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Introduction. As in [16], we suppose that G is an open set in R™, the Euclidean
space of dimension m > 2, and that the boundary B of G is non-void and compact.
B will denote the Banach space of all finite signed Borel measures with support in B;
the norm of an element € B is its total variation |u|. Following J. KrAL [9],
a point x € R™ will be termed a hit of a half-line or an open segment S on G provided
x € S and each neighborhood of x meets both S n G and S — G in a set of positive
linear measure. Given ye R”, 0 < r £ o0 and §eI' = {ze R™; |z| = 1}, we shall
denote by n,(0, y) the total number of all the hits of {y + ¢0; 0 < ¢ < r} on G. For
fixed r > 0 and y € R™, n,(0, y) is a Baire function of the variable 6 on I' (see [9],
proposition 1.6) and one may define

v(y) =J n(0, y) dH,,_(6)

where H,,_, stands for the (m — 1)-dimensional Hausdorff measure in R™.
With each p e B we associate its potential

Un(x) = Lp(x — y) du(y)

corresponding to the Newtonian kernel p(z) = |z]*™"/(m — 2).
Throughout this paper we shall assume that 1 is a fixed non-negative element of B
and we agree to impose

(1) sup [v,(y) + UA(y)] < oo
yeB
on G and A.
Then, for each u € B, the distribution I u defined in [16] by

(2) T u(p) = J grad ¢(x) . grad Up(x) dx + f o(x) . Up(x) dA(x)

G B
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over the class. 2 of all infinitely differentiable functions with compact support in R™,
can be identified with a uniquely determined element  u of B and the operator
J :p— T p acting on B is a bounded linear operator (see [16], theorem 5 and
remark 9). As mentioned in [16], T u is closely connected with the third boundary
value problem in potential theory.

It is natural to investigate the applicability of the Riesz-Schauder theory to the
third boundary value problem formulated as follows: Given v € 8B, determine p e B
with 7 u = v. For this purpose we shall consider the decomposition

T =aASf + T,
where « is a real number, 4 = H,,_ (I') and # stands for the identity operator on B
and investigate the quantity

o7, =inf||7, - 2|
B !
where 2 runs over the set #' of all operators acting on B of the form

2... =21<fj, sy m;
=

where n is a positive integer, m; € B and f;’s are bounded Baire functions on B. In
a similar way as in [10] it is possible to determine the optimal value y of the para-
meter a and evaluate the quantity

. o
() ,_ 0T, 0T,

= inf
Afy| ~ avo Ala]

in geometric terms connected with G and A.

Denote by I, the set of all isolated points of B and put E=B — I, or E = B
according as I is finite or not and write B for the set of all points y € E that have
a neighborhood Q(y) such that Q(y) — G has Lebesgue measure zero. Let B, stand
for the set of those y € B at which the m-dimensional density of G equals 4. Then B,
is a Borel set with H,,_(B,) < oo and one may consider the Lebesgue decomposition
A = 2; + 1 with respect to the restriction H of H,_; to B,; here A, is absolutely
continuous (H) and /. and H are mutually singular. If » > 0 and y € R™, denote by
Q,(y) the open ball with center y and radius r and put

b(y) = %W j ot )] de

(m—2)rm2 o

(Note that 8,(y) is just the value of the potential induced at y by the restriction of 1

to 2,(y).)
Forj=1,2setk; =0or

kj=lim sup [v(y) + 8(y)]

r=>0+ yeB;
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according as B; = @ or not. With this notation we have the following theorem (an-
nounced without proof in [15]) which we state here for the simplest case when U4,

1S continuous.

Theorem. If a’ and y are defined by (3), then a’ < 1 if and only if, simultaneously,
ki <A, k,<14.
If these inequalities hold, then one of the following cases must take place:

(i*) B, =0,
(i) B, = 0 or ky = 14 + k,,
(iii) B, 0 + B, and |k, — k,| < 34.

In the case (i*)
al=2k2/A, ‘y=%’

if (ii) occurs, then
a=kjl4d, y=1,

while in the case (iii)

o kithketid 3 ki—k

3 y
k, — ky + 34 4 24

Under suitable conditions the corresponding theorem for discontinuous U4, is the
same, only the definition of the constants k,, k, must be generalized and becomes
more complicated. On the other hand, if UA happens to be continuous on B (in parti-
cular, if A = 0), then 9,(y) can be omitted in the definition of k, k,.

The methods employed here are similar to those developed by J. Kral in [9], [10].
Results of this paper will be useful in connection with the solution of the third bound-

ary value problem investigated in [17].

1. Neotation. In what follows we shall keep the notation from the introduction. We
briefly recall the necessary notation occurring in [16]. As usual, for M = R™ we
shall denote by cl M, fr M and diam M the closure, boundary and diameter of M,
respectively. H, will stand for the k-dimensional Hausdorff measure in R™ defined
in the usual manner (see [16]); thus H,, coincides with the Lebesgue measure in R™.

For x e R™ and r > 0 put
Qx) ={zeR™ |z — x| <r}, I(x)="frQ(x),
F=F1(O), A=Hm_1(F);

% denotes the characteristic function of .Q,(x).
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As mentioned in [16] (see section 2), results of [9] imply, for each y € R™, the
existence of a unique element v, € B such that

4) Ad(y) o(y) + <@, v,y = j grad ¢(x) . grad Ud(x) dx, ¢€2,
G

where d(y) is m-dimensional density of G at y and &, denotes the Dirac measure
concentrated at y. Moreover, for the indefinite variation lvyl of v, holds

vl (2() = ely).

Denoting by n(y) the exterior normal of G at y in the sense of Federer (for defini-
tion see [16], section 2), we have from lemma 2.12 in [9] (letting C = R™ — G)

[x — y|"

(5) Vy(M) = - JM wdl{m—n("), Y€EB,

whenever M < B is a Borel set.

