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Introduction. The present paper is a continuation of [2] where we investigated the
behavior of the real part Py F(z) of the integral

(1) I F(2) = f g{ﬁ)— ac

assuming that K is a simple oriented path of finite length in the complex plane R?
and F belongs to a certain class of continuous real-valued functions defined on K.
Certain geometric quantities analogous to those employed in [2] can also be used for
deriving necessary and sufficient conditions guaranteeing the existence of angular
limits of the double layer logarithmic potential

(2 Wy F(z) = Im I F(z)

which has many applications (see [1], [7]). Let us fix a point € K, a bounded lower-
semicontinuous function Q = 0 and consider the class QQ(n) of all continuous real-
valued functions F satisfying

(3) F(&) = F(n) = o(Q(¢)) as ¢—n.

We shall be engaged with necessary and sufficient conditions on K ensuring the
existence of angular limits of WxF at 5 for any F € Qy(n).

As in [2], we form the sum
U, n) = ZﬁQ(é), te{leK; |t —n| =0},

counting, with the weight Q(&), the points & in the intersection of K and the circum-
ference of center 5 and radius g. Since U,%(g, 11) is a Lebesgue measurable function of
the variable ¢ > 0 we may put for any r > 0

Ug(n) = f U(o, n) do .
0
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For y e <0, 2> we consider also the intersections ¢ of K with the half-line S*(y) =
= {n + ge"; ¢ > 0} and introduce the sum

VR, m) = ;Q(f), ¢eKnS'n),

counting them with the weight Q(&). Then VZ(y, 1) is a Lebesgue measurable function
of the variable y € {0, 27), so that the definition

2n
ve(n) = f V(. ) dy
0

is justified.

With this notation we may formulate the condition
4) - VE2(n) + sup r 1 UZ,(n) < o
r>0

which appears to be necessary and sufficient for the existence of angular limits
of WiF at n for any F e Qy(n). The following more precise assertion is a typical
corollary of main results on WF established below (some of these results have been
announced without proofs in [3], [6]).

Theorem 1. Let S = R2\K be a connected set whose closure meets K at n only
and suppose that the contingent®) of S at n together with its reflection in n is disjoint
from the contingent of K at n. If

lim sup Wy F(z) <

z—1,zeS

for any F € Qy(n), then (4) holds. Com}ersély, assume (4) and suppose that ©(r) = 0
is bounded continuous non-decreasing function of the variable r = 0, sup O(r) > 0.
If F is a (real-valued) bounded Baire function on K satisfying rz0

(5) F(&) = F(n) = 0(0(|¢ — n) Q&) as &—n,
then the integral

werto) = [ [7(e) = F) im 25

converges and if Aarg[¢ — z; &e K] denotes the increment of the argument of

1) Let us recall that the contingent of a set M R? at ne R? consists of all the half- lmés
{r] + 0% 0 > 0} such that there is a sequence z, e M\ {17} tending to » with lxm (z,—n/

| |z — 1| = 9 (see [9], § 2 in chap. X).
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¢ — z as & describes K, then for z € S the following estimate holds
(6) Wx F(z) — Wg F(n) — F(n) darg [¢ — z; E€K] =

= 0(|z — 1| [ r"20(r)dr) as z 7.
Jlz=n|

If F satisfies (5) with O replaced by o, then the right-hand side in (6) may be
replaced by

) o(k—ﬂﬂiJ”@wdQ+0¢—nU

It is interesting to observe the analogy between the above condition (4) and the
condition (5) considered in [2] in connection with PxF. Combining results on PyxF
with those concerning WiF one may naturally obtain theorems on

IxF = PgF + iWgF .

In particular, writing (in accordance with [2])

o]
ww=f¢w%w@,
o
we get that
®) Ug(n) + V(n) < o

is necessary and sufficient for the existence of angular limits of

d
12 F(2) = I F(z) — F(n) f 4
k¢—z
at n for any F € Qy(n). More precisely:

Theorem 2. If, under the above assumption on S,

lim sup |I¢ F(z)| < ©

z—1n,zeS

for any F € Qy(n), then (8) holds. Conversely, if (8) is valid and F is an arbitrary
bounded complex-valued Baire function on K satisfying (5), where O(.) has the
meaning described above, then the integral

