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I. In [1] the following theorem is established: Let (X, n) be a dynamical system
on the locally compact metric space X. If F < X is compact, invariant, and
(positively) asymptotically stable, then there is a real valued map (continuous),
v: A(F) > R*, from the region of attraction of F into the non-negative reals which
is uniformly unbounded on A(F) (i.e., for each o > O there is a compact subset
M § A(F) such that o(x) 2 a for each x € A(F)\ M) and, in addition, satisfies:

(i) v(x) = 0 iff xe F;

(ii) v(n(x, 1)) = e™*. v(x) for every (x, t) € A(F) x R.

It follows immediately from (ii) that each level set of v, K = v~'(k), k > 0, is
a section for the invariant set A*(F) = A(F)\ F; ie., K is closed in A*(F) and for
each x € A*(F) there is a unique 7, € R such that n(x, t,) = xnt, € K. Our remarks
in II and III below concern these sets and the sets Q, = A(F)\v~'[0, k], k = 0.
Throughout, E" denotes euclidean n-space, n = 1.

II. Recall that A(F) is always open in X and invariant. The following well-known
result is also important:

Lemma 1. If L™ (x) denotes the negative limit set of x € X, then L™(x) n A(F) = 0
for each x € A*(F).

Proof. See [1].
From the uniform unboundedness of v follows directly

Lemma 2. v~ [0, k], hence K, is compact for each k = 0.

Proof. Choose k' > k. Then there is a compact subset B & A(F) such that
v(x) = k' whenever x € A(F)\ B. v™'[0, k] is a closed subset of A(F) which is con-
tained in B. Therefore, v~ [0, k] is compact.

1) The author was supported by a University of Connecticut Research Fellowship.
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In [2] we define a subset N of X to be pre-admissible for F, if N is a neighborhood
of F and N = A(F). When N is pre-admissible for F, we put P = A(F)\ N. Using
this notation we have:

Theorem 1. Suppose N is compact, pre-admissible for F and that P is connected.
Then Q, is connected for any k > 0.

Proof. Fix k. Note that P and Q, are both open in X. Suppose Q, = Q;, U Q,,
is a separation of Q,. Let

Py = {xeP|y(x) n O, * 0}
and
, = {xeP|yx)n Q, * 0}

where y(x) denotes the trajectory through x. We claim that P = P, U P, is a separa-
tion of P contradicting the hypothesis that P is connected.

First, P; # 0, i = 1, 2. For let y € Q,,. Then there is t € R such that v = ynt e P.
Otherwise, y(y) = N. Since N is compact, L™(y) + § = N < A(F). But y e A*(F),
contradicting Lemma 1. By definition of P;, w € P;.

Also, P = P; U P,. For let z € P. Then there is a unique , € R such that v(znt,) =
= k. Let ' > t,. Then znt' € Q,. Therefore znt' € Q,, or zat' € Q,,; i.e., ze P; or
z€eP,.

Again, Py n P, = (. Otherwise, let ze P, n P,. Then there is a unique t,€ R
such that v(znt,) = k. Since y(z) N Q;, + @ and y(z) N Qy, + 0,

zn(—o0,1,) = {zn(—0, t,) N Q,} U {zn(— 0, 1,) N Q4,}

is a separation of zn(— oo, t,). This contradicts the fact that zn(— oo, t,) is connected.

Finally, P;isopenin P,i = 1,2. Forlet ze P;and let o = znt € 9(z) N Q. Let %
be an open neighborhood of w in X which lies in Q,,. Then there is an open neigh-
borhood 7 of z in X and an open interval I in R and containing t such that (¥~ x
x I) = %. Hence, for each ye 7" n P, y(y)n Qy, = 0. Then ¥ n P < P; and
¥ n P is open in P and contains z. This completes the proof.

For each k > 0 there is a function p, : A*(F) - R given by p,(x) = t, such that
xnt, € K = v (k). These functions are continuous (See [2]) and give rise to the
maps «, : A*(F) > K which are onto and given by ak(x) = xnpy(x). We use these
functions to obtain

Corollary 1. Under the hypothesis of Theorem 1, each K is connected.

Proof. Let K = v™!(k). Then Q, is connected. o, restricted to Q, is a map onto K.
Hence, K is connected.
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We show in [2] that A(F) is connected iff F is connected. This fact helps establish:

Theorem 2. If A*(F) is connected, then the boundary of F in X, 0F, is connected..

Proof. Consider the flow on B = A(F)\interior F. We have 0F is compact;
invariant, and asymptotically stable with 4(0F) = A*(F) u OF. If A*(F) is connected,
A*(F) (in B) is connected. But A*(F) = A(0F). Therefore, 0F is connected.

Theorems 1 and 2 give:

Corollary 2. Under the hypothesis of Theorem 1, OF is connected.
Proof. A*(F) is connected. Apply Theorem 2.

