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Introduction. A lattice-ordered group G (abbr. I-group) is an algebra with two
binary operations + and v, a unary operation —() and a nullary operation 0
satisfying all of the following:

i) G(+, —(.), 0) is a group,
ii) the operation v is idempotent, associative and commutative,
iii)a+(bve)y=(a+b)v(a+c), foral a,b,ceG.

Of course, v turns out to be the join operation in the lattice and the meet operation
is obtained by setting: @ A b = —(—a v —b). It is a trivial matter to verify this is
indeed equivalent to the customary definition of an I-group.

With the above setting in mind let us denote by & (resp. ZR, resp. £ A) the cate-
gory of all I-groups (resp. representable I-groups, resp. abelian I-groups) together
with all lattice preserving homomorphisms (henceforth: I-homomorphisms). An
I-group is representable if it is I-isomorphic to a subdirect product of totally ordered
groups (henceforth: o-groups); the product of o-groups is assumed to have the cardi-
nal or coordinate-wise ordering. It is well known this condition is equivalent to
saying that a A b = 0 implies a A b* = 0, where b* = —x + b + x,and a, b, x €
€ G. The three categories in question are therefore all varieties of the type described
in the first paragraph, subject to the appropriate laws that define the class. Equi-
valently, these are all closed under subalgebras (I-subgroups), l-homomorphic images
and (cardinal) products; this is G. Birkhoff’s great theorem on varieties of universal
algebras.

It follows then that all three have a free object F(X) over a given set X. WEINBERG
first gave a representation of the free object in £ A4; Bernau corrected and refined
some of Weinberg’s results in this connection. CONRAD then gave a representation of
the free objects in ¥ and #R by generalizing Weinberg’s ideas and construction.
Very little is known about these free objects beyond the above mentioned representa-
tions; for example, the word problem is yet to be considered. WEINBERG has shown
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that the free object in # 4 is a subdirect product of integers (and hence archimedean),
and indecomposable into cardinal summands, unless we are dealing with the free
object on one generator, which is Z F Z (cardinally ordered) in all three varieties.
(Z will denote the additive group of integers, ordered as usual.)

It is known that varieties of universal algebras are complete as well as co-complete
categories. In particular they have co-products or free products; briefly, we recall the
definition of the free product: let 4, (1 € A) be a family of objects in a category /.
The object 4 is the free product of the A, if there are morphisms u; : 4, — A (called
coprojections) having the property that whenever a family of morphisms f; : 4; — B
is given, there is a unique morphism f : 4 — B such that u,f = f, for each 1€ A.
It is our task then to study the free product in each of the above varieties. We shall
carry out the construction in %, the corresponding schemes in R and £ A being
analogous.

For the basic facts concerning I-groups we suggest the reader consult [5]. Wein-
berg’s crucial results are contained in [8] and [9]; BERNAU [2] gives some interesting
refinements of Weinberg’s results, and a general treatment that applies to vector
lattices. For the construction of the free vector lattice see [1]. The reader is referred
to [4] for a discussion of the free object in & and #R. For the appropriate back-
grounds in universal algebra and category theory in general the author wishes to
suggest [3] and [7] respectively. Special notation and terminology will be discussed
in context.

1. Construction and basic properties of the free products. Let G, (A € A) be a family
of I-groups. Consider the G, as sets and let F be the free I-group on the disjoint
union of the G,. Let N be the I-ideal generated by all elements of the form

(g+h —[(9+ (W], g.heG,, 2e4,
(g vih)—[(9) ve(D)], g, heG, Jled.
Let G = F|N and u; : G, — G be defined by

xu; =(x) + N, foreach xet(, and Aed.
1.1. Theorem. In # G is the free product of the G, with u, as co-projections. We
write G = 1{G, | € 4}.

Proof. Of course, the effect of factoring out N is precisely making the u;, (2 € A)
I-homomorphisms. So let ¢, : G, > H be a family of I-homomorphisms into the
l-group H; define 6 : UG, — H by (x) 0 = x¢, if x € G,. There is a unique I-homo-
morphism 0 : F — H extending 0. For all g, h € G, we get

[(g+n)]0=(g+h)0=[g+h]¢,=g¢,+ ho,=(9)0 + (h) =
=[(9) + (W] 0,
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and also that [(g v, h)] 8 = [(g9) v ¢ (h)] 8. Consequently N& = 0, that is & factors
uniquely through G; let ¢ : G — H be this unique I-homomorphism. Then for each
x€Gy xup = ((x) + N) ¢ = (x) 0 = (x) 0 = x¢,, i.e. u;¢ = ¢,. Since it is clear
that the ¢, determine ¢ uniquely, our proof is complete.

Remarks. 1) We should point out that if co-products exist in a given category
they are completely determined by the components up to an isomorphism.

2) If G, (A€ A) are representable (resp. abelian) I-groups we denote their free
product in ZR (resp. £ A) by L*{G, | A€ A} (resp. 1*{G, | . € A}). We shall refer
to the free R-product (resp. free A-product) of 1epresentable (resp. abelian) I-groups.

3) In view of the Weinberg-Conrad representations for free objects we deduce
that an arbitrary element x of IL{G, | 2 € A} may be written

X = va/\Bél[g(cx, B, i)] u,,,

where the indicated joins and meets are taken over finite sets, and each g(o, B, i)€G,,
1 £ i £ n. With suitable interpretation, similar expressions hold in #R and 4 as
well.

The following observations ate more or less trivial:

1.2. Let G = 1{G, [ Ae A}; for each A€ A there is a unique I-homomorphism
n; 1 G > G, such that u,.n, = 1;, if ' = A, and 0 if not. In particular each co-
projection is 1 — 1. The corresponding results hold in ¥R and L A.