Let # denote the Banach space of all bounded Baire functions on B with the usual
supremum norm; ¥ will stand for the subspace of continuous functions. It is known
(see [3]) that the dual space #* of # consists precisely of all additive set functions
with bounded variation defined on the class of all Borel subsets of B. Clearly, B is
a closed subspace in #*. It is also easy to see that #* is a direct sum of B and the
space B, which consists of all elements of #* vanishing on ¢. The Hahn-Banach
theorem may be used to assert that B is a proper subspace of #* if and only if B
is infinite.

If p e B and g is integrable (u), then gu € B is defined by

<f’gﬂ> = <fg’”>’ fe'@-

In [16] the bounded operators W, V acting on % were introduced as follows:

Wi(y)=Ady) f(y) + <fivyy, Vf(y)=UfAy), fe®, yeB.

The importance of these operators lies in the fact that the restriction to B of the dual
operator to T = W + V coincides with the operator 7 (see [16], proposition 8).
We also know that

(6) Wé €
(see (16) in [16]).

Let us observe a special case here. If B is finite, then (1) implies 2 = 0 so that 7
reduces to the operator NU introduced and investigated in [9]. For this reason, in
what follows we exclude the case of a finite B.

Let us denote by ¥ the class of all compact operators acting on 4 and by & the
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class of all operators Q acting on % of the form

0... =§1<..., m> f;

where n is a positive integer, m; € B and f; € 4. Clearly, ¥ < 4.
For any bounded linear operator X on £ put

oX =inflX - Q||, X =inf|X — Q.
QeF Qe¥

It follows immediately that 0 < ®X < wX = |X|. An example can be constructed
to show that, in general, the equality ®X = wX does not hold.

Let us also recall the following terminology. A point y € R™ is termed a discontinui-
ty for a u € B provided p({y}) = 0. Every u € B, being finite, has at most countable
set of discontinuities. Finally, given ¢ > 0 and p € B, there is a y' € B such that
|u — 1| < eand p’ has only a finite number of discontinuities.

The following lemma is an easy consequence of the well-known compactness
criterion of a set in 4.

2. Lemma. Let an n,e B be associated with each y € B in such a way that the
equality

Zf(y)=<finy, feB,
defines a compact operator on B. Then wZ = 0.

Proof. Denote Y = {fe%; |f|| < 1} and fix an arbitrary & > 0. By hypothesis,
ZY is relatively compact in 4. Using compactness criterion (see [3]) we may assert

the existence of pairwise disjoint Borel sets By, ..., B, with B = {J B; and points
s; € B; such that j=1

S\;P |Zf(s) — Zf(s)| <&

whenever feYand 1 £j < n.

Let f; denote the characteristic function of B; and put

Zf =Y ony sy fed.

Then Z, € # and one easily verifies that |Z — Z,| < &. Consequently, Z = 0 and
the proof is complete.

The following lemma is in fact a more general version of theorem 3.6 in [9]. It
will enable us the investigations of properties of the operator T.
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3. Lemma. Let R be a subset of the real line such that
@) infR=0.

For each y € B, {, is an element of B such that the relation

(8) Xf() =<f&>, fea,

defines a bounded operator X acting on 9. Suppose that, for each r € R,
©) |6, — &[ (B - 2(2) » 0

as |y — z| - O uniformly with respect to z € B and

(10) |&] (F(y)) = 0

whenever y € B and r € R. Let for each y € B be

(11) &({zh) =0

provided z * y.
If K, = B is a finite set, then

(12) wX £ lim  sup |&]|(2/(y)).

r—=0+ yeB—K;

Given an arbitrary ¢ > 0, there is a finite K = B such that
(13) oX + ¢ = lim sup |&]|(2(y))-
r-»0+ yeB—K

If, in addition, the equality

(14) &({y}) =0

holds for each y € B, then

(15) wX = lim sup || (2())
r-0+ yeB

and

(16) X% %

provided X is compact.

Proof. Fix an arbitrary ¢ > 0. By definition of wX, one easily constructs f; € %,
m; € B such that the operator X, defined by

Xsf= Zl<fs mj>fj’ fE.%,
satisfies ’

(17) X — X, £ 0X +¢
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and, in addition, m; have only a finite number of discontinuities each. Fix a finite
set K = B in such a manner that all the discontinuities of each m; belong to K.
Every m; splits into mjl- having no discontinuities and a finite combination of Dirac
measures, to be denoted by mlz.. According to (11), y is the only possible discontinuity
for £, so that we have for ye B — K

”5y Zlfi()’) "’j” = ”fy zlfj()’) m;“ " _Zlfj(y) mJZH
Jj= i= ji=
whence, for r > 0,

[x — x| = s;lPK“éy - _;fj(Y) my| =

2 sup 6, = $1,0) mi] (@0)).

Putting 8 = max ||f;], the norm | X — X,|| admits the estimate
1<jgn

(18) I1X — X[ = sup [¢,[(2(y)) — B X sup [m}] (2(y)) -
veB—K j=1 yeB
Since B is compact and m} has no discontinuities,

(19) lim sup [m}|(2(y)) = 0.

r-»0+ yeB
Letting r — 0+ in (18) and using (19) and (17) we obtain (13).

As for the proof of (12), fix first an arbitrary finite set K, = B and an r € R and
for 6 €(0, r) put

2(3) = sup [&,] (1 245(y) — 2r-4(¥) -
ye
Using (10), (7), (9) and compactness of B, we verify that

(20) lim a(8) = 0.

