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ON MULTIPLIERS OF TEMPERATE DISTRIBUTIONS

JAN KUGERA, Albuquerquel)
(Received February 26, 1970)

In this paper we take a sequence of Banach spaces H® « H™' <« H™2? < ... for

which U H™* = &’, where &’ is the space of temperate distributions. For each
k=0

pair p, q of non-negative integers we define a normed space 0, , of multiplication

operators from H™? into H™?. Then it appears that | U 0, , equals (as a vector
q20 p20

space) to the Schwartz’s space 0, of multiplication operators on &’. We get multipli-
cation as a continuous map either from 0, , x H™%into H"? or from U @, , x H™?
into &’. Similar results are shown for the convolution. P20

P

Notation. R" stands for Euclidean n-dimensional space. The set of all non-negative
integers is denoted by N, the set of all integers by Z, and the set of all multiindices
o« = (0g, &z, ..., &,) by N". For xeR", a e N", we write x* = x7'x3* ... xi", |o] =
=0y + ot + ... + &, D* =" [oxi ox3 ... ox;n, |x| = (x, x)V* = (x} + x + ...

. + x2)!/2. As multiindices will be always denoted by letters from the beginning
of Greek alphabet there should be no confusion of a length |«| with a norm |x|,
where x € N*, x € R".

C* denotes the vector space of all functions infinitely differentiable on R". Those
elements from C* which have compact support form a space C§. The space & consists
of all functions f € C® which for each pair o, f € N" fulfil an inequality

(1) 4. 5(f) = su£'|x“D”f(x)] < + ©.

Family {q, 4}, senn of seminorms defines a locally convex structure on &. Hence the
dual &’ exists and its elements are called temperate distributions.

Definition 1. Let us have a set X, a family {Y,}..; of topological spaces, and a family
{f‘}‘e, of maps f, : X — Y,. The coarsest topology on X for which all f,, tel, are
continuous is called the initial topology on X for the family {f.} ...

1) This paper was supported by The National Science Foundation through the Postdoctoral
Fellowship Program.
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If, instead of {f.}.er, We have a family {g,},.; of maps g, : ¥, —» X, then the finest
topology on X for which all maps g,, ¢ € I, are continuous is called the final topology
on X for {g.}cr-

We will deal only with families {Y,},.; of locally convex spaces. In this case any
initial topology on X is also locally convex and there exists the finest locally convex
topology on X for which all g,, ¢ € I are continuous. It is called the final locally convex
topology on X for {g,}..;. In the case that X = N Y,, resp. X = Y,, and all f,,

el el

resp. g,, are identity maps we will simply talk about the initial (final) topology not
mentioning {fL}LsI({gt}teI)'

Let us have a family {“ . Ilk}keN of norms defined on & and generating the same
topology on & as the family (1). Assume that for each f € & we have

@ I7lo = 171 = M7l = -

We denote by H* the completion of & with respect to the norm ||. Uk and by (H*) its
strong dual with the norm |. [;. Then we have

S c..cH cH'«cH’, (HY<H')<(H)c..c¥.
Moreover, & = () H* and &' = \J (H*)'. We equip &' with the final locally convex
: k20 k20

topology generated by {(H*)};ey. The original topology on & equals to the initial
topology on & generated by {H"},_y for identity maps.

Proposition 1. The final localy convex topology on &' is finer than the bounded
convergence topology on &'.

Proof. Let B = & be bounded in %. As B is bounded in each H*, k € N, we have

C, = sup |¢|x < +o. Hence for each fe(H) :sup|f(o)| < |f]isup |o]c =
@eB @eB @eB

= Ck”f

’
ke

Definition 2. For each pair p, g € N denote by 0, , the space of all functions u,
defined on R", for which v — uv is a continuous map from H? into H?. We equip 0, ,
with the uniform topology and denote the norm on 0, , by ||. | ,..-

Proposition 2. Assume that the convergence in H® implies the pointwise con-
vergence almost everywhere in R". Then 0, , is a Banach space.

Proof. Fix p, g € N. Let {u;},cy be a Cauchy sequence in 0, ,. Then for each v € H?,
{u,v}en is a Cauchy sequence in H? and due to (2) also in H®. As H? is complete there
exists such function u, € H? that lim |u,w — u,, = 0. According to our assumption

ka0

lim u,(x) v(x) = u,(x) for allmost all x € R". If we take particularly v(x) = w(4x),
k-0
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where we Cg, w(x) =1 for [x| < 1, and A ranges over (0, 1), then we see that for almost
all x € R" it exists u(x) = lim u,(x). Hence u,(x) = u(x) v(x) almost everywhere in R".
k=

Finally, ”uv“q = lim ”ukv”q < I[v“p lim ]]u,(”,,’q, which implies ue ®,, and
k- k-0
lim ”u" - u”rnq = 0.
ko0

Recall the definition (see [1], [2], [3]) of the space 0) of multiplication operators
on &’'. A function u € 0, if and only if u € C* and for each « € N" there exists k e N
such that lim (1 + |x])™ |D* u(x)| = 0. A topology in 0y, is defined by a family of

k— oo

seminorms q,, ,(u) = max |p(x) D* u(x)|, p € &, a € N".
xeR"

Theorem 1. Oy, = N U O, ,.
920 p20
Proof. 1) u € 0. Then v - uv is a continuous map from & into &. Hence each
g € N there exists p, € N and a constant C, so that for each ve & we have |uv|, <
< Cq[[v]]pq. As & is dense in HP4 the last inequality can be extended for all v e H?
which means u € 0,_,.