1.3. Let G = B{G,| 1€ 4} and 0, : G, > G be the usual embeddings; (in our
notation G stands for the direct sum of the G,, with coordinatewise ordering.)
There is a unique l-homomorphism o : I_I{G,1 | Ae A} - G such that u,0 = o, for
each A € A. Similar formulations are valid in ¥R and L A.

14. Let G = 1{G,|Ae A} and p,ve A, p+v. Then Gu, 0 Gu, =0, and if
0 <x€eG, 0 < yeG, then xu, || yu,.

Proof. If 0 < a€ Gu, n G,u, then a = a,u, = bu,, s0 a, = an, = byu,r, =0
and therefore @ = 0. Next, suppose xu < yu,; then 0 < x = xu,m, < yu,zr, = 0,
a contradiction; similarly xu, * yu,.

(Again, the corresponding results hold in #R and #£A4.)

15. In G = 14{G, | Ae A} the subgroup generated by the Gu, is precisely
G = @B{G,| e 4}.

1.6. Within the context of 1.5, G is the l-ideal generated by G.
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Proof. We may express 0 < x e G as
x=[van, Zl[g(“’ B i)]ui] v O ven, ¥ (g(e B i) v,0)u,, <
i= i=1
= Z;Zl(g(a, B i) v, 0) uj, -

1.7. Once again, let G and G be as in 1.5; an l-homomorphism ¢ : G — L into
the abelian l-group L has a unique extension ¢ : G — L.

We shall see later that the containment of the cardinal sum in the free A-product
is always proper. Thus the kernel of the mapping described in 1.3 is always non-trivial.
We shall now look at this kernel more closely; immediately prior to this we wish to
give a categorical characterization of the cardinal sum for each of the varieties under
consideration.

1.8. Theorem. Let G, (1€ A) be a family of l-groups in & (¥R, £A); G in &
(ZR, LA) is the cardinal sum of the G, if and only if there exist I-homomorphisms
0, : G, - G having the property that

1) 0 <x€eG,; 0 < yeG,with A % pimlies xo; A yo, =0, and

2) if ¢, : G, > Lis a family of l-homomorphisms into the l-group Lin & (¥R,
LA) such that 0 < x€ G;,0 < ye G, and A + pimply x¢, A yp; =0,
then there is a unique l-homomorphism ¢ : G — Lsuch that ,¢ = ¢,, for each A.

Proof. It suffices to prove necessity, for it is clear that any two I-groups with the
above properties are isomorphic. If G is the cardinal sum of the G;, and g, is the A-th
coordinate embedding then the family of the o, obviously satisfies the first condition.

Now suppose ¢, : G, > Lis a family of I-homomorphisms having the desired
disjointness property; let ¢ : G — Lbe the induced group homomorphism. To prove
it preserves the lattice structure we need only show it preserves disjointness; our
assumption about the family of ¢, and the coordinatewise ordering of G guarantee
exactly that. It is evident moreover, that ¢ is uniquely determined by the ¢, in the
category L(ZR, L A).

1.8.1. Corollary. Let G, (A€ A) be a family of I-groups in £ (¥R, £A). In
the free product (R-product, A-product) G of the G, let K be the l-ideal generated
by all au; A b,u, where 0 < a;€G,, 0 < b,eG, and A + p. Then B{G, | 1€
€ A} ~ GJK, and K is the kernel of the map in 1.3.

Proof. Let ¢ : G —» G/K be the canonical I-homomorphism, and let ¢; = u,,
for each Ae A. Now if 0 <aeG,; and 0 < beG, (1 # p) then ao; A bo, =
= au,;0 A bu,o = (au; A bu,) ¢ = 0. Furthermore, suppose ¢, : G, - Lisa family
of I-homomorphisms into the I-group Lin & (ZR, £ A) satisfying the disjointness
condition. There is an induced map ¢ : G — L such that (au, A bu,) ¢ = ad, A
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A b¢, = 0, which means that the kernel of ¢ contains K and hence ¢ factors uniquely
through K, say by ¢ : G/K — L with ¢ = §. We have o,¢ = u 00 = u,d = ¢,,
(4 € A) and it is clear that the ¢, determine ¢ uniquely. The corollary is hereby proved.

Let us denote by & the category of sets, and use F: ¥ —» & (Fp: & — ZR,
F,: ¥ — ZA) for the ,,free” functor; that is, if S is a set F(S) (Fg(S), F4(S)) is the
free object in & (ZR, £ A4) on S. This functor preserves co-limits ([7], p. 44 & p. 67),
consequently if S, (4 € 4) is a collection of pairwise disjoint sets and S = US, then

F(S) = L{F(S,) | Ae 4} .

(Of course, similar formulas hold in #R and ,?A.) For the variety £ A we have the
following generalization of the above.

1.9. Proposition. Let & denote the category of semiclosed*) partially ordered
abelian groups and o-homomorphisms; the free functor & : # - ¥ A which assigns
to a semiclosed p. o. group the free abelian l-group over it preserves co-limits.
Moreover, the cardinal sum is the co-product in 2 so that

P(B{G, | Ae 4}) = L{®(G,) | A e 4} .

Proof. & preserves co-limits since it is adjoint to the limit preserving functor
U : A — 2 which “forgets” the lattice structure but remembers the partial order;
([7], p- 44 & p. 67.) That the direct sum with pointwise ordering is indeed the co-
product is left to the reader as an exercise. The formula in the statement follows
immediately.

1.9.1. Corollary. Let G, (A€ A) be a family of abelian o-groups; then
14{G, | Ae A} = &(B{G, | Le 4}).

Proof. Merely observe that if H is an o-group then ®(H) = H. ([4], 3.10)

(Note: this corollary says right away that in the case of abelian o-groups 14{G, | A€
€ A} > B{G, | A€ A4}, and this containment is never as an [-subgroup.)

