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1. INTRODUCTION

Whenever a graph contains an Euler cycle, the graph is referred to as an Euler
graph. It is well-known that a graph is an Euler graph if and only if it is connected
and every vertex has even degree.

An Euler graph is said to be randomly traceable from a vertex v if an Euler cycle
can be constructed from v by choosing at each step in the path any edge not already
chosen. ORE [3] has characterized such graphs. Similarly, CHARTRAND and Lick
[1] have characterized randomly traceable diagraphs.

Of course, not every Euler graph is randomly traceable. A graph will be called
a k-path Euler graph if a random selection of edges will suffice for k steps, or less,
but not for more than k steps.

The purpose of this article is to present some of the properties of k-path Euler
graphs.

2. PRELIMINARIES

The graphs considered in this paper will all be simple finite graphs. A simple
finite graph, G = [V(G), E(G)], is a finite collection V(G), of points or vertices, v;,
together with some subset, E(G), called lines or edges, of all unordered pairs, v;v;,
of distinct points of ¥(G). The edge v;v; is said to be incident to the points v; and v;.
A path in the graph G is an alternating sequence of points and edges of the form vy,
V10,, Uy, UyUs, -y Uy 1V, U, This path may also be denoted by v v,v5...v, It is
called an Euler path if all the edges are distinct. If all the edges are distinct and v; =
= v,, it is called a cycle. An Euler cycle of a graph is a cycle which contains all the
points and edges of the graph. The length of a path is the number of edges in the path.
The complement with respect to a graph G of a path P in G is the subgraph of G
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which remains when all the edges of P are removed from G as well as each vertex
from which all edges have been removed.

A graph is said to be connected if each pair of points in the graph is connected
by a path. A graph is said to be complete if it has every pair of its points adjacent.
A component of a graph is a maximal connected subgraph. The star of a vertex
is the collection of all edges incident to the vertex. A vertex v of a graph G is called
a cutpoint if the removal of v and the star of v leaves a subgraph of G having more
components than G. The degree of a vertex is the number of edges which are incident
to the vertex.

3. NECESSARY AND SUFFICIENT CONDITIONS

A graph will be called a k-path Euler graph if every Euler path of length k or less
is extendible to an Euler cycle and if there is an Euler path of length k + 1 in the
graph, then at least one Euler path of length k + 1 is not contained in an Euler cycle.
A vertex v of a graph G is said to have the Euler property for the nonnegative integer [
if every Euler path of length not exceeding | emanating from v can be extended
to an Euler cycle of G. A vertex v is said to be an m-Euler vertex if m = max {l : v has
the Euler property for I}. Hence, if V(G) = {v;:i = 1,2, ..., n}, then G is a k-path
Euler graph if

k = min {m; : v; is m-Euler} .
I<ign
Thus, the property of being a k-path Euler graph is a minimax property. For example,
the graph in Figure 1 is 1-path Euler since vertices a, b, ¢, and d are each 1-Euler,
while vertex e is 6-Euler.

a

AR)

Fig. 1.

Theorem 1. An Euler graph G is a k-path Euler graph if and only if every Euler
path P of length k, or less, satisfies:

(i) The complement, Gp, of P with respect to G is a connected graph;

(ii) Path P is not a cycle containing the star of any vertex, unless P is an Euler
cycle.
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and some path of length k + 1, if such a path exists, does not satisfy conditions
(i) and (ii).

Proof. It will be enough to show that conditions (i) and (ii) are necessary and
sufficient for every Euler path P of length k, or less, to be contained in an Euler cycle
of G. To make this clear, suppose that this has been proved. Then if every Euler
path of length not exceeding k + 1 in G satisfies conditions (i) and (ii), G is at least
a (k + 1)-path Euler graph.

Proof of Necessity of (i). Suppose that P is an Euler path of length k, or less,
in the Euler graph G such that the complement, G, of P with respect to G is discon-
nected. Since the null graph is considered to be connected, Gp is not the null graph,
i.e. P is not an Euler cycle of G.

Suppose that the terminal vertex v, of the path P is not in Gp. Then the star of v,
is in P, and P can only be extended by repeating some edge. Thus, path P cannot
be extended to an Euler cycle of G.

Suppose that the terminal vertex v, of the path P is in Gp. Since G, is disconnected,
Gp consists of two or more components. Then v, can only be in one component,
and in order to extend P to another component of Gp, at least one edge of P would
have to be repeated. Thus, path P cannot be extended to an Euler cycle of G.

Proof of Necessity of (ii). Suppose that P is a cycle of length k, or less, con-
taining the star of a vertex v in an Euler graph G, and P is not an Euler cycle of G.
Then the cycle P can be rearranged into a cycle P’ having vertex v as both its initial
and terminal vertex. The cycle P’ cannot be extended to an Euler cycle of G, since
every edge adjacent to v is contained in P'.