2) ue UO0,, Then for each ve & and g € N we have uv € H?. Therefore uv e

q20 p20
e #. If we particularly take v(x) = exp (—|x|?) we get u(x) = u(x) v(x) v™"(x).
But uve & = C* and v~ ' e C®. Thust u is an infinitely differentiable function.
Further,

—a—‘iu = —q—(uv)—u;—vey foreach ve .

0x, 0x, X4

Hence by the mathematical induction we have (D*u)ve & for each o€ N* and
ve .

Assume that u ¢ 0),. Then there exists such « € N" that for each ke N we can
find an x, e R" so that (1 + |x)™[D*u(x)| 2 1 and |x,.q| = 2 + |x,]. Take
a function w(x) = exp (|x|> — 1)™* for |x| < 1 and w(x) = 0 for |x| = 1. Then

evidently o(x) =Y (1 + |x])*w(x — x,)e % and we have |D*u(x)uv(x/)| =
k=0
> (1 + kal)k Iv(xk)l = w(O) > 0. Hence (D"u) v ¢ & which is a contradiction.

Definition 3. Let p, e N. For each ue0,,, f€ (H', we define uf as an element
from (H?) by (uf) v = f(uv), ve H".

Proposition 3. For each p,qe N the mapping (u,f) — uf is continuous from
0,, x (Hi into (H?). '

Proof. By direct calculation we get [uf||; < 4,0 [f]s
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Definition 4. For each g e N we write 0, = U 0, , and 0 = [\ 0,. Each space 0,
peN

geN
is equipped with the final locally convex topology and @ with the initial topology.

Proposition 4. The topology of 0 is finer than topology of 0,,.

Proof. Take p€ &, ¢ £ 0, ae N", and put G = {u € 0 q,,(u) < 1}. As the
family {|. |i}sen of norms on & is equivalent to (1) there exists k € N and a constant
C > 0 so that for each u € 0, we have

dy.6) = 309 [o(3) D' ()] S 3 sup [D(uD'e)| = C 3 b

According to Theorem 1 for each u € 0y, there exists p,e€ N such that ue 0, ,
Therefore q,, ,(u) < C”u puk 2 "D’(p“,,u. As 0y, < 0y, = ... we can choose p, so
75

that sup p, = +oo. Fix one such mapping P :u — p,. Then for each pe N there

ueG
exists v € G such that p, = inf {p,; p, = p,u€ G}. We put G, = {ue@ I 1
(Cz |D?¢||,,)~* since for each u € 0, , we have |u, , = ” [ 71

andekpo+1kc... < G,

Let G, be the convex hull of U G, Then G, is a neighborhood of 0 in O,. For
ue G, there are 1, =0, i =1, 2 ,m, Zi =1 such that u —Zlu,, where
i=1 i=1
u;€ G, and all p;’s belong into the range of P. Finally, for u € 0y n G, we can
write

00ul®) S 3 11 0,.(0) S T (AC T Jude],) <

< 2 (il Z [0 ]5) < 32 =

Therefore a neighborhood @ n G, of 0 in @ is contained in G which completes the
proof.

Theorem 2. For each qe N the map (u, f) — uf is continuous from 0, x (HYy
into &'

Proof. Let ¥ be a neighborhood of 0 in &’. Then there is a sequence {a,},cy of

reals such that V contains the convex hull of U V,,, where v, = {f e (H?); ||f||;, < a,}.
peN
For each p,ge N put G,, = {ue0,,; |u|,, £ a,}, U, = {fe (HY; |fl; < 1}.

Let G, be the convex hull of U G,,. Then G, is a nelghborhood of 0 in @,. For

peN
ueG,, feU,itis uf eV, and therefore for u € G,, f € U, we have uf € V.
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Remark. We have simultaneously proved that (u, f) — uf is 0-hypocontinuous
on 0 x &', ie. it is continuous from B x &’ into &’ for each bounded set B = 0
and it is continuous from 0 x finto &’ for each fe &'.

In fact, if B = 0 is bounded then for each g € N there is 4, > O such that B < 4,G,.
If we put W, = A, 1Uq and if Wis the convex hull of J W, then Wis a neighborhood
of 0 in &’ and for u € B, f € Wwe have uf e V. <N

In the following we take a particular case. Let for fe & and ke N

3 7] = (I 3 Ix“D”f(X)IZdX)m-

a|+|B| sk J gn

This system of norms on & is equivalent to the family (1) Each space H* consists of
all functions f which have generalized derivatives D*f for all o € N, |oz| < k, and
| fllk < +o0. As H® = L,(R") we can without ambiguity write H ¥ instead of (H*)'.
This notation will simplify our further formulae.