2. Separation of the free products. It is well known in group theory that the free
product of two non-trivial groups is non-abelian even if the two factors are them-
selves abelian. We shall prove the corresponding results for varieties of I-groups in
this section. For simplicity of notation we shall deal with free products of two factors;
we shall also omit mention of the co-projections, and think of the factors simply as
l-subgroups of the free product.

(*) A p. o. group is semiclosed if nx = 0 with n a positive integer, implies x = 0. This is equi-
valent to the statement that the cone of positive elements is an intersection of cones of total
orders. Weinberg [8] showed that these are precisely the abelian p. o. groups over which free
l-groups exist.)
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We consider the free product in & first; there are two questions to be asked here:
given non-zero [-groups G and H is G 1L H always non-abelian? And more specifically,
if g€ G and he H with both non-zero, does g always fail to commute with h?
(Incidentally the stronger version holds in group theory.) The answer to the first
question is yes; the second is also answered in the affirmative provided one of the
groups is representable. The proofs of these facts depend upon an interesting unstated
lemma and the notion of the wreath product.

Let G be an o-group, H be any I-group; the wreath product H Wr G of H by G is

the set G x [] H,, where each H, = H, together with the operation
acG

(g5 X o) + (@5 s Vo) =(g + 95 esZar--)

where z, = X,_,- + J,, and finally the lattice order whose cone is {(g; ..., X,, ...) | g >
> 0,or g = 0and each x, = 0}. H Wr G is a splitting extension of ITH, by G, and is
not representable unless G = 0 and H is representable.

We now state the first main theorem.

2.1. Theorem. Let G be a non-trivial representable l-group, H be any non-trivial
I-group; thenin GLHnoO % g€ G and 0 &= h e H commute. Furthermore, G 1. H
is not representable.

2.1.1. Corollary. The free product G I. H of two non-trivial l-groups is non-
representable, (and hence non-abelian.)

Proof of 2.1. Let us suppose we’ve proved the theorem for o-groups G. If G + 0
now denotes an arbitrary representable I-group, let 0 = ge G and 0 & he H.
Let N be a minimal prime subgroup of G containing g; it is well known however, that
a minimal prime of a representable I-group is normal, (the result is due to R. BYRD),
so we may consider the canonical map ¢ : G — G/N . The induced map ¢ : G L H —
- G/N 1L H is onto, and since G/N is an o-group go = go does not commute with h
in G/N I H. It follows that g cannot commute with 4 in G 1L H, and since G/N L H
is not representable neither is G 1L H.

So let us now show that our assertions hold when G is already totally ordered. Let
K=HWrG and ¢ : G- K be defined by by = (b;...,0,...), ' : H—>K be
defined by xy' = (05 ..., X,, ...) where x,is 0 if @ # 0 and x if a = 0. These are both
I-homomorphisms, so let ¥ : G I H — K be the unique extension of i and ¥/’ to the
free product. Now it suffices to show 0 < g € Gand 0 < h € H fail to commute.

0 if a+g;

(W) ¥ = (b =(0;..., 2, ...) where z, = _
h if a=g¢g

clearly then (h?) ¥ =% h¥, and so h? + h.
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Note in the above that (k¥ A h) ¥ = (k%) ¥ A h¥ = 0. We can therefore pick
O<a=hand O<b < h’in GIL H such that a A b =0 and a¥ = hY, bY =
= (h?) ¥. But then

(@ AD)Y =aF A DY =a¥P" A DY =hY¥ ARY =hY=Db¥>0.

Thus a? A b > 0, and therefore G IL H is not representable. This completes the
proof of theorem 2.1.

We now turn to the free product in #ZR; once again we are able to show the free
R-product of two non-trivial I-groups is non-abelian. In fact:

2.2. Theorem. Let G and H be two non-trivial representable l-groups; then in
G IR H no 0 % g € G commutes with any 0 & he H.

Proof. Fix 0 & g€ G and 0 % h € H; by factoring out primes we may assume
both G and H are o-groups and g and h are positive. Let K be the restricted wreath
product of H by G; that is, K consists of all (g; ..., x,, ...) for which x, is 0 for all but
finitely many a € G. We then totally order K as follows: (g; ..., X,, ...) = 0if g > 0,
or else g = 0 and the non-zero component x, with the largest index is positive. As
in the proof of theorem 2.1 we use the injections of G and H into K given by ¢ —
- (¢;...,0,...) and d > (0;...,x,,...) where x, =0 if a + 0 and d otherwise.
Then as in that proof we show that under the induced map ¥ : G IR H — K the
images of g and k do not commute; it follows that g and h fail to commute in G I® H.

(Warning: it is necessary here to restrict the wreath product; the full wreath product
discussed before admits no total orders.)

We now settle the question of how the free A-product compares to the cardinal
sum.

2.3. Theorem. If G and H are two non-trivial abelian I-groups neither G nor H
is convex in G 14 H, so that G 14 H is not isomorphic to G @ H,

Proof. We will show that forall0 < aeGand 0 < beH a A b > 0. As before
by factoring out a suitable prime subgroup of G it suffices to take G to be totally
ordered. Let L = G X H; this notation signifies the cartesian product with the
lexicographic ordering placing G over H. One has an I-homomorphism y : G 14 H —
— L induced by the coordinatewise injections of G and H in L. If 0 < a€ G and
0 < be H then

(a Ab)yy=ay Aby=(a,0)A(00b)=(0,b)>0;

hence a A b > 0in G 14 H, proving neither G nor H is convex in the free A-product,
thereby completing the proof of this theorem.
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2.3.1. Corollary. Let G and H be non-trivial abelian l-groups;

i) for0<geGand0<heH,0<g A heGI*H.

ii) the canonical injection of G H H into G 1* H is proper and never lattice
preserving.