Proof of Sufficiency. Suppose that conditions (i) and (ii) hold for each Euler
path of length not exceeding k in the Euler graph G. Let P be an Euler path of length k,
or less, in G. Then the complement, Gp, of P with respect to G is connected. If Gp
is the null graph, P is an Euler cycle of G.

Otherwise, since condition (ii) holds, the initial vertex v; and the terminal vertex v,
of P must both lie in Gp. Since Gp is connected, there is an Euler path Q, possibly the
null path, in Gp which has initial vertex v, and terminal vertex v;. Then, the com-
plement of the Euler path P U Q with respect to G consists of components, possibly
one or none, with each vertex having even degree, since each vertex in both G and
P U Q has even degree. Hence, each component is an Euler graph. Also, each com-
ponent contains at least one vertex of Q. Thus, the Euler path P can be extended
to an Euler cycle of G.

Note that it follows immediately from Theorem 1 that a k-path Euler graph can
contain no cycle of length k, or less, which passes through a vertex of degree two,
unless that cycle is an Euler cycle.
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4. SOME OTHER PROPERTIES

Given any graph, G = [V(G), E(G)], let A denote some subset of ¥(G), and let A
denote the complement of 4 in V(G). Then the sets A and 4 divide E(G) into three
distinct categories:

(1) interior edges of 4;

(2) edges of attachment to A4;

(3) edges exterior to A.

An edge of the form v;v; is:

(1) an interior edge of A4 if both v; and v; are in 4;
(2) an edge of attachment if one is in 4 and the other is in A;
(3) an exterior edge to A if both v; and v; are in 4.

The edge attachment number of the set A4, denote by g(A, X), is defined to be the
number of edges of attachment to 4. Theorem 5.1.1 of [2] states that if the degree
of every vertex of a graph G is even, then every subset of V(G) has an even attachment
number. Thus, if G is an Euler graph, then every subset of V(G) has an even attach-
ment number.

Theorem 2. If a graph G is a k-path Euler graph (k 2 2), then G has no cutpoints
of degree less than eight.

Proof. Since the degree of every vertex of an Euler graph is even, a cutpoint
of degree 3, 5 or 7 is not possible. No Euler graph can have a cutpoint of degree two,
since the attachment number of every subset of an Euler graph must be even. If an
Euler graph contains a cutpoint p of degree four, then the removal of p and the star
of p leaves two components. These components were connected to p by two edges
each, as in Figure 2, since the edge attachment numbers must be even.

s

Fig. 2.
There is clearly a path of length two whose complement is disconnected. Hence,
condition (i) of Theorem 1 is violated, and the graph is not a k-path Euler graph

for any k greater than one.
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If an Euler graph contains a cutpoint p of degree six, then the removal of p and the
star of p leaves either two or three components, since the edge attachment numbers
must be even. There can be two components with attachment numbers of two and
four, as in Figure 3.

Y

Fig. 3.

Or there can be three components with each having an attachment number of two,
as in Figure 4.

v

Fig. 4.

In either case there is clearly a path of length two whose complement is disconnected.
Again, condition (i) of Theorem 1 is violated, and the graph is not a k-path Euler

graph for any k greater than one.

Note that Figure 5 is a 2-path Euler graph containing a cutpoint of degree eight.
Thus the bound in Theorem 2 is, in a sense, as sharp as possible.

)
i

Fig. 5.
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Theorem 3. The complete graph on 2n + 1 points (n > 1) is a (3n — 1)-path
Euler graph.

Proof. Note that the degree of each vertex of the complete graph G on 2n + 1
points in 2n, so G is an Euler graph. Let {v;: i = 1,2,...,2n + 1} be the vertices
of G. Then the path v,v,030,0,050; ... v,0,,0,,, 0, is readily seen to have 3n edges.
It contains all 2n + 1 edges emanating from v,. Thus, condition (ii) of Theorem 1
is violated, and G is not a k-path Euler graph for any k > 3n.

Conversely, no path of length 3n — 1 or less can contain the star of any vertex.
Suppose P is a path of length not exceeding 3n — 1 and the complement G, of P
in G consists of two or more components, each having at least two vertices. Then,
each of the 2n + 1 vertices in G are in Gp. Let 4 be a component of G, with a mini-
mum number of edges and let 4 be the complement of 4 in G. Then if 4 has « vertices
and A4 has & vertices, we have

a=2; a=2;

a+a=2n+1
and

0(4, A) = o .

Under these conditions ¢(4, 4) is a minimum when o = 2, and then ¢(4, 4) =
= 2(2n — 1) > 3n — 1,since n > 1. So P cannot contain all the edges of attachment
of A and hence G is connected. By Theorem 1, G is seen to be a (3n — 1)-path
Euler graph.
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