1% Fr) = LFm(ég — 1) g
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converges and the following estimate holds

(9) IRF(z) —IgF(n) =0 <]z — 1| r~20(r) dr) as z—n, zeS;
|z=n]
if (5) holds with O replaced by o, then the right-hand side in (9) may be replaced
by (7).
If 2 denotes the Hausdorff linear measure (= length as defined in [9], chap. II,
§ 8), then (8) is equivalent with

00 )<
J, 2 - nj O

Notation. If g is a real- or complex-valued function defined on an interval J < R!
and G < J is open in J, then var g(G) will denote the variation of g on G which is
defined as usual (compare section 1 in [2]). Letting, by the standard procedure,

var g(M) = inf {var g(G); G openin J, G > M}

we extend var g to a Carathéodory outer measure defined for all M < J which in
turn gives rise to a measure on the system of all var g-measurable sets. The symbol
fu F dvar g will always mean the integral of an extended-real-valued function F
over M < J with respect to this measure var g. If various parameters enter in the
definition of g and the variable must be explicitly noted in order to avoid confusion,
then we shall replace the symbols var g(M), f) F dvar g by the symbols like

var, [g(t); M], '[MF(t) dvar, g(1),

respectively.
The following simple lemma will be useful below.

1. Lemma. If g is a continuous real-valued function of locally finite variation on
an interval J, then for any lower-semicontinuous function F = 0 on J

(10) fF dvar g = fF dvar e'? .

J J
Proof. This is an easy consequence of theorem 3.15 in [10].
Notation. In what follows  will always denote a continuous complex-valued

function .of bounded variation on {a, b), ¢ = 0 will be a fixed bounded lower-
semicontinuous function on <a, b) and we put for z e R* and ¢ > 0 in accordance

with [2]
we.d) = Ta). 1) -2l = e.
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where the sum is extended over all ¢ € {a, b) for which y(¢) lies on the circumference
of center z and radius ¢. Let us recall (see lemma 7 in [2]) that ul(e, z) is a Lebesgue
measurable function of the variable ¢ > 0, so that we may define for any r > 0

ul(2) = f uj(o.2) de .
]

Let us remark that this quantity has its origin in the well-known Banach’s theorem
on variation of a continuous function. Writing

(11) G(z) = {te<a, b); Y(t) — z| < r}

and employing lemma 4 in [2] (where we set J = <a, b, f(t) = [¥(f) — z| and
F = the characteristic function of G,(z) multiplied by g) we get

(12) ul(2) = f a(t) dvar, |9 (1) — | .
Gr(z)
Further put for y € <0, 2n)

v —z _
oy 2) = Xa(), Y +z, =,
t i (r) — =]
the last sum being extended over all ¢ e {a, b) for which () lies on the half-line
S'(z) = {z + ge'’; ¢ > 0}.
A simplification of the reasoning used for the proof of lemma 7 in [2] yields the
following

2. Lemma. For fixed z € R?, Uﬁ,(v, z) is a Lebesgue measurable function of the

variable y € {0, 2n). The integral

P2

4 = | w102

0
is a lower-semicontinuous function of the variable z € R%. If J runs over the system
&(z) of all components of {t € {a, b); Y(t) * z} and, for J € ¥(z), 9.(; J) is a conti-
nuous argument of Y(t) — z on J, then

(13) @) = 3 Lq(t) dvar, 8.(1; 7), Je ().

Proof. Employing lemma 7 in [2] in the same way as in the proof of the relation
(9) in [2] we get that vi(y, z) is a Lebesgue measurable function of the variable
€40, 2n) and (13) holds. The lower-semicontinuity of v}(z) follows from (13);
to see this it is sufficient to let ¢ = oo and replace F by g in the proof of lemma 7
in [2], where the lower-semicontinuity of vj,(z) is deduced from the corresponding
relation (9).
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3. Notation. If f is a real-valued bounded Baire function on {a, b) we define for

z e R*\y(<a, b))
w, f(z) = Im‘[ ()(t) dy(r)

As in [2], we denote for S = R? and n e R? by
" SOn=Su{2y—¢& e}

the union of S and its reflection in #. The contingent (see theorem 1 in introduction)
of S at n will be denoted by contg (1, S).