At this point a general word about varieties of I-groups is perhaps in order. We
have looked at three of them; but most important classes of I-groups are not varieties
of I-groups. For example, all of the following fail to be quotient-closed: archimedean
I-groups, I-groups with basis, subdirect products of reals (integers). The next group
features some of those that are not I-subgroup-closed: finite valued I-groups,
archimedean I-groups with strong or weak order unit, complete I-groups, laterally
complete I-groups, completely distributive I-groups, etc. The class of finite basis
I-groups is I-subgroup- and quotient-closed, but certainly not closed under products;
the same is true of I-groups with property (F)

One important class which does turn out to be a variety of I-groups is the class of
normal valued I-groups. (An l-group G is said to be normal valued if each value M
of any non-zero element g € G is normal in its cover.) One establishes this fact as
a corollary of a remarkable result of WOLFENSTEIN [10] which says that G is normal
valued if and only if for each 0 < a, be G, a + b £ 2b + 2a. Consequently, we
have a free normal valued I-group over a given set X; in this variety, which we shall
denote by £ N, we can also produce the co-product, or free N-product of an arbitrary
family of normal valued I-groups. It is well known that a representable I-group is
normal valued; (this is due to R. BYRD.)

Suppose G and H are non-trivial normal valued I-groups; we wish to prove that
G 1IN H is non-representable. Since both factors are I-subgroups of the free N-product
all is well when either of them is non-representable. If both are representable then the
proof of theorem 2.1 shows that G IV H is not, (the wreath product constructed there
is normal valued!)

2.4. Theorem. The free N-product of two non-trivial normal valued l-groups G
and H is non-representable.

In view of theorem 2.1 one would certainly like to know whether the free product
in & of two non-zero I-groups is always outside #N.

2.5. Theorem. Let G and H be two non-trivial representable I-groups; then if
0<geGand O <heH, g+ h£2h+ 29 in G1LH. In particular G 1L H is
not normal valued.

Proof. Since the two factors are representable we may again factor out suitable
primes and assume instead that G and H are totally ordered. Let H* be the restricted
lexicographic product of copies of H indexed by G. We shall consider o-permutations
on H*: for each g € G define gns to be the permutation given by (..., X,, ...) gng =
= (.. Zg ...), Where z, = x_,4,. It is clear that gms is an o-permutation on H¥,
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and that the map 7z : G - 2(H*), the I-group of all o-permutations on H*, is an
o-isomorphism. (In fact each gns is an o-automorphism of H*) For each he H
let hmy be the o-permutation of right translation by (..., h,, ...), where h, = h when
a=0 and h, =0 otherwise. Again ny:H — ?(H*) is an o-isomorphism; let
n:G 1L H— 2Z(H*) be the unique extension of n; and 7, to the free product.
Consider the permutation (2g + 2h — g — h) n = (gng)? (hng)? (gng) ™" (hmy) ™"
One can easily compute that

— h if a= 0

0(gng)? (hny)? (gmg) ™t (hny)™' = {+2h if a= —g;
0  otherwise

clearly, this is negative in H*, so that the permutation (2g + 2h — g — h) 7 is not
positive. It follows then the 2g + 2h & h + g; this proves the theorem.

Summarizing then, the free product of two non-zero I-groups is not in ¥4 or ¥R,
and fails to be in ZN if one of the factors is outside ZN or both are represetnable.
The free R-product is not in £ 4, and the free A-product is always different from the
cardinal sum.

In the following section we discuss a new variety of I-groups and exhibit once more
the phenomenon presented here for free products.

3. Weakly abelian [-groups. The following bit of information may serve to motivate
the variety of I-groups we are about to introduce. The variety of abelian I-groups is
the smallest variety of I-groups. For a non-trivial variety of I-groups contains some
non-zero I-group G, and in it a copy of Z ordered as usual. This variety then contains
all subdirect products of integers, and hence by Weinberg’s theorem all free abelian
I-groups. It is clear then that all abelian I-groups must be in the variety.

In view of the above, and taking into consideration the fact that so few varieties
of I-groups have been identified, we seek some information concerning say the
varieties between R and £ A. It turns out there is at least one, and we finally get
on with the discussion thereof.

An Il-group G is weakly abelian if for each 0 < xe G and ge G 2x = x?. We
proceed to list some of the basic properties of weakly abelian I-groups, proofs being
omitted whenever they are trivial or fairly straightforward.

3.1. The class of weakly abelian I-groups forms a variety of I-groups containing
ZA and contained in ¥R.

3.2. In a weakly abelian l-group all convex l-subgroups are normal, (but the
converse is false as we shall soon see.)

3.3. If G is a weakly abelian l-group it can be represented as a subdirect product
of weakly abelian o-groups having a minimal convex subgroup.
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3.4. There are non-abelian weakly abelian o-groups, and not every representable
lI-group is weakly abelian.

There are many examples of the type of I-group which is representable but not
weakly abelian; we will leave it to the reader’s imagination to produce such an
example. As for the other case consider the following:

3.5. Let G = Z x Z x Z, and define addition of triples as
(a,b,c)+ (x,y,2)=(a+x,b+y,c+z+ay).

G is then a (non-abelian) group, and becomes an o-group when we order (a, b, ¢) = 0
ifa>0,ora=0and b>0,0ra =>b=0and ¢ = 0. One may easily verify that

(a, b, c)*?? = (a, b, c + ay — bx),

and from this one derives without much trouble that G is weakly abelian.

After proposition 3.7 we shall have an example of a weakly abelian o-group with
a trivial center. We shall use this same o-group in an example in § 6.

‘We now give our main structure theorem for weakly abelian I-groups.

3.6. Theorem. Let G be a weakly abelian l-group, 0 < x€ G, g€ G and N be
a value of x; then x + N = x? + N. Conversely if x + N = x? + N forall0 < x €
€ G, g € G and values N of x, then G is weakly abelian.