-0+

For r € R define the operator X, acting on % by
X, f(y) =<f(1 =%, &>, yeEB.
If fe # with ”f]! < 1land y,zeB with 0 < ]y — z| = 9, then
X, £(y) = X, 1(2)| < o8) + [¢. = &,[ (B — @)
Consequently, by virtue of (20) and (9), the functions in

{X.f: fed, ||f] <1}
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are equicontinuous and, of course, uniformly bounded, so that the operator X, is
compact. Applying lemma 2 we conclude that there is a Z, € & such that

(21) %, - 2] <

~N | -

whenever r € R.
The above considerations show, in particular,

(22) XB<%, reR.
Fix now an arbitrary finite set K;, K; = {yy, ..., yi}. Let ¢; denote the charac-
teristic function of {y;} and for r € R put
k
er = Z <f$ Xr,yjéy,> C;, fe@,
j=1
Yr =X - Xr - Yr >
Z, =X-2,-Y,.
The inequality (21) yields | X, — Z,| < 1/r and we have
(23) oX £ |Z] < |X% ]+ 7",

because Y, € &.
Since for fe# and y e B — K, we have

er(y) = <f9 Xr,yéy> s
while X, f(y) = 0 provided y € K,, we conclude that

|%] = sup [&] (@)

yeB—K

This together with (23) and (7) yields
(24) wX <inf | X,| S lim  sup |&](2(y))-
reR r—-0+ yeB—K;

Now (12) is established.
In the rest of the proof we shall assume (14). Then

sup ,éyl (Qr(y )) = Sy‘:s Iéyl (Qr(y))

yeB-K’
for any finite K’ = B, so that (15) follows from (12) and (13) immediately.
If X is compact, then wX = 0 by lemma 2. Going back to (]5), we see that

lim sup |&,] (@(y)) = 0.

r—»0+ ye
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Putting K, = 0 in (24) we have X, = X — X, and (24) implies
inf[X - X,| =0.
reR

Combining this with (22) we get (16) and the proof is complete.

4. Notation. The symbol B* will stand for the set of all non-negative elements
of B. In other words, B* consists of all finite Borel measures with support in B.
Recall that the reduced boundary B of G is the set of all y with n(y) + 0. As quoted
in [16] (see section 11),

(29) H,_(B) < .

Denote by R, the set of all » > 0 for which there is a spherical shell with radius r
such that H,,_,(S n B) > 0. Analogously, given 1, € B, let Ry(1,) stand for the
set of all r > 0 such that A4(S) is positive for at least one spherical shell S with
radius r. We shall write, for the sake of brevity, R, in place of Ry(%).

5. Lemma. The set R, is countable. If 1o € B and the potential Ul, is bounded,
then the set Ro(2) is countable as well.

Proof. Let S;, S, be the spherical shells with different radii r,, r,, respectively,
and S = S; N S,. Since H,,_,(S") < o, S’ is a polar set and Ay, having bounded
potential, possesses finite energy so that 1, does not charge S’ (see [12], theorems
3.14 and 2.1). Consequently, for any positive integer n and each choice of shells
Si, - . S, with mutually different radii we have

._leo(si) = lo(ylsi) < Ao(B) < 0,
YH, (BnS)=H,_(BAnUS)<H,_(B)<x.
i=1 i=1

Now we conclude easily that R; and Ry(4,) are countable.

6. Proposition. Let 1, € B* and suppose that U, is bounded. Fix an arbitrary

Yo € B.
The potential Ul is continuous at y, with respect to B if and only if the following
condition is fulfilled: For any ¢ > O there is an r > 0 such that the inequality

(26) Uty Ao(y) < &

holds for each y € Q(y,) N B.
In order that the potential Ul, be continuous on B (with respect to B) it is neces-

sary and sufficient that

(27) lim sup Uy, , Ao(y) = 0.
B

r->0+ ye
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Proof. For r > 0, y e B denote c,, the characteristic function of R™ — Q,(y).
Suppose that r¢Ro(/10) and let ¥y, 5, ... be points of B with lim y, = y,. Since

n— o

2o(T'(yo)) = O, the Lebesgue dominated convergence theorem may be used to assert

lim Uc, ,, 2o(ya) = Uc,, Ao(¥o) -

Consequently, the function
yi— Ucr,y AO(.V)

is continuous at y, with respect to B whenever r ¢ Ro(4o). The set Ro(4,) being
countable by lemma 5, we can choose numbers r, ¢ Ro(4o) such that r, \ 0. Fix
now y € B. Then

[4 21

™,y

almost everywhere (1,) because Ao({y}) = 0. Making use of the monotone conver-
gence theorem we obtain

lim Ue,, , o(y) = Ulo(y) -
Since Ul is a limit of functions continuous at y,, the first part of the proposition
follows immediately by the well-known theorem.
The latter assertion is an easy consequence of (26) and compactness of B.

7. Remark. Referring to the Evans theorem (see [12], theorem 1.7), it should be
noted that conditions occurring in the above proposition characterize continuity U4,
not only on B but in R™ as well. Let us also observe the following corollary of the last
proposition: If Z,, 1, € B*, the potential U, is bounded and 1; < 1, (ie. 1, — 1, €
€ B*), then continuity of U7, implies the continuity of UZ,.

Note here that a condition similar to (26) occurs in [1] in connection with the
investigations of properties of the logarithmic potential.

8. Lemma. For each y € B define

(28) dé,(x) = p(x — y) di(x).
Then £, €B and
(29) S &y =Vf(y), veB, feA.

If R = (0, ) — R, where R, has the meaning defined in 4, then (7) is true and &
satisfies the assumptions (9), (10), (11), (14) of lemma 3; in particular,

y

(30) oV = lim sup Uy, , A() .
B

r-0+ ye

Proof. Clearly, ¢, € B and (29) holds. Since R, is countable by lemma S, the equal-
ity inf R = 0 is obvious. Suppose that r € R and y, z € B and denote |y - z[ = /.
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If § < 4r and x € B — Q,(z), then

HX - y‘z‘m —_ |x - z|2—m| < (m — 2)6‘(‘57‘)1_"’.
Consequently,
&, — &| (B — 2(2)) < 84| (4r)' ™

and (9) is verified. The rest is easy.
As for (30), it suffices to observe that

|€y| (Q,.(y)) =Ulkry )'(y)
and apply (15) of lemma 3.

9. Proposition. The following statements are equivalent each to other:
(i) V& < @.

(ii) V¢ < %.

(iii) T¢ < %.

(iv) The potential UA is continuous.

(V) oV =0.

(vi) The operator V is compact.