4. Theorem. Let S < Rz\lp((a, b)) be a connected set whose closure meets

Y(<a, b)) at n only. If

(14) lim sup |w, f(z)| < oo

z—n,zeS

for each continuous function f on {a, b) satisfying

(15) f(t) = o(q(t)) as (1) -1,
then
(16) vy(n) < oo

If, besides that, the contingent of Y({a, b)) at n is disjoint from the contingent
of S ® n atn, then

(17) sup r~tul(n) < oo .

Proof. In accordance with the proof of theorem 9 in [2] we shall denote by €,
the Banach space of all continuous functions f on <a, b) satisfying (15) as well as

(18) = esa

for suitable constant c;; the norm | f| is defined as the least ¢, > O fulfilling (18).
For fe %,and z € S we have

b
w G) = [ 70450,
where 9,(t) is a continuous argument of ¥(t) — z on <a, b). For fixed z € S,
[ w f(2)
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is a linear functional on %, whose norm equals
b
(19) J 4(d) dvar, 8,(1) = v3(2)

(see (13)). Using (14) and employing the principle of uniform boundedness we con-
clude in the same way as in the proof of theorem 9 in [2] that

(20) szlg) vi(z) < .

In view of the lower-semicontinuity of v}(.), this implies (16). In order to complete
the proof it is now sufficient ot establish the following

5. Proposition. Let S = R*\y(<a, b)) be a connected set whose closure meets
¥(<a, b)) at a single point n such that

(21) contg (1, S © n) n contg (1, Y(<a, b))) = 0.
Then (20) implies (17).

Proof. Let &(n) be the system of all components of {t € {a, b); () * n}. Given
J € #(n) and z € S denote by 9,(t; J) and w,(¢; J) a continuous argument of Y/(t) — 5
and (¥(t) — n)/(z — ) on J, respectively. Further denote by ¢,(t) a continuous
argument of (¥/(t) — z)[(z — 1) on <a, b). In view of (21) there is an R > 0 such that
for ze S and t € J € #(n) the following implication helds:

(22) (|z = n| <R, [y(t) — n| < R) = [sinw,(t; J)| = R.

We may suppose that R has been chosen small enough to secure R = |Zo - ﬂl
for suitable z, € S. Let r € (0, R) and choose a z € S with |z — 1| = r (which is pos-
sible, because S is connected and 7 is in the closure of S). Put

(23) o(t) = [w(t) — ¢|, EeR*, tela, by,
fix J € #(n) and consider t € J such that g,(f) < r. Then

0.(t) S v+ g,t) < 2r,

whence
sin [0(0) — ot | _ 1
|sin w,(t; J)| o) 2
We have thus by (22) ,
(24) |sin [.(t) — o,(t; J)]| > 4R .

Defining
J,={teJ; gt) <r}

669



and making use of the equality

sin @,(f)

sin [,(1) — w,(t; J)]

rot Qn(t) =

we obtain by lemma 3 in [2]

(25) r‘lj. gdvarg, < A, + A4,
I

where

A = L q(?) [sin™* [.(t) — w,(t; J)]| dvar, sin ,(t) ,

A, =J‘ g(t) dvar, sin™* [¢.(1) — w,(t; J)].
Jr
Using (24) and lemma 2 in [2] we get |

A, §2R“1J.

Jr

(1) [cos ¢.(1)] dvar, ¢(1) < 2R~ f a(t) dvar, .(1) =

Jr

=2R"! J‘ q(t) dvar, 9,(1),
I

because ¢,(f) may differ only by an additive constant from the continuous argument
9.(t) of Y(t) — z.

Similarly,

4, < J a0 s [) = (6 )] dvar, [o.) — (i )] 5

< 4R72 Uz,q(t) dvar, ¢.(f) + J

Jr

o(1) dvar, w,(t; J)] _
= 4R7* Uhq(t) dvar, 9,(1) + qu(t) dvar, 8,(; J)] ,

because w,(t; J) — 9,(t; J) is constant on J. Combining these estimates of A, and 4,
with (25) we arrive at

(26
r“J‘ q dvar ¢, < (2R + 4R7?) J g(t) dvar, 9,(t) + 4R™? J q(t) dvar, 3,(t; J) .
I, 7 J )

Since g, vanishes on
(27) Z =<a, byNu¥(n),
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we have var ¢,(Z) = 0 by lemma 5 in [2]. Using the notation (11) and writing Z for
the sum extended over all J € #(1) we have thus by (12)

ul,(n) = J g dvar g, = ZJ‘ gdvarg,,
Gr(m) I Ja,
so that, by virtue of (26),
b
r-tul(n) £ (2R + 4R'2)j gdvar 9, + 4R™? ZJ.q(t) dvar, 9,(1; J) =
a JJr
= (see (19) and (13)) = (2R~ + 4R7?) v}(z) + 4R™2 vi(n) .