Proof. We know 2x = x™ forallm = 1,2, ...; hence 2x + N = x™ + N. Yet it
is a consequencs of Holder’s theorem (see [5]) that conjugation, since it induces an
o-automorphism of N*/N — where N* is the cover of N in the lattice of convex
I-subgroups of G — must in fact represent multiplication by some positive real
number. It follows then that x? + N = x + N; (we have assumed tacitly that x? +
+ N = x + N; this we can do without loss of generality.)

Conversely if x9 + N = x + N for all 0 < x € G, g € G and values N of x, then
all such values are normal in G. It is evident that a value of x is also a value of x?
and of —2x + x? as well. On the other hand a value of —2x + x? is contained in
a value of x, and therefore itself a value of x. It then becomes clear that 2x > xY.

3.6.1. Corollary. Let G be an l-group; the following are equivalent.

i) G is weakly abelian.
ii) For each0 < x¢ G, g € G and each value N of x,x + N = x? + N.
iii) 2x > x? for all 0 < xe€ G and g € G.
iv) For a fixed positive integer n nx = x° for all0 < x€ G and g € G.
v) For a fixed positive integer n nx > x? for all0 < xe€ G and g € G.
vi) x = |[x, g]|, all 0 < x € G and g € G; of course [x, g] = —x + x°.
vii) x > |[x, 9]}, all 0 < xe G and g €G.

(Recall: a > b for positive elements a and b if a exceeds every positive integral
multiple of b.)
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Proof. The equivalence of the first five items follows directly from theorem 3.6.
However in view of ii) we need only show the equivalence of vi) or vii) with say i).

i) — vii) Suppose 0 < x € G and g € G; since 2x = x? we have that x = [x, g].
Also if M is value of [x, g] then either x ¢ M or g ¢ M. If x € M then so is x? and thus
[x, g] is too; it follows then that x ¢ M, and hence that M is contained in value of x.
In view of ii) once again, this containment must be proper. This suffices to show
x > |[x, g]|. vii) = i) is trivial.

3.6.2. Corollary. If a weakly abelian o-group has a minimal (non-zero) convex
subgroup it has a non-trivial center. Thus every weakly abelian l-group can be
realized as a subdirect product of weakly abelian o-groups with non-trivial center.

Let G be an I-group, A be an I-deal of G. G is a lex (icographic) extension of A
(notation: G = lex (4)) if 1) G/4 is an o-group and 2) each 0 < g € G\A exceeds
every element in A. It is fairly well known that G = lex (A4) if and only if the non-zero
cosets of G[A consists entirely of positive or entirely of negative elements.

3.6.3. Corollary. Suppose G = lex (A) and A is weakly abelian; if A is central
in G and G/A is weakly abelian, so is G.

3.6.4. Corollary. A weakly abelian I-group has no non-central atoms.

Although we can improve upon the centrality condition in corollary 3.6.3, it is
nevertheless an important condition. Consider the next example: let G be the restricted
wreath product of the rationals Q by Z as follows; think of the direct sum of copies
of Q as a group of “polynomials™

el N
Y am”,

n=-—aw

where at most a finite number of the a, are nonzero. In effect then we have an exten-
e

sion of a subgroup of R by the integers. We order G by declaringx = (p; Y. a,n") >
> 0 if p is a positive integer, or p = 0 and ), a,n" is a positive real number. If
x=(0; Y am")andy=(gq; Y b,n")then

n=-oc n=-o

x* = (0; a,-,m") =(0; Y amn"9.

n=- n=-o

In this case the net effect of conjugating x by y is simply to “multiply” x by n%;
obviously then G is not weakly abelian. Notice that G is the lex extension of an abelian
o-group by another; (they are both archimedean, in fact.) Observe also that G has
the property that every convex sugroup is normal in G.
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It is well known that a free abstract group admits a total order (see [5], theorem 8,
p. 49). The same proof shows

3.7. Proposition. A free group admits a weakly abelian total order.

Remark. The proof referred to in [5] actually shows that a free group admits
a weakly abelian total order in which the commutator subgroup is convex. Upon
factoring out this subgroup we get of course an abelian o-group. This shows that the
centrality in 3.6.3 can indeed be improved.

We next turn to the ,,separation” problem discussed in § 2.

3.8. Proposition. The free R-product of two non-trivial representable I-groups is
always not weakly abelian.

Proof. Apply the proof of theorem 2.2. This is possible, for if G and H are non-
trivial o-groups the restricted wreath product of G and H, ordered as in the proof
of 2.2 is not weakly abelian.

3.9. Theorem. Let G and H be non-trivial weakly abelian I-groups; the free
product of G and H in the variety £ W of weakly abelian I-groups is never abelian.

Proof. If either of the groups is non-abelian there is nothing to prove, so we can
assume both are abelian. As usual for representable I-groups we can also suppose
both are o-groups. We embed G and H in their respective divisible hulls G and H.
FixO0 <aeGand 0 < be H and let M and N be the values of @ and b in G and H
respectively; further let M* and N* be the respective covers of M and N. Then

G = G/M*x M* and H = H|N*Xx N*.

Define an o-group K as follows: K = G/M* x H|N* x M*[M x N*|N x R (R =
= reals) where addition is defined by

(‘11, by, ay, by, ’”) + (xn Yi1s X2, Vas S) =
=(ay + Xy, by + yy, ay + X3, by + ¥y 7+ 5+ ayy,) .

(We think of M*/M and N*|N, as we indeed may, as subgroups of R.) With the
lexicographic order from left to right K becomes a non-abelian weakly abelian
o-group.