Proof. Trivially, (i) implies (ii). Going back to (6) and recalling that T =V + W
we see that (ii) and (iii) are equivalent each to other. In particular, if f = 1 on B,
then (iii) together with the equality Vf = UA implies (iv). The implication (iv) = (v)
follows from proposition 6 and lemma 8 (see (27) and (30)). Clearly, (v) implies (vi).

It remains to prove (vi) = (i). According to lemma 8 it is possible to apply lemma 3

to the operator V in place of X. Since V' is compact by hypothesis, it is V4 < € by
(16) and this completes the proof.

10. Lemma. Put R = (0, ) — R, and for y € B, x € R, define

(3 & = A(d(y) — a) 8, + v, . »
Then (7) holds and &, satisfies the assumptions (9), (10), (11) of lemma 3. Further

(32) S, &> = Wi(y) — A f(y)
whenever y € B and f € 8. '

Proof. We have inf R = 0 by lemma 5. Returning to (5) and to the definition of R,
we easily verify (10) and (11). The equality (32) is obvious by (31) and the definition

of W.
If re R and y, z are arbitrary points in B with 0 < |y — z| = § < 1r, then

(33) |éy - é,! (B - Q,(z)) = |vy - v,l (B - .Q,(z))
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because v, and 6, are mutually singular. Simple calculation shows

xX—y X —z

L6-(3n)™"(m + 1)

B P

provided x € B — Q,(z), whence by (31), (33) and (5)

). (6 = 3) _n6) (e =2 gy
EE N

wfwa—oﬁ»=j

B-9.(z)

<6 (11)7" (m + 1) H,,(B).

Now (9) follows immediately and the proof of the lemma is complete.

11. Notation. As in the introduction, the symbol I, will stand for the set of all
isolated points of B and put E = B — Iz or E = B according as I is finite or not.
For y € B we put

dn(x) = p(x — y)dA(x), 1, =1n,+v,.
In what follows we fix a real number o and for r > 0 and y € B define
aly) = AlG) - 2| + 5] (20)).
Finally, I stands for the identity operator on # and

(34) T,=T— aAl.

12. Theorem. Let ¢ be an arbitrary positive number. Then there is a finite set K,
such that

(35) Ko = B —I; (cE)

and oT, admits the following estimates:

(36) lim sup a(y) £ 0T, + ¢,
r—0+ yeE—Kg

(37) lim sup a(y) = @T,.
r—»0+ yeE

Proof. Denoting
& = A(d(y) —a)é, + 1,, yeB,
we have for f e # '
T.f(y) =</ &>
If we put in lemma 3 R = (0, ) — (R¢ U R;), X = T, it follows from lemmas 5,
8, 10 that hypotheses (7), (9), (10), (11) are satisfied. Using lemma 3 with K, =
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= B — E, we obtain (37) from (12), because

(38) €] (2:(») = aly) -

By (13) of lemma 3 we conclude that there exists a finite set K < E such that
(39) lim  sup a,y) £ T, + ¢.
r—=0+ yeE—K

Put now K, = K n (B — Ip). Then (35) is true and we are going to show (36). This
is particularly clear whenever I is finite. Indeed, then E — K = E — K, and (39)
yields (36).

Therefore we limit ourselves to the case of Iy infinite, so that E = B. To prove
(36) it is sufficient to show that

(40) sup a,(y) = sup a/y)

yeB—K yeB—Ko

holds for r > 0 small enough. Putting B, = B — K, we have B — K = B, —
— (Iy n K) and (40) will follow if we verify the inequality

(41) sup a(y) £ sup ay)

yeB; yeB1—(IpnK)
for small r > 0.

Fix an arbitrary yeIz n K < B, and
(42) 0 <r<dist(IznK, B, — (Iz n K))
where dist (...) stands for the distance of sets. Then
(43) a(y) = Al - o
because d(y) = 1and |1,| (2,(y)) = 0. On the other hand, we have for any z €I,
(44) Al — o S az).

Observing that Iy — K #+ 0 and B; n (Iz — K) = B, — (I n K) we obtain from
(43) and (44)
a(y) £ sup afz) < sup alfz).

zeBin(IB—K) zeB1—(IsnK)

We have thus (41) for r satisfying (42). This completes the proof of the theorem.

13. Notation. Let us denote by B* the set of all y, € R™ with the following property:
there are y,€ B — {y,} such that y, — y, and d(y,) - d(y,)- A point y, e R™ is
said to belong to Z if there exists » > 0 such that H,(2(yo) — G) = 0. Put B =
= B — B* and for y € {0, 1) denote

B(y) = {yeB; d(y) = 7} .
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Clearly, B = B(4), Z = B(1) and Iy = B. The set B(y) n B is isolated for each
€0, 1.

14. Lemma. The following statements hold:
(i) The set B is countable.

(ii) The set Z U B is dense in B.

(iii) The sets B and B are disjoint and

Proof. Put
D = {[x, d(x)]e R"*'; x e B}

and observe that y, € B implies that [y, d(y,)] is an isolated point of D. Now (i)
follows from the fact that any isolated set in R™*1! is countable.

As for the proof of (ii), choose an arbitrary y e B — Z. Then we have H,(Q,(y) —
— G) > 0 for each r > 0 and also H,(2,y) n G) > 0 because G is open. Hence it
follows by the relative isoperimetric inequality for sets with finite perimeter (see
Theorem (4.3) in [14]) that

(45) H,_(2()nB)>o0.

In particular, y e cl B. The proof of (ii) is complete.

Since B = B(3), it follows from (45) that each y € B belongs to B*. In other words,
B~ B = 0. Considering the definition of Z and the inclusion Z < B(1) we easily
verify that Z — I, « B*. Consequently, Z n B = I,. The opposite inclusion is
obvious.

The proof of the lemma is complete.