Let s = sup {v}(z); ze S}, so that s 2 vl(n) by the lower-semicontinuity of vi(.)
(cf. lemma 2). We have thus derived the inequality ’

sup {r""uj,(n); 0 <r <R} (2R + 8R™?)s.
On the other hand, we have for r > R by (12)

b b
r~tud,(n) £ R‘lj q dvarg, < R™! J q dvar y .

Consequently,

b
sup r~ " ud,(n) < max {R‘l j g dvary, 2R™"' + 8R7?) s}

r>0

and the proof is complete.

6. Remark. We shall also need the converse of proposition 5 which will be proved
below. The equivalence of (20) and

(28) vi(n) + sup r~t ul,(n) <
r>0

was proved in [4] for the special case g = 1.
It represents a counterpart to the equivalence of

(29) sup ul(z) <
and
(30) uj(n) + 51:1; rt vl (n) < oo

established in [2] (see remark 10 and proposition 12 as well as the definition of uj(.)
and v,(.) presented in lemma 7).

For the proof of the implication (28) = (20) the following slight generalization of
lemma 1.6 in [4] will be needed.
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7. Lemma. Let f, g, h be continuous functions of locally finite variation on an
interval J satisfying there the inequalities

0<k=|f|[sK<w, |g=|f].

Then there is an Le R' (depending only on the constants k, K) such that, for every
lower-semicontinuous function F = 0 on J,

(31) fF dvararccotg (g + fh) < L (J F dvarg + I F dvarf + j F dvar arccotg h) .
J

J J J

Proof. If F is the characteristic function of a compact interval I < J, then (31)
holds with a suitable Le (0, o) (depending on k, K only) by lemma 1.6 in [4].
Now it is sufficient to observe that every lower-semicontinuous function F = 0 on J
can be expressed as a limit of a non-decreasing sequence of functions F, = 0 each
of them is a finite combination, with non-negative coefficients, of characteristic func-
tions of compact subintervals of J.

8. Proposition. If S satisfies the assumptions described in proposition 5, then (28)
implies (20).

Proof. The symbols #(n), 9,(t; J), w,(t; J) and ¢,(f) will have the same meaning
as in the proof of proposition 5. We shall also fix an R > 0 fulfilling (22) whenever
te Je¥(n). Fix now JeS(n) and consider te J, = {te J; |y(t) — n| < R}.
Further let ze S, |z — | = r < R. Then we have with the notation from (23)
(compare the proof of theorem 2.8 in [4])

sin[o(t —o,(t; J)] _ r

sin @,(1) e,(t) ’

cotg ¢,(t) = cotg w,(t; J) — —=sin™! w,(t; J),

n()

so that ¢,(t) can differ only by an additive constant from

arccotg [cotg w,(t;J) — —=sin”! w,(t; J)]

',()

on every component of J;. Noting that
1< sin™! o,(t; J)| S R™', |cotg o,(t; J)| < |sin™" w,(; J)|

we are now in position to apply lemma 7 (where we set g = cotg w,(.; J), f =
=sin"' w,(+; J), h = rg,'(.), F = the characteristic function of J; multiplied
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by q) concluding that there is a constant L(depending on R only) such that
(32) f gdvar @, < L[f q(t) dvar, cotg w,(t; J) +
Jr JR
+ f g(t) dvar, sin™' w,(t; J) + J q(t) dvar, arccotg —(—]
Jr

In (1)

It follows easily from lemma 2 in [2] that
(33) J 4(t) dvar, cotg w.(t; J) =
Jr
=J |sin™? w,(t; J)| 4(t) dvar, o,(t; J) < R™? fq(t) dvar, w,(t; J),
Jr

J

(34) J g(t) dvar,sin™' w,(t; J) =
Jr
= j |sin™? w,(t; J)| . |cos w,(; J)| q(t) dvar, w,(t; J) £ R™? j q(t) dvar, w,(t; J) ,
JRr

J

(35) j q(t) dvar, arccotg J q(t) 5—— Z(t) dvar, 0,(t) -
JR
Combining (33)—(35) with (32) we arrive at
(36) gdvar o, < L[2R™? | gq(f) dvar, w.(t; J) + | ¢ — I dvar o) -
Jr J Jr Q: + r?

