligﬂ(/’)-
ieMy ieM2
This implies

Zliéz éZa,.=Z?~.~

ieM> ieMy ieN ieN
and

Y A+ p(d) z

ieM, ieM;

v
D1
)
II

Thus, there exists a non-void proper subset of N, namely M, such that

YAz Y Az —p(4),
ieN ieM>
which is equivalent to
0= > A=) k+u4).

ieN\ M, ieN
Hence also

min Y £y A+ uA).

M#N,0+McN, ¥ ;20 ieM ieN
ieM

2(1 — cos %) w(A) € 4y — 4y

Combining these two inequalities, we obtain the result of the Theorem.

By (1),

Remark. The modified Salzman’s example [7] stating that no stochastic 5 x 5

matrix can have eigenvalues 1, 1, —%, —%, —% can be extended by Theorem 3,4 for
symmetric stochastic matrices as follows:
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None of the 5-tuples 1, 1 — oy, —% — oy, —% — o3, —% — a4 With Ioc,l + |o<2| +
+ Jos| + |2a] < (3 — 2 cos 4n) = 0.184 consists of eigenvalues of a symmetric
stochastic 5 x 5 matrix.
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