15. Notation. As in [16], denote by H the restriction of H,,_, to B.In view of (25)
we have H(B) < oo and as quoted in [16], section 11, H e B*.
For each y € B put

provided the last limit is meaningful and finite; otherwise set [(y) = 0. Letting
A = A — IH we conclude that 1 is the singular part of A with respect to H (compare
[5], section 6). ‘

16. Lemma. If Q is an arbitrary finite subset of E and y, € B*, then

(46) lim sup a(y) =1lim  sup a(y).

r—»0+ yeE-Q r=0+ yeE—(Qu{yo})
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Proof. Fix an ¢ > 0 and a sequence {y,} of points of E — {y,} such that y, - y,
and d(y,) — d(yo). There is a positive integer n, such that

(47 Ald(yo) — of < Ald(y,) — of + ¢

provided n = n,.
Let Ry, R, be the sets defined in 4. According to the definition of a,(y) and (47)it

will be sufficient to prove
(48) [750] (2(¥0)) < Tim inf [z, | (2(y,))
n—o

for re R = (0, 0) — (R; URy).
Recalling that A = 1 + IH we may write

(49) o] (2.(y) = (m — 2)~* fxxr,y(z) |z =y mdi +
[ 1 I(z) _ n(z).(z — y)| g
+ Lxr,y(z) T T IdH( )

forall ye Band r > 0.
If r € R, the Fatou’s lemma may be applied to assert (48).
The proof is complete.

17. Corollary. Theorem 12 remains valid if (35) is replaced by
(35) ‘ KocB—-1,.

In particular, if B — Iz = B* holds, then

oT, = lim sup a,(y).
r-»0+ yeE

Proof. Tt follows immediately from the last lemma and theorem 12.
18. Lemma. Let Q < E be a finite set and y, € B — Ig. Suppose that the potential
U(4 - 1) is continuous at y,. Then

(50) lim sup a,(y) = lim sup  aly).

r—»0+ yeE—-Q r—>0+ yeE—(Qu{yo})

Proof. For r > 0, y € B put

q,(y) = Ald(y) = of + f Zr(2) - l"L)(Z—}y—)' dH(z),
5 |z = vl
() = (m -2 Lx,,y(z) Iz — yp-mal,

v = A(d(y) — @) 6, + v,.

y
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Defining the operator W acting on 4 by

Wi(y)=<f¥,>, feR. yeB,
we see immediately that W= W — aAl. Going back to (6) we have W% c %.

Consequently, since for r > 0

[%,] (@:(»)) = sup {WS(»)}

where supremum is taken over all continuous functions with | f| < 1 having sup-
port in ©,(y), we conclude that the function

yi= l‘—)y‘ (Qr()’))

is lower semicontinuous on B for every r > 0.
Choose now y,€ E — (Q U {y,}) with y, - yo. The above consideration and the

equality
7] (@) = a.(»)
yield for every r > 0

(s1) 4,(yo) < lim inf g,(y,) -

n— oo

Employing the Fatou’s lemma we obtain

(52) s(vo) < lim inf s,(y,)

n— oo

provided r ¢ R,. For the sake of brevity put 4, = 4 — 7. By (49) we have

(53)  s(y) + 4(y) = Ukey 1) = a(y) £ 500) + ¢(y) + Uy 149)

for every r > 0 and y € B.
Consequently, combining (51), (52), (53), we obtain for r ¢ R,

(54) ar(yO) é hm lnf ar(yn) + hm SUP UXr,yn ll(yn) + UXr,yo AlU’o) .
n—oo n— oo
Fix an arbitrary ¢ > 0. By hypothesis, U1, is continuous at y,. Using proposition 6
we conclude from (54)
a,(yo) < liminf a,(y,) + ¢

for all r ¢ R, small enough.
The rest of the proof is easy.

19. Remark. Observe that in the course of the last proof we established (54) in
fact for an arbitrary point of E, y,e E — {yo} With y, — y, and re€ (0, ) — R,.
This will be useful for us later.
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In the following theorem we require continuity of U(4 — Z) at every point of B.
This assumption does not seem to be too strong because the set B is at most countable
by lemma 14. A sufficient condition for continuity of the potential U(A — 2) at a point
is stated in corollary 22.

20. Theorem. Suppose that the potential U(A — 2) is continuous at every point
of B. Then

(55) oT, = lim sup a,(y).

r—=0+ yeE

In particular, if UA is continuous, then

(56) oT, = lim sup [4|d(y) — «| + |v,} (2())]-

r>0+ yeE

Proof. Returning to lemma 18 we have

iim sup a,y) = lim sup a ()

r—»0+ yeE—Ko r—-0+ yeE

for any finite K, < B - I;. Combining now corollary 17 and (36) of theorem 12
we obtain easily
lim sup a(y) £ oT,.

r-»0+ yeE

Since the opposite inequality was established in (37) we see that (55) holds.

Suppose now that U4 is continuous. Recalling that 7, = v, + =, and |z,| (2(y)) =
= Uy,,, A(y) we can write

67 (RO) = Ur, A3) < 5] (R0) = ] (@) + Ure, 23) -
By proposition 6, continuity of U implies

lim sup Uy, , A(y) = 0.

r—>0+ yeB

Recalling the definition of a,(y), (56) now follows frem (57) and (55).

21. Lemma. Let r > 0, yo€ B and B e R'. Suppose that 1, is a non-negative
function measurable (H) on B such that 1,(x) < B for almost all (H) points x €
€ Q,(yo). Put

= m(m + 1)" (4 + sup v,()) -
Then "
(58) Uleyls H(y) < 2Byr
for all y € 2yo)-
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Proof. Employing corollary 2.14 in [9] we establish the inequality

[LH(Qyy)) £ Byo™ !

for any y € Q/(y,) and ¢ € (0, r). By lemma 10 of [16] we have

Uteos H0) = OO0 [ o[ )] de =

SPyr(t+(m=2)"") < 2Byr, yeQ(yo)-

The proof is complete.

22. Corollary. If yo € B and the function | is bounded almost everywhere (H) in
a neighborhood of yo, then the potential U(A — 2) is continuous at y,. The potential
UL H is continuous provided 1, is a non-negative function measurable (H) and
bounded on B almost everywhere (H).

Proof. This is an easy consequence of (58) and proposition 6.