Note that, with the notation from (27) and (11),

U Jr=Ge(mNZ, ¥(Z)={n}.
JeS(n)
Since every element of ¢,(Z) is an argument of (7 — z)/(z — n) = —1, we conclude
from lemma 5 in [2] that var ¢.(Z) = 0. Writing Z for the sum extended over all
J € #(n) we get from (36)

J g dvar ¢, £ L(2R‘2 Zf q(t) dvar, w,(t; J) + f q Tr_z dvar Q,,) .
GRr(n) I Ja Grip 17T 0y

Using (13) and noting that w,(-; J) — 9,(.; J) is constant on J(e #(n)) we may
rewrite the last inequality in the form

(37) J q dvar ¢, < L(ZR’2 vi(n) + f a-; ! 5 dvar Q,,) .
GRr(m) Gr(n) 4

r n
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The last integral can be transformed by lemma 4 in [2] into

J q " dvar 0, = jRu"(g n) ! de

- ACS] - 5 >
Grty 0+ 0 "o 4+
which in turn can be estimated with help of lemma 1.7 in [4] as follows

R r T * T
ul(o,n) ——do £ = sup x ' | ul(o,n)do == sup x~!ul .
J v(e: ) Ty pdesg s J w(e: m) de 5 S b=(1)

0 0<x<R 0

This together with (37) yields

j g dvar ¢, < L[ZR"2 vi(n) + T sup x~1 uv",x(n)] .
Gr(n) 2 x>0

Since

IIA
IIA

9,(t)=ImJ‘t—dm‘ a<t<b,

JU() — 2
is a continuous argument of |//(t) — z, the difference ¢, — 9, is constant on {a, b).

Recalling that |z — 5| < 3R we get for t € Yz = (a, b} \ Gg(n) the estimate

[W(t) = z| = (1) — | — |z — 1] = IR,
so that

gdvar 9, < & dvar y(t) < 2R™! bq dvar ¢ .
Yr Yr llﬁ(t) - ZI

a

Finally,

b
vi(z) = J gdvar 9, = f qdvar ¢, + f gdvar 9, <
a Gr(n) Yr

b
< [2R'2 vi(n) + g sup x~! ugx(n):l +2R7! j q dvar
x>0

a

whenever z € S, |z — 1| < 4R. Since the set Sg = {z= S; |z — 5| = 4R} has a posi-
tive distance d from y(<a, b)), we have for z € Sy

o) = [ dvar 9, < b—ﬂ——dvarl//(t)<d"1 ' dvar y
vw(z)—Lq z = 0 - 7| = ‘[q ary .

a
In any case,

b
zeS=1j(z) < L[2R—2 vj(n) + 1—2rsup x™! uix(n)] + @'+ 2R‘1)J q dvar §
x>0 a >
and the proof is complete.
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9. Notation. Given z e R*\¥({a, b)) we shall denote by 4 log [y — z; <a, b)]
and 4 arg [y — z; {a, b] the increment of log [¥(r) — z] and of the argument of
[w(t) — z] on a < t < b, respectively.

We have so far defined w, f(z) for z € R*\ y/(<a, b)) only. If n € Y(<a, b)) we fix
a continuous argument 9,(1; J) of Y(r) — n on every J in the system &(n) of all
components of {t e <a, b); !//(t) % 11} and define for a Baire function f on <a, b)

(38) wit) = 5 j 1) 4., (1)

provided the Lebesgue-Stieltjes integrals on the right-hand side of (38) exist and their
sum is meaningful; this definition is clearly independent of the choice of the arguments
9,(.;J).

Now we can prove the following counterpart of theorem 14 in [2].

10. Theorem. Let S = R*\y<{a, b)) be a connected set whose closure meets
¥(<a, b)) at a single point n such that (21) holds and assume (28). Let ©(r) = 0
be a continuous non-decreasing function of the variable r = 0, sup O(r) > 0.