There is a natural embedding of G in K by gt, = (g, 0, g, + M, 0, 0) where
g = g; + g, is the unique decomposition of g with g, € G/M* and g, € M*. (The
reader will no doubt appreciate that 7, is not a 1—1 mapping, nevertheless it is ap-
pealing to think of the map in this way. Furthermore no use will be made of it as
a global embedding, rather as a local one.) Likewise the natural map t, arises from H
to K by ht, = (0, hy, 0, h, + N, 0), where h = h; + h, and h, € H/N*, h, e N*.
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We extend 7, and t, to t: G 1" H —» K; now at = (0,0, a + M, 0,0) and bt =
=(0,0,0,b + N, 0); so

(@a+b)t=ar+br=(0,0,a+ M, b+N, (a+ M)(b+N)),
while

(b+a)t=bt+at=(0,0,a+ M, b+N,0).

Since (a + M) (b + N) + 0 it follows that (a + b)7 =+ (b + a)t, and hence
a+b+b+a. (We’ve shown a bit more than was stated in the theorem; we have
proved in fact that forall 0 < a€ G,0 < b e H a and b fail to commute in G L¥ H.)

The condition defining weakly abelian I-groups may lead the reader to speculate
that ¥ Wis somehow minimal over £ 4. Unfortunately, we must report this is not so;
(see example 6.7) Notice that ZW (and ZR for that matter) has the following vague
property: the “law” defining this variety does not involve any group-theoretical
restrictions; this observation is borne out by the fact that free groups admit such
orders (3.7). The study of such varieties is quite intriguing, and one wonders whether
LW is not minimal over £ A4 in this sense.

4. Projectives in # A. Given a category % an epimorphism ¢ is said to be extremal
if whenever ¢ = ¢,¢, with ¢, monic, then ¢, is an isomorphism. It is known that
in a variety of universal algebras a homomorphism is an extremal epimorphism if
and only if it is onto. The proof is quite simple and we shall present it here for sake
of completeness. Suppose ¢ : A — B is an extremal epic in some variety of universal
algebras. Factor ¢ through its image; ¢ = ¢t; the inclusion ¢ of the image of ¢ in B
is monic and therefore an isomorphism. It follows that ¢ is onto. The converse is
trivial; the reader is invited to try it if he wishes.

One is very seldom sure of what the epics are in a variety, so one must settle for
the extremal epimorphisms in dealing with projectives. Accordingly then an object P
in a variety is projective if for each extremal epimorphism ¢ : M — N and each
homomorphism o : P — N there is a homomorphism & : P - M such that &@¢p = a.
It is immediate that free objects are projective under this definition; the reader knows
of course that in the category of abelian groups these are the only projectives. As we
shall see presently the above is far from true in £ A.

We should point out in passing that in £ A there are epimorphisms which are
not onto. Witness for example the canonical embedding of Z into Q; two- I-homo-
morphisms from Q into an I-group A which agree on Z are identical. Suppose o,
and o, are the indicated mappings; we have 1oy = lg,. Then it is clear that
n(1/n) ¢; = n(1/n) o,, for each non-zero integer n, and consequently since l-groups
are torsion-free (1/n) o4 = (1/n) o,; this suffices to prove ¢y = 0.

Here then is a non-free projective of ZA.

547



4.1. Lemma. Z (with the usual order) is projective.

Proof. Let M and N be abelian I-groups and ¢ : M — N be an onto l-homo-
morphism; further let « :Z — N be any I-homomorphism. Consider la; it has
a positive pre-image under ¢, say x, in M. Define 1& = x and extend to Z in the
obvious way; the resulting homomorphism preserves order, proving Z is projective.

(Note: CONRAD pointed out that a free object in £, L4 or ZR is never totally
ordered, consequently Z is a projective of £A4 — and of & and &R for that matter,
since the commutativity of M and N was not used in the above — which is not free.)

All our discussion for the remainder of this section takes place in £ 4; the reader
may spot some obvious generalizations to non-abelian cases: he is free to formulate
these generalizations if he wishes. Call the I-group A4 a retract of the l-group B if
there is an I-homomorphism f :B — A and an l-homomorphism « : 4 — B such
that aff = 1,. The next result is quite straightforward to prove, and we shall leave
it to the reader.

4.2. Proposition. In L A:
i) a retract of a projective is projective;
ii) an l-group is projective if and only if it is a retract of every l-group of which
it is an l-homomorphic image. (This property is usually called retract projectivity.)
ili) An l-group is projective if and only if it is a retract of a free l-group.
iv) Let P = 14 P,, (A€ A). In order that P be projective it is necessary and suf-
ficient that each P, also be projective.

4.2.1. Corollary. If P is projective it is a subdirect product of integers, and every
set of pairwise disjoint elements is at worst countable.

Proof. A free I-group is a subdirect product of integers; a retract of a free I-group
then must have the same property. As for the statement on disjoint elements we need
only comment on Weinberg’s result in [9], namely that free I-groups have that
property also.

Our main result in this section is:

4.3. Theorem. The cardinal sum of two finitely generated projectives is again
projective.
Before proving the theorem let us assess some of the consequences.

4.3.1. Corollary. The abstract free abelian roup on n < oo generators, when
equipped with the cardinal order is projective in L A.

Since free I-groups are necessarily indecomposable into cardinal sums, we ‘have
then a very large class of non-free projectives. Theorem 4.3 is the more intriguing
since the cardinal sum does not appear to be a co-limit in the category £ 4.
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Now for the proof of the theorem.

Proof. The argument depends strongly on a lemma which we shall cite here
informally; (the proof is quite easy). Given an I-homomorphism ¢ of an I-group 4
onto one B, suppose {x;, x,, ..., x,} are pairwise disjoint elements in B. Then one
may choose a set {a,, a,, ..., a,} or pairwise disjoint elements in A such that a; =
= x;.(i = 1, ..., n). Let us proceed from here.