The formula (56) together with the equality ,(y) = |v,| (2.(y)) (see section 1)
represents a good geometrical interpretation of the quantity wT, (and, as we shall
see later, of o', as well). We are going to give a similar geometrical meaning to

[l (2(3))-

23. Notation and terminology. A function f defined on a non-void set M = R™ is
said to be of the class C; provided M is open and partial derivatives of the first order
of f are continuous on M. A set Q = R™ will be called a smooth surface if there is
a function f of the class C; on M < R™ such that

(59) Q0 = {xeM; f(x) =0, grad f(x) =+ 0} .

Let Q be a smooth surface and x, € Q. An h € R™ is said to be a tangent vector of Q
at x, provided there exists a mapping ¥ of an interval (=4, 8) (6 > 0) into Q such
that Y(0) = x, and y'(0) = h. The set of all tangent vectors of Q at x, will be denoted
by T, and called the tangent space of Q at x,. It is well-known (compare [8]) that T,
is an (m — 1)-dimensional linear subspace of R™. Each @ eI orthogonal to T, _is
called a normal of Q at x,. If Q satisfies (59), then

T, = {he R™; grad f(x,) . h = 0}

and the vector grad f(xo)/|grad f(x,)| is a normal of Q at x,.

The mapping @ = [®y,...,®,] of M = R™ into R™ belongs to the class C,
provided each @; is of the class C, on M. Fix an arbitrary x € M. The linear mapping
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d®, defined by
do(h) = lim ¢t~ '[&(x + th) — &(x)], heR™,
t-0

will be called the differential of @ at x.

Suppose that both S and S’ are smooth surfaces and let @ be a mapping of the
class C, of a neighborhood of S. Let x € S, &(x) = y, #(S) = S’ and denote by T,
and T, the tangent space of S at x and of S” at y, respectively. It is known that d® (h) e
e T, whenever h € T, so that d®, is a linear mapping of T, into T, (compare [13]).
Let ¥" and ¥ stand for the orthonormal basis of T, and T,, respectively. Denote
by M, the matrix of the mapping d®, with respect to the bases 77, ¥”'. Then the ab-
solute value of the determinant of M, does not depend upon the choice of the bases
in T, and T,, respectively, and will be denoted by J&(x).

Using the introduced terminology we are in position to formulate the following
theorem which is a very special case of a general transformation theorem stated in [7]
(Theorem 3.1.).

Theorem. Let S and S’ be smooth surfaces in R™ and y be a Lipschitzian map-
ping of the class C, of a neighborhood of S. Suppose that y(S) = S’ and

LJ./,(X) dHy (%) < .

Then the set y_,(y) N S is finite for almost all (H,,_,) points y € S'. If g is a finite
function on S, put

N(y; S, 8 9) = ¥ 4(2)

zey - 1(y)nS

provided the set Y _,(y) 0 S is finite; otherwise let N*(y; S, S', ) = 0.
Then

(60) J‘ g(x) le(x) de—-l(x) = J\ Ng(ya S’ S,’ ‘l/) de— 1(y)
N s’
provided the integral on the left-hand side converges.

24. Lemma. Suppose that S is a smooth surface in R™, 0¢ S. For x € R™ — {0}
set ¢(x) = x[|x| and for x € S denote by o(x) a normal of S at x. Then

(61) Jo(x) = [ox) - x|
|x|"
whenever x € S. \
Proof. Fix an arbitrary x € S and write, for the sake of brevity, a(x) =g, q)(x) =

= 9. Denote by T? the tangent space of I' at 9 and T* the tangent space of S at x,
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respeciively. Clearly, 9 is orthogonal to T?2. Suppose first T & T2 so that T' n T?
is a linear space of dimension m — 2. Choose in T' n T? an orthonormal basis
eg,..nemandpute =9 —(c.9)0, f =(6.9)9 — 0,y =|¢| and f; = ¢, for
i=1..,m— 2 Since T* % T? we have y + 0 and it is easy to verify that |f'| = .
Putting e,,_; =y~ '€, fu—1 =y~ f’ we see that e, ..., e,_; is an orthonormal
basis in T! and f;, ..., f,,—; an orthonormal basis in T2, respectively.

Simple calculation shows

do(u) =[x|7" (u—(9.u)9), ueR™.
Since $ is orthogonal to T2 we have for j e {1,...,m — 2}
doi(e)) = |[x|7'f;
do(en—1) = |x| (0. 9) fru-1 -

Now (61) follows immediately.

It remains to consider the case T* = T2. Denote by ey, ..., e,,_; an orthonormal
basis in T'. The above consideration yields Jo(x) = |x|™"**. Since o(x) = x/|x],
(61) holds again.

The proof of the lemma is complete.

while

25. Proposition. Let r > 0, y € B and g be a finite non-negative function measur-
able (H) on B. Then the set

(62) Br{y+g0;0<o<r}
is finite for almost all (H,,_,) points @ € I'. For 0 € I' put

(63) ni(y,0) = 3 9(2)

where the sum is extended over the set (62) provided that set is finite; otherwise put
né(y, 0) = 0. Then the function n%(y, 0) of the variable 0 is measurable (H,,_,)
onT and
n(z) . (z
(64) f ni(y, 0) dH,,_,(6) = f o) "= Mgy o).
r BAQ.(y) |z = yI"

Proof. It follows from the results of [6] and [2] that there exist sets N, S;, S, (i =

=1,2,...) such that B — N = 8§, ;s are pairwise disjoint Borel sets, §; = S,
j=1

H,,_,(N) = 0 and S; is a smooth surface in R™ with the property that for each j and
each z € §; the Federer normal n(z) is a normal of S; at z._

We may assume that y = 0. Recall here that

(65) J [n(|2)|'"2| dH,,_1(2) = v,(0) < o

(compare (1) and lemma 2.12 in [9]).
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Suppose first that f is a bounded non-negative function on B measurable (H).
Define the function f on R™ so as to coincide with f on B and to vanish elsewhere and
denote by x; the characteristic function of N - Putf; = 7. ; and choose an arbitrary
t€(0, r). The mapping ¢ is defined in the same way as in lemma 24. Fix a positive
integer j and write Q* = Q,(0) — cl 2,(0), S} =S;n Q* 87 =5, n Q* Since
0 ¢ cl ST, the mapping ¢ is a Lipschitzian mapping of the class C; on a neighborhood
of ST and ¢(S}) = I'. Setting S = S}, S’ = I', ¥ = ¢, g = f; in the theorem quoted
in 23 we obtain according to (65), (60) and (61) that the function N(6; S}, T, ¢)
of the variable 6 is measurable (H,,_,) on I' and