If xe R" and f is a bounded Baire function on {a, b) such that f,, = .):>—(3 x satisfies
(39) £A0) = 0(0((t) = nl) a(t) as Y(t) 1, |

then w, f,(n) exists and for z € S the following estimate holds

(40) wy f(z) — xd arg [ — z;<a, bY] — w, f,(n) =

=0<|z—r1|f @(x)x‘zdx> as z-n.
lz=n|

If (39) holds with O replaced by o then the the right-hand side in (40) may be
replaced by

oo}

Oz — 1) + o <[z - ’”j O(x) x~2 dx).

|z=n|

Proof. Fix¢ > 0 and R > 0 such that, with the notation (23),

(te<a, by, 0 < g,(t) < R) = |£,(1)] < ¢0(e,(t)) a(t) .

For z € S we shall denote by 9.() a continuous argument of y(f) — z on {a, b) and
with every J € #(n) we shall associate a continuous argument 9,(; J) of y(t) — n
as well as a continuous argument w,(t; J) of (¥(t) — n)/(z — 1) on J. We shall
suppose that R has been chosen small enough to guarantee (22) whenever z e S
and te J e #(n).
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Consider now z € S with |z — n| = r < R and let for J € #()
J,=JnGJn),

where G,(n) is defined by (11). We have then

(41) ’,Z f 140 45,1 )| 5 0 L O(e,(1)) alt) dvar 9,(1; J) <

< (see (13)) < e O(r) vi(n)

< e0(r)vi(z).

(42) fedd,| <

; J O(e,(1)) a(t) dvar 8.(1)
Gr(m)

Gr(n)

Put, for the sake of brevity, ' = Gg(n)\ G,(n), J* = J n L, and consider next

f fodo. - ¥ f £(0) 48t J)‘:

gl 05— )=

< |z = n| var =
zjuxn()xf u(1) <

< gsrj rq(t) O(e,(1) 0 (1) 2y Y() dvar w(t).

(43) Az) =

Noting that, for t e J,
00) = 1+ g (e

we get by lemma 3 in [2] and lemma 1 above for any J € #(n)

Jr

J a(t) ©(e,(1)) - () oy \(¢) dvar y(t) < j a(t) 0(21)) 03 () o (1) dvar o) +
[ oo at o) var s ).

In view of (22) we have for t e J,

0.(t) o, (1) = |sin o,(t; J)| 2 R,
whence

(44) A(z) £ erR™Y(B + C)»
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where

B - j 0(e(0) a(t) o5 (1) dvar (0.

c =3[ o) et o () var s ).

According to lemma 5 in [2], var g,({t € <a, b); ¢,(t) = r}) = 0. Denoting by y the
characteristic function of {t e (a, b); r < g,(t) < R} we thus obtain by lemma 4

in [2] )
B= j 1(1) ©(e,(1) a(t) o) dvar (1) =

- “6(x) 2 uy(x. 1) dx < O(R) R ulu() -

r

B j R“L(ﬂ) d[6(x) x™*] < O(R) R™* uja(n) +

R
+ 2f ul(n) O(x)x~3dx .
Writing

U = sup x~ " ul(n)

x>0
we arrive at

(45) B<U [@(R)R"‘ + 2r@(x)x-2 dx:l.

r

In order to get a suitable estimate for C we first fix a J € #() and define measures
and u, on Borel sets M = J by

u(M) =J q(t) dvar, 9,(t; J), p,(M) = J O(o,(1)) q(t) dvar, 9,(t; J),
M M
so that the integrals occurring in the definition of C can be written in the form

|, @) a0 avar 55 9) = [ o7 ().

Let for t > 0
J(2) = J n {tea, b); o, '(t) > 1}

and notice that J'(t) = @ for = > r~! while

0<t=r'=J(1)={teJ; r <g,t) <min(z"", R)}.

m(I'() = 6(7") u(J'(x))

Hence
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and we conclude by lemma 11 in [2] that

-1 -1

J JrQ; (1) duy(t) = L w(J(x) dr < J O(c~1) u(I(x)) de =

- J “00x) u(I(x1) x~2 dx < u(J) j “0(x) x2 dx

Keeping in mind the definition of the measure u as well as that of the quantity C we
get by (13)

46) C = ( j i@(x)x-z dx) ) Lq(t) dvar, 8,(1: J) = 3(n) j rw@(x)x'z dx

Combining (46) and (45) with (44) and taking into account that

O(R)R™ ' < w@(x) x"rdx £ co@(x) x"2dx
we obtain JR J:
(47) A(z) < erR™'(vi(n) + 30) f w@(x) x"2dx.