It clearly suffices, in view of proposition 4.2, to prove the theorem for finitely
generated free I-groups. Suppose then that F; is the free I-group over the free set of
generators {ay, ..., a,}, F, the free I-group over {b,...,b,}. Let « : F, H F, > N
be an l-homomorphism and ¢ : M — N be an onto [-homomorphism. Consider the
following four sets: {a;*a =aa*|i=1,...,n}, {a, a=aa"|i=1,...n},
{bj*ta =ba*|j=1,...,m} and {b;"x = bja~ |j =1, ..., m}. According to our
informal lemma in the previous paragraph we may find preimages as follows: for each
i=1,...,n0< x;, y;suchthat x;¢ = a;*a, y;,¢ = a;"aand x; A y; = 0; likewise
for each j = 1,...,m 0 < z;, w; with the properties that z;¢ = b;*o, w;¢ = b;"a
and z; A w; = 0. In addition we may take each x; and y; to be disjoint to each z;
and w;; this is the crucial step.

Now define a@ =x;—y; (1<i<n), and ba, =z; —w; (1 <j=<m).
These assignments can be lifted to I-homomorphisms &, and &, of F, and F, respec-
tively into M such that &;¢ = a, (i = 1, 2). Since the images of &, and &, are element-
wise disjoint, the induced homomorphism & on F; B F, preserves the lattice opera-
tions. Evidently @¢ = o, proving at last that F, [ F, is projective.

We point out that we have been unable to determine whether the converse of
corollary 4.2.1 holds. We can make the observation that a countable projective must
be free as an abstract group; this is a corollary of Weinberg’s result in [8] that every
countable subgroup of a free I-group is group-theoretically free.

Corollaries 4.2.1 and 4.3.1 completely characterize those projective I-groups with
finitely many disjoint elements. They are precisely the finite cardinal sums of copies
of Z.

One important question still left open is the following: are all I-subgroups of
free I-groups projective? Equivalently, is every I-subgroup of a free I-group a retract?
Or is it perhaps the case that for each projective I-group P there is a free I-group F
and a (projective) l-group Q such that F = P 14 Q?

5. Odds and ends. We compile here some partial results and some facts about l-ideal
of free products.

Let &#* stand for any of the varieties &, N, R, W or £ A. Recall that an
element a > 0 in an I-group G is basic if {x |0 < x < a} is totally ordered. Our
main result here is that if 4 and B are representable I-groups in £* and B is not an
o-group, then no element 0 < a € 4 is basic in A IL.* B. We need a lemma, which by
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itself is rather curious. Recall corollary 2.3.1: it says that for #* = %4 we have
O<aAnbeAl*B whenever 0 <ae A and 0 < beB. The same proof goes
through for all the other varieties provided A and B are representable.

5.1. Lemma. Let A be a representable I-group in ¥£* and Be ¥*. Suppose
0<aeAd 0<b;eB(i=1,2) withb, | b, Thenin A1*Ba, A b, | a, Ab,.

Proof. If a; A a, =0 then (a; A by) A (a, A b,) =0 and neither is 0 so
a; A by|a, A b, So assume 0 < a; A a, and let N be a minimal prime of 4
without a; A a,; then a; + N > 0 for i = 1,2. So we may suppose that 4 is an
o-group and that 0 < a;e 4 (i = 1, 2).

Let K= A x B and ¢ : A 1L* B> K be the canonical map; (w~ =ote that K e
€ Z*). Then (a; A b)) ¢ = a;¢ A byp =byp =by, while (a; A by) @ = b,;
‘therefore (a; A by) ¢ || (a, A by) §, and hence a; A by | ay A b,.

5.2. Theorem. Suppose A is a representable l-group in £* and B € £* but not
an o-group. Then no 0 < a € A is basic in A 1* B.

Let M(N) be an I-ideal of A(B) and consider the natural map o(M, N) : A I* B —
— A[M 1* BIN. Let K(M, N) be the kernel of o(M, N).

5.3. Proposition. With A, Be ¥* K(M,N) is an l-ideal of A1* B such that
K(M,N)n A =M and K(M,N)n B = N. Moreover K(M,N) is the smallest
I-ideal of A 1* B which meets A in M and B in N.

1) K(M, N) is prime in A 1* B if and only if both M and N are prime in A and B
respectively, and either M = A or N = B.
2) If M is proper in A (or N is proper in B) then K(M, N) is proper in A 1* B.

5.3.1. Corollary. With the same notation of 5.3, K(M , N) is the l-ideal generated
by M and N.

6. EXAMPLES

6.1. It is well known that if the abelian group A4 is a retract (in the category of
abelian groups) of the group B then A is a direct summand of B. This is not true for
the variety #A. Let A = Z and B = Z X Z; the projection of B onto the top com-
ponent A is a retraction in £ A4. But A cannot be a free factor of B since B is totally
ordered.

6.2. (Bernau) Let G = {m + n./2| m,ne Z} and assign to G the usual archi-
medean total order. Now G 1* G is the free abelian I-group over G H G (1.9);
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Bernau showed in [2] that G 1L* G is not archimedean. Thus the free 4-product of
archimedean I-groups need not be archimedean.

6.3. In [6] we defined a tensor product as follows: given two abelian [-groups A4
and B there is a (unique) pair (4 ® B, 1), where 4 @ B is an abelian I-group and ¢
is an I-bilinear map of 4 x Binto A ® B (I-bilinear = bilinear, and for each positive
element in one component, the induced map in the other is lattice preserving), such
thatif ¢ : A x B — Lis any [-bilinear map into an abelian I-group Lthere is a unique
l-homomorphism ¢* : 4 ® B — L*). We proved in [6] that the functor G ® (.)
preserves cardinal sums. Here we show it does not preserve free products in general,
and hence need not have an adjoint functor. Let G = Z [ Z; if G ® (.) preserves
free A-products, then G® (Z14Z) ~GQ®Z1"G® Z. Since G® Z=G we
should have G ® (Z 1" Z) ~ (Z @ Z) 1* (Z @ Z) which is the free abelian I-group
on two generators. However

CR(ZI'2)=Zm2)®(Z1"2)~(Z1'Z)®(ZB Z) ~
~(ZIAZ2)@Z B (Z1'2)QZ~(z14Z2)@m(z1Z).