(66) j 1i(?) I"(lz)lmzl dH,,-(2) = J N’¥6; S}, T, ¢) dH,,_(0) .
r

Put B, = B n Q*, I'" = ¢(N). Since f is bounded and H,,_,(N) = 0 we obtain from

(66)

(67) Lf(z)ﬁ%ildym_l(z)= Zfo(e ST, 9) dHy_(0)

=
Consider first the function f = 1 on B. Since the integral on the left-hand side of (67)
converges, the sum i N7¥(0; S}, T, @) is finite for almost all (H,,—;) points 0 € I'.
Choose a feTl’ — I:’zsluch that the mentioned sum is finite. Since 0 ¢ I'" we see that
this sum equals the number of the points of

(68) Bn{ed;t<o<r}.

For such 0’s we have (after returning to the original f)

(®9)  INMeShTe) =T AC)
=
where the last sum is taken over (68). Since H,_;(N) = 0 and ¢ is a locally
Lipschitzian mapping we conclude that H,,_,(I") = 0. Consequently, the set (68)
is finite for almost all (H,,_,) points 6 e I'. Put N{(6) =Y f(z) where the sum is taken
over the set (68) provided that set is finite while otherwise NY(6) = 0. It follows now
from (69) that

NI(6) = Y N7(0; S}, T, )
j=1

for almost all (H,,_ ) points 0 € I'. In particular, the function N is measurable (Hp-1)
on I and we have by (67)

(70) Jf )["(2) 2| dH,,_,(2) =JN{(0)de_1(0).

J=I" r
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Fix now a sequence 7, \ 0 and write N{ in place of N{k for k sufficiently large. Then
we obtain by (70) and (65)

o, et = [ im0,

Considering for a moment f = 1 again, we see from (71) that

lim N{(0) < oo

k=
for almost all (H,,_,) points 6 € I'. Consequently, the set
(72) Bn{ed; 0<o<r}

is finite for almost all (H,,,) points 6 € I' and one easily verifies (we have now re-
turned to our original f)

(73) nf(0, 0) = lim N{(0)
k- o0

provided 0 e I' is such that the set (72) is finite. In particular, the function n/(0, 6)
of the variable 6 is measurable (H,,_,) on I and by (71), (73)

(74) J 1) "2 4 (o) = f nf(0, 0) dH,y_.(0)
BA2,(0) |Z ] r
which is (64) for y = O and f = g.
Thus (64) is established under the additional assumption that g is bounded. Using
standard reasonings one easily extends (64) to any finite non-negative g measurable

(H).

The proof of the proposition is complete.
26. Notation. Fix y € R™ and put
B,={zeB; n(z).(z — y) =0}

and let ¢, stand for the characteristic function of B,. If n; is the j-th component of the
Federer normal n, then n; is a Baire function. This follows from [4], theorem 4.5
and [11], chap. 2. § 31, VI. Consequently, B, is a Borel set and ¢, € 2.

For ze B — B, put

R P ' €I R W
he) = |1 n(z).(z—y) m —2|

and let I,(z) = 0 elsewhere on B. Then I, is a finite non-negative function on B
measurable (H).
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‘Given y € Band r > 0, put

) = AL [ e e,

(m — 2) pm2 o

wr(y) = Uc.vi‘fr,y('1 - 2) (y) >

) = [ 0.0 aH,,0).
r
where n*(y, 0) has the meaning defined in proposition 25. Finally set

9.(y) = 8(y) + vi(y) + wly).

We see that the quantity g,(y) is connected with the geometrical shape of G and the
distribution A over B. The following theorem expresses T, in terms of ¢,(y) and d(y).

27. Theorem. Suppose that the potential U(L — 1) is continuous at every point of
the set B. Then

(75) oT, = lim sup [A|d(y) — «| + g.(»)]-

r-0+ ye

Proof. First we prove the equality

(76) |7, (@) = 9.(y)

whenever y € B and r > 0. Going back to (49) and to the definitions of I, and B,,
respectively, we have '

——m )| dH,,_(z), +

6] (@) = Uz, 200) + f 1 2L =)

BA2,(y) l y l

+ (m —2)7! |z = y|>"™dH(z) .

BynQ.(»)

The second summand equals v}(y) by proposition 25 and the third one equals w,(_v).
Applying lemma 10 of [16] we obtain the equality

(77) Uty ) = 8(7)

so that (76) is established.
Now (75) follows from theorem 20 and (76).

28. Notation. Write, for the sake of brevity, B, = Z n E, B, = Band forj = 1,2
define k; = 0 or
k; = lim sup g.(y)

r=0+ yeB;

according as B; = { or not.
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In the following two theorems the same reasonings are used as in [10] (compare
theorems 3.8, 3.9).

29. Theorem. Suppose that the potential U(A - 1) is continuous at every point
of ¢ [B — (B, U B,)]. Let us distinguish the following three cases:

(1) B, =0 or  ky =314+ k;,
(ii) B, =0 or k234 +k,,
(iif) B0+ B, and |k, — k| <34.
Then

(78) oT, =k, + A} — of in the case (i),
(79) oT, =k, + A|l — «| in the case (i),

while in the case (iii)

ky — ky

(80) oT, = 3k, + k;) + 14 + + 34 — ad|.