Finally consider the set

Yi = <a, by \ Gg(n),
put
m = sup {|/(?)]; 1€ <a, b)}

and observe that

(48) f 509 =T | A0 ds (s ) =
) Imf 05 =~ v = 0] =
éf [£0] 7 ez '(1) o (1) dvar y(t) < mr(R — r)~* R™" var y(<a, b))
Since

w, [(z) — xdarg [y — z] — w, fln) =

gL P P (R M R

we see from (42), (41), (48), (47) and (43) that the left-hand side of (40) is dominated
in absolute value by

er [‘m@(x)x‘2 dx[(2 + RV + 3R~'U] + mrR™'(R — r)~" var y(<a, b)), /

Jr
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where V = sup v§(z) (cf. also proposition 9 and lemma 2 and notice that @(r) r™! <
<[ @(x) x =2 dx).

11. Notation. If f is a (real- or complex—valued) Baire function on {a, b) we define
for z e R?

i I() = j S ety

provided the Lebesgue-Stieltjes integral on the right-hand side exists (note that
var y({t € <a, b>; Y(t) = z}) = 0 by lemma 5 in [2], so that 1/[y/(t) — z] is defined
var y-almost everywhere in <a, b)).

In accordance with [2] we put

ul(z) = f 0 'ul(e, z) de .
)

Combining theorems 10 and 4 with the corresponding results in [2] we obtain the
following

12. Theorem. Let S = R*\y({a, b)) be a connected set whose closure meets
¥(<a, b)) at a single point n such that (21) holds. If

lim sup i, f(z)| < oo

z—r1,zeS

for every continuous real-valued function f on {a, b satisfying (15), then

(49) ul(n) + vi(n) < o .
Conversely, assume (49) and suppose that O(r) 2 0 is a bounded continuous function

of the variable r = 0 such that sup O(r) > 0.If « € R* and f is a bounded complex-

rz0

valued Baire function on {a, b) such that f, = f — a satisfies

(50) ft) = o(@([W(®) — nl) a(t)) as () >n,

then i,,,fu(n) exists and for z € S the following estimate holds

(51) iy f(2) — ad log [V — z; <a, b)] ~ iy fn) =

=0<|z—nlj @(x)x‘zdx) as z-n;
|z—n| s

if (50) holds with O replaced by o, then the right-hand side in(51) may bereplaced by

Oz = nf) + o (;z ol L ﬂ@(x)x-z dx

/
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Proof. Note that, for real-valued f,

iy f(-) = Py S() + iwy 1)

where wy, f(.) is defined in sections 3 and 9 above while, with the notation (23),
b
(€)= [ 100020 o)

provided the Lebesgue-Stieltjes integral on the right-hand side exists. The first part
of the theorem follows immediately from theorem 4 above and theorem 9 in [2].
Next observe that, for any r > 0 and € R?,

r

rhug,(n) = f o' ui(o, ) de
(1]

IIA

uy(n)

and, with the notation from lemma 7 in [2],

= o) < vjn)
so that (49) implies both
) + sup r=! 5, 0) < o0
and

vi(n) + supr~! ul(n) < oo .
r>0

The rest of the theorem is an obvious consequence of theorem 10 above and theorem
14 in [2].

13. Proposition. If ¢, has the meaning described in (23), then the condition

b
(52) J go, ' dvary < o

is equivalent with (49).