Since the free [-group on two generators is indecomposable this is a contradiction.
For G = Z @ Z then G @ (.) does not have an adjoint functor.

6.4. An infinite chain of varieties of normal valued /-groups, each of which inter-
sects R in L A. Let ¥n be the variety of I-groups G satisfying na + nb = bn + na
for all a, b€ G. That each #n is a variety of normal valued I-groups is an easy
consequence of Wolfenstein’s theorem 3 in [10]. Evidently £1 = ZA.

Next suppose A is representable I-group in #n; we show A is necessarily abelian.
If not we may suppose a” < a, for some a, b e A. But then n(a®) = (na)’ < na,
and so na = (na)” < (na)"~ " < ... < (na)® < na, which is abusrd. Therefore A
is abelian, and it becomes clear that ¥R n ¥n = ZLA.

We consider the chain 1 € ¥2 < P4 < ... < ¥2" < ...; we wish to show the
containment is proper at each step. It will then follow that #2" < #N.

We construct for each k = 2" and I-group Gy as follows: let K, = Z,H Z, H ...
... B Z_y, with Z,, = Z (0 £ m < k — 1). Define a homomorphism r, of Z into
the l-automorphism grop of K; by

(tos ts oo tre1) (i) = (fo—jos ty—jos o oos Bm1y=jo) »
where j* = j mod k. Let G, = Z x K, and define the group operation by

(i3 10y tyy oo tey) + (J3 Uos Ugs wvr Ug—g) =
= (i +j; (tos tys s timq) (i) + (o5 gy ooy Up—y))

*) Such that 7¢* = ¢.
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(the last sum of k-tuples is coordinatewise addition.) G, becomes a group, and if we
set (i5 tg, ty, ooy ti—q) = O when i > 0, 0ori =0andeacht, =20(0=<m<k—1),
then G, becomes an I-group.

Claim: G, e Lk~ Z(k[2). For let k(i; to, ty, ..., t,—4) = (ki; to, 1}, ..., t;—;) and
k(js o, gy ooy w—q) = (kj; ug, uy, ..., up—q); (we really do not care about the f,,
and u,,, as we shall see.) Now,

(ki + K3 to-qjye + 40> -+ Hm1y=iyx + Uig—1)) =
= (kj + ki to + Uy ..oy Lgm1y + Ugmq)) =
= (kj + ki; ug_giys + 105 -0 UG—1y—kiys + ta-1)) =
= k(j; s s oo thh—1) + (i3 toy By vy tosy) -
Hence G, € ZLk.

On the other hand let x =(0;1,0,0,0,...,0) and y =(1;0,0,...,0). Then
(k[2) x = (0 (k[2), 0,0, ...,0) and (k/2) y = (k[2; 0,0, ..., 0); now

(k[2) x + (k[2) y = (K[2;0,0, ..., 0, k[2,0, ..., 0),
where the non-zero entry is in the (k/2)-th coordinate. Yet
(k[2) y + (k[2) x = (k[2; k[2,0,0, ...,0) % (k[2) x + (K[2) y,

proving G, ¢ Z(k/2). We have therefore proved all our assertions about this example.

6.5. Using the proof of theorem 2.1 we can show that G IN H is never in %n
(n=1,2,...), when G and H are non-trivial I-groups and G is an o-group. This
implies of course that the same is true when G is a (normal valued) I-group having
at least one normal prime. If we knew that every I-group in #n has a normal prime
we could conclude that G I¥ H is not in #n whenever G and H are non-trivial
(normal valued) I-groups.

On the other side of the spectrum is it true that the free product in #m always
fails to be in #n when ¥n = #m? (The latter containment holds if and only if n is
a proper divisor of m.) It can be shown, the reader is invited to try it, that the free
product in £m of Z and H € ¥m is outside ¥n. Thus G 1™ H fails to be in £n
whenever H € $m and G is an I-group having a factor isomorphic to Z.

6.6. We proved that each #n was a variety meeting £R in £ A. Consider now the
variety of I-groups G satisfying a + 2b = 2b + a for each pair a, b € G. This variety
must of course meet ZR in £ A; we show it actually coincides with £ A. For sup-
pose G is an I-group in the variety under discussion; let M be a convex I-subgroup of G
and 0 < be M; then 2(b°) = (2b)* = 2b e M. By convexity, since b* > 0 we get
b® e M. Every convex I-subgroup is normal in G, and in particular G is representable,
thence abelian.
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6.7. The variety #C. The I-group G is said to have commuting conjugates if
a + a’ = a’ + afor all a, g € G. The class of all such I-groups is a variety denoted
by ZC.

i) A weakly abelian [-group in #C which is non-abelian. The example of 3.5 is such
an l-group. For

(a, b, ¢) + (a, b, c)™*? = (a, b, c) + (a, b, c + ay — bx) =

= (2a, 2b, 2¢ + ay — bx + ab),
while
(a, b, ¢)*?? + (a, b, c) = (a, b, c + ay — bx) + (a, b, c) =

= (2a, 2b, 2c + ay — bx + ab).

Hence this I-group has commuting conjugates.

ii) A weakly abelian [-group not in #C. Put a weakly abelian total order on a free
group with two or more free generators; such a group is clearly not in ZC.
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