Proof. Let us observe that under our assumptions the hypotheses of theorems 20
and 27 are fulfilled because B — I, <« B — (31 U B,) by lemma 14.
We first prove that o

(81) lim sup a,(y) =lim sup a/y).
r-0+ yeE r—>0+ yeBiUB>
Fix an arbitrary ¢ > 0 and write, for the sake of brevity, 1, = 4 — Jand B =

= B — (B, U B,). Using proposition 6 and compéctness of cl B we conclude that
there is an open set Q = R™ and ry > 0 such that

(82) UXr,y;l'l(.Y) <e

whenever ye B n Q and r € (0, r).
Suppose that y, e E — (B; U B,). The set B, U B, is dense in E by lemma 14,

so that there exist y, € B; U B, with y, — y,. According to the remark 19 it is possible
to go back to (54), which together with (82) yields

a(yo) £ sup a/y) + 2

yeB1UB,
for all r € (0, o) — Ro- Now (81) follows immediately.
By definition q,(y) and by (81), (55) and (76) we obtain:

(83) oT, = lim sup [4]|d(y) — o] + g,(»)]-

r-0+ yeBi1uUB;

If B, = 0, then d(y) = 3 foreach y e B; U B, and (78) follows from (83). Similarly,
B, = Qimplies d(y) = ! foreach y € By U B, whence we conclude (79). Suppose now
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that B, + 0 # B,. Then
oT, = max (A|l — a| + ky, A} — of + k,).

Calculating this maximum for the cases (i), (i) and (iii) discussed in the theorem, we
obtain (78), (79) and (80), respectively.

The following lemma shows that under additional continuity assumptions it is
possible to simplify the expressions for k’s.

30. Lemma. Fix j e {1, 2} and suppose that B; * O; then the following assertions
hold.
If UJ is continuous, then

(84) k; = lim sup [v}(y) + w,(»)] .

r-0+ yeB;

If U(A — 1) is continuous, then

(85) k; = lim sup [v(y) + 8,(y)] -

r=>0+ yeB;

Finally, if UJ is continuous, then

(86) k; = lim sup v,(y).

r—+0+ yeB;

Proof. Continuity of U1 implies

(87) lim sup Uy, , A(y) = 0

r—>0+ yeB;

by proposition 6. Recalling the equality §,(y) = Uy, , A(y) (see (77)) we obtain (84)
by definition of k; and by (87).
IfU(A — Z) is continuous, then proposition 6 may be applied again to assert

lim sup Uy, (4 — 2)(y) = 0.

r—>0+ yeB;

For r > 0 and y € B we have by (49) and (76)
ﬁr(y) + Ur(y) - lJXr,y('1 - z) (y) é gr(y) é
6,.()7) + v,(y) + UXr,y(A' - z) (y)

so that (85) is true.
Finally, continuity of UA implies continuity of U(4 — ).) and U1 as well (see remark
7) so that we may use (85), (87) to show the validity of (86).
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31. Theorem. Suppose that the potential U(A — 71) is continuous at each point
of cl[B — (B; U B,)]. Define the number a by

(88) a = inf 2=
a®0 Alotl

Then

(89) a<1

holds if and only if

(90) ky <A, k,<3A4.

If the conditions (90) are fulfilled, then there is exactly one y with

(DT’, —

—! =q
Ayl

and one of the following three cases must occur:

(i*) B, =0,
(ii) B, =0 or ki zZ3A+ ky,
(iii) B, 0+ B, and |k, — k)| <34.

The corresponding values a and y are then given as follows:

a =2k,JA, y=1% in the case (i*),

a= kA, y=1 .inthe case (i)
while in the case (iii)

_kitkatdd 3 ki =k
ki — ky, + 34 4 24

Proof. The proof of this theorem reduces to the succesive investigation of cases
occurring in theorem 29. Since this calculation is completely the same as in the proof
of theorem 3.9 in [10] we omit it here.

32. Remark. In this remark we shall suppose that UA is continuous. The similar
case for special domains in R® has been investigated by V. D. SAPOZNIKOVA in [18].
By lemma 30, the numbers k, k, are given by (86) and the hypotheses of theorems
29 and 31 are fulfilled. According to proposition 9 we have T¢ < ¥, V€ < %.

Denote by T, P, W the restriction of T, V, Won %, respectively, and let I stand for the
identity operator on . Then

T,y = <f, Ty

whenever p € B, f € ¢ (compare (18) in [16]) so that T* = 7 where we have denoted
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by T* the dual operator to T. For o € R' put T, = T — «aAI and for each bounded
linear operator X on % denote

@eX = inf | X — Q|
Q

where Q runs over all compact operators acting on .

Since ¥ is compact by proposition 9 we have
h

— adl).

v

(91) DT, = @¢(
It is easily seen from the proof of theorem 3.6 in [9] that

a"),g(ll%’— aAl) = lim sug [A]d(y) — | + v(y)]-

r-0+ y

Comparing this with (56) and recalling the equality |v,| (2(y)) = v,(y) we arrive at
(92) @T, = oT,.

In particular, theorems 29, 31 remain true if we write @,T, in place of wT,. If
A = 0, the corresponding assertions complete the results of § 3 in [9].

With the same notation as in the introduction we have the following lemma.

33. Lemma. The equality «'J, = oT, holds for every awe R'. In particular,
a=ada'.

Proof. Fix o € R!. Choose an arbitrary positive integer n and elements v; € B,
fi€#,j=1,..., n Then the operator

Q... =.;<..., vi> fi

acting on 4 belongs, by definition, to & and the operator

2...=)AfpDv;

1

IhNgE

J
acting on B belongs to &#'.

Clearly,
<(7:z - Q)g,V> = <g’('9.zz - .@)V>

provided g € Z and v € B. Consequently,
IT.— ¢ = 7. - 2|
The rest is easy.
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34. Remark. In view of the above lemma, theorems 29 and 31 can be stated in
terms of w'J, and a’ as well. The importance of the inequality a’ < I lies in the
fact that, under this assumption, the Riesz-Schauder theory is applicable to the
equation

(93) Tpu=v
over B.

In other words, the ir :qualities in (80) express in geometrical terms connected
with the shape of G and the distribution of A the sufficient conditions for applicability

of the Riesz-Schauder theory to the solving of the third boundary value problem in
the formulation (93). We shall deal with these problems in [17].
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