Proof. Fix a continuous argument 9,(t; J) of ¥(f) — n on every J in the system
&(n) of all components of {te <a, b); Y¥(t) + n} and note that, for te J € #(n),

(53) () = 1 + o,(t) 45D

Hence it follows by lemma 3 in [2] and lemma 1 above that
qu,,“ dvar y < j qo, ' dvar o, + J q(t) dvar, 9,(1; J) .
J J J
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Since

var y(<a, by N uF(n)) = 0

by lemma 5 in [2], we conclude from (11) in [2] and (13) above that

b
qu'fldva“// =qu9J‘dvar¢ équaJ’dvarQﬁ
J JJ

a J

# 3 [ a0 dvar 0,.) = ) + o).

so that (49) = (52). The implication
(52) = uj(n) < oo

follows easily from the inequality var g,(.) < var y(.). Employing (53) and lemma 1
above we get for any J e #(n)

~

“ q(!) dVar: 9,’(1, .]) = q(t) dvar‘ eisn(';-’) —
J

L%

o J

‘q(t) dvar, Wt = < (see lemma 3 in [2]) <

Ja (1)

= fqg,,'1 dvar y + fqg,, dvar o, ' = (see lemma 2 in [2]) =
J J

:fqg;ldvarw+fqg,,_1dvarg,,§2fqg,f‘dvam/1,
J 7 7

whence

IIA

\ y
2‘[ qo, ' dvar

a

o4(n) = 3 flq(t) dvar 9,(1; J)
and the implication (52) = (49) is verified.
14. Remark. Suppose now that s is simple, which means that for 1, t, € {a, b
0< |ty — 1] <b—a=yt) + y(t,),

and denote by 1 the Hausdorff linear measure (= length in the sense of [9], chap II,
§8). If Q =0 is a lower-semicontinuous function on K = ¥(<a, b)) and 4(t)=

= Q('/’(t)), te<a, b), then

(54) ) I?Q% di(é) = f bqg,,*‘ dvar ¢ .

a
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Indeed, it follows from lemma 3.3 in [5] that for any t > 0

A ({cex; | f@nl > }) — var y({t € <a, bY: a(t) 0™X(t) > )

and integrating this equality dz over (0, c0) we obtain (54) by lemma 11 in [2].

The quantities U%,(1) and VZ(y) defined in the introduction are easily seen to
coincide with ug,(n) and vj(n), respectively. Hence it follows that the assertions
announced in the introduction are simple corollaries of the results established above.

There is an extensive literature dealing with integrals of the Cauchy type and their
applications. We refer the reader to [1], [7], [8], [11] for further references.

References

[1] G. Fichera: Una introduzione alla teoria delle equazioni integrali singolari, Rend. Mat.
e Appl. 17 (1958), 82— 191.

[2] J. Krdl and J. Lukes: On the modified logarithmic potential, Czech. Math. J. 21 (96), 1971,
76—98.

[3] J. Kradl: YrnoBele npepenbHble 3Ha4eHMst uHTerpanos tunma Kowm, Hoxmaner Axan. Hayx
CCCP 155 (1964), 32—34.

[4] J. Kral: Some inequalities concerning the cyclic and radial variations of a plane path-curve,
Czech. Math. J. 14 (89), 1964, 271 —280.

[5] J. Krdl: Non-tangential limits of the logarithmic potential, Czech. Math. J. 14 (89), 1964,
455—482.

[6] J. Lukes: A note on integrals of the Cauchy type, Comment. Math. Univ. Carolinae 9, 1968,
563—570.

[7]1 H. H. Mycxeauwsguau: CHHIYJIsIpHbIE MHTErpaJibHbIe ypaBHeHHs, Mocksa - Jleauurpag 1962.
[8]1 HU. U. IIpusaaos: I'paHuyHbIe CBOACTBA aHAIMTHYECKHX (yHKuHH, Mocksa - Jleaunrpan 1950.
[9] S. Saks: Theory of the integral, New York 1937.

[10] J. Stulc and J. Vesely: Connection of cyclic and radial variation of a path-curve with its
length and bend (Czech with a summary in English and Russian), Cas. pro p&st. mat. 93,
1968, 80—116.

[11] I. L. Tymaprun u C. A. Xasuncon: Crenenuble psabl ¥ X 0606menus. [Ipobiema MOHO-
reHHOCTH. I'paHHM4HbIe cBOWcTBa. B cGopHuke ,,Marematuka B CCCP 3a copok ner 1917
mo 1957¢.

Authors’ addresses: J. Kral, Praha 1, Zitna 25, CSSR (Matematicky ustav CSAV v Praze),
J. Lukes, Praha 8-Karlin, Sokolovska 83, CSSR (Matematicko-fyzikalni fakulta UK).

682



		webmaster@dml.cz
	2020-07-02T22:48:01+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