It is interesting to note that Theorem 1 is false if N'is not compact and the converse
of Theorem 2 is false. For the system (van der Pol)
X=y,
y=¢l-x*)y—x,
with ¢ > 0 small, there is a unique (non trivial) periodic trajectory, say I', toward
which every nonconstant trajectory tends as t — +oo. The phase portrait sketches
as:

- ~<

If N is the set of all points inside the dotted curve except for (0,0), then since A(I') =
= E*\{(0,0)}, A(F)\ N is connected but Q, and K are not connected for any k > 0.
Also, F = I' = OF is connected but A*(F) is separated.

Theorem 3. Let N be a compact and pre-admissible for F.
(i) If P is path connected, Q, is path connected for any k = 0;
(ii) If P is simply connected, Q, is simply connected for any k = 0.

Proof. (i) Fix k. Let x, y € Q;. Choose k' > k such that N § v™*[0, k']. This can
be done since v’ is continuous, uniformly unbounded on A(F), and N is compact.
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Then there are £, £ 0, t, < 0 such that xnt,, xnt, € Q,, and xnt, ynt' € Q, for t, <
<t1<0,t,<t <0

Now let w :I —» P be a path in P connecting xnt, with ynt, where I = [0,1].
Then (1) is compact and there is £ < 0 such that p,(w(s)) = % whenever s € I.

Then xz[t, + %,0] U o(I) 7t U ya[t, + £,0] is a path in Q, connecting x with .

(ii) Again, fix k. Choose k' > k such that N G v~ [0, k'] as in (i). Let I' = (S")
be a closed curve lying in Q, where S! is the unit circle in E2. Since I’ is compact,
there is a © < 0 such that p,(w(s)) = ¢ for each s e S* and I'n[, 0] = Q,.

Since P is simply connected, there is a continuous extension of 7°o @ (7° : X —» X
is the homeomorphism given by n*(x) = xnt for each x € X), say W: D — P, from
the unit disc in E* into P. But W(D) is compact and there is 7 < 0 such that p,(z) >
> 1 for ze W(D). Then W(D)nt' < Q. u K’ = Q, where K’ = v~*(k’). This
completes the proof.

It is easy to see, again from the earlier example, that N must be compact in both
parts of Theorem 3.

III. We now take X = E", n 2 1. B(0; r) always denotes the closed ball in E"
with center at the origin and with positive radius r. Its boundary, denoted by S(0; r),
is, of course, topologically S"~*.

Theorem 4. If A(F) = E", then each K is a Peano space.

Proof. Choose r > 0 such that K = B(0; r). The map o, restricted to S(0; r) is
a closed map onto K. Since S(O; r) is compact, connected, and locally connected
so is K.

Suppose A(F) = E?. It follows from [3; Theorem 1] and Theorem 4 that each K
is either a simple arc or a simple closed curve. But from [2], K is the same homotopy
type as S"~1, hence, as S! in this case. Then K must be a simple closed curve.

Corollary 3. If A(F) = E?, each K is a simple closed curve.

When x € X we write y'(x) = n}(— oo, 0) where 7, : R — X is the map n,(t) = xnt
and =}, is its restriction to (— o, 0).

Theorem 5. Suppose A(F) = E". For each pair of points a,be K, K\{a u b}
is connected whenever n = 3.

Proof. Let K = v~ '(k). Then o, restricted to Q. o | O is a map onto K. If
K = K; UK, is a separation of K, then

Ty = (& | Q)" (K1)
and

T, = (| Q)" (K2)
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are disjoint open subsets of Q,. Further, Q;\{y'(a) Uy'(b)} = T, U T,. Hence,
0\ {y'(a) U y'(b)} is separated. We now need

Lemma 3. i, n; : (— 0, 0) > Q, are homeomorphisms.

Proof. We do the proof for n,. The argument for =, is exactly the same.

First, n, is 1-1. For if ant = ant’, t & ¢, then a is a periodic or a rest point. Then
L™ (a) # 0 < A(F). But a € A*(f) contradicting Lemma 1.

Hence, it suffices to show the limit set of n}; i.e., L{n}) = {y € Q| for some se-
quence t, € (— o0, 0) having no convergent subsequence, m,(t,) converges to y}, is
empty. But this is just L™ (a) and is empty since A(F) = E" and a € 4*(F). This proves
the lemma.

Now from [4], y'(a) and y'(b) have dimension 1 and clearly each is closed in Q.
Hence, y'(a) U y'(b) has dimension <1. But Q, is an n-dimensional manifold with
n = 3 and cannot be disconnected by a subset of dimension <1. This contradiction
establishes the theorem.

We could not establish that for n = 3, K is a sphere. (If X is a 2-manifold without
boundary, then it is a sphere since it is the same homotopy type as S2.) In light of
Theorems 4 and 5 it would be sufficent to show that each simple closed curve on K
disconnects K.
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