Let ke N. Foreacha € N", || < k, take a function g, € L,(R") and a polynomial P,
of degree <k — |x|. Then we have

“ Y P,Dg,e H*.
le| =k

On the other hand each distribution fe H™* can be represented in the form (4). For
each k € Z Fourier transform & is an automorphism on H*.

Proposition 5. 0, , = H* ?™", where p,qe N and r = 1 + [4n].

Proof. Take u€®,, and put v = (1 + |x|*)~®*?/2. Then ve H” and uv e H".
For each k€ Z the map @ : f — (1 + |x|*)"/? f evidently maps H* into H*~*. Hence
u = QP " (uv)e HTP7".

Definition 5. For each pair p, g € N we write 0y , = F0,,, 0 = F0,, 0* = F0,
where & stands for Fourier transform. We define a topology in (D:,q by a norm
If5a=|#"f||,.0 Where f€ 05, and in OF = U O, resp. 0* = 07, as the
final locally convex, or initial, topology. peN aeN

Due to Proposition 5 the definition of spaces 0} , is meaningful. It follows from Pro-
position 2 that each 0’;,,1 is a Banach space and therefore the definition of topo-
logies in 0 and 0* is also all right.

The Schwartz’s space O of convolution operators (see [1], [2], [3]) can be defined
as {fe &'; F'fe0,} with such topology that Fourier transform & : 0); — O¢
is an isomorphism. Thus as an immediate consequence of Theorem 1, we get

Theorem 3. Oc < (\ ) 0}, The topology of the right side is finer than the one
of the left side. 4eN peN
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Proposition 6. For ue 0, ,, fe H™% the convolution u * f, defined by (u » f)v =
= (u, ® f,) v(x + y), where ve H?, has sense and the map (u,f) > u = f is con-
tinuous from 0y , x H™%into H™P.

Proof. Let ue 0y, fe H™%, pe P. As F 'ue0,, is a function we can write
udo(x + y)) = (F7'u) (Feolx + ) = (F7'u) (Fo) (x) exp (2nix, y)) =
= F Y F 'u.F¢p). Mapping v > F NF 'u.Fv) is composed of three
continuous maps v - Fv > F ‘u.Fvo > F YF 'u.Fv) of H* > H” - H* -
— H4. Hence f(# ~'(# ~'u . #v) has sense and it represents a distribution from H?.
Finally, f(ZF ~Y(F 'u. #v)) = f,(u(v(x + »))) = (u, ® f,) v(x + y) = (u = f) v.

Similarly as in Theorem 2 we can prove that for each g € N : (u, f) — u * f maps
continuously 07 x H™%into &’ and it is 0*-hypocontinuous on 0* x &’.

Proposition 7. Let p, ge N, p < q. Then 0, , = {0}.
Proof. We show at first that for each u € 0, , and x, € R" we have

%) lim ess sup [D* u(x)| < +o0.
0+ |x—xo|=e |x[=q

In fact, for v(x) = exp (—|x|?) we get uv € H? which implies (5) for the function uv.
But then (5) must hold also for the function u = uv.v™%.

Take u€0,, and assume that M, = {x € R"; u(x) + 0} has positive Lebesgue
measure p(M,). There exists M = M|, such that g(M) > 0 and u is continuous on M.
Take a point x, € M such that for B = {x € R"; |x — x,| < 1} we have y(M n B) > 0.

Now, take such ve C§ that suppv = B and put vy(x) = v(x, + (x — Xo)[4),
where 2 > 0. Using a substitution x = xo + A(y — x,) we can write

luoallz < luslZalloal? = lulre > J- [(xo + Ay = x0))* A=IDJ o(y)|* 4" dy .
fal 1815 J oo

Hence

On the other hand

loed 2 ([ 1% )
(0L,

lim sup 427" uv, 7 < [u|Z, 3 _f D" o(y)* dy < +o0.
A0+ |B1=p J Rn
" 0,

2 \1/2 2 1/2
dx = dx -
Rn (3x‘{

aiu 6q—iv 2 1/2
) ‘_—_—% dx ’
oxy oxi™'

q,, |2 ‘ 2
liminf A22=" | |y 6&‘ dx = liminf | |u(xo + Ay — x,)) M dy =
=0+ re| Oxf| 420+ Jgn oyl
. 9 2 2
> llmlnfj lu(xo + Ay — xo)) M dy = Iu(x0)|zj M dy=4>0.
420+ Jpam oyl ~ BaM| vt |
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Due to (5) there exists such g€ (0, 1) that esssup Y. |D*u(x)| = C < +oo.

Thus for A€ (0, o) we have [x=xo]<e |a|=q
f a‘ui aq_if?izdx = An-zqvf 2 u(xo * A(y _ XO)) o : =
oo O, 00| » or oyt
! q— i 2
0 v(y) d

< in—2q+2iC2J‘

Summing up we get a desired contradiction

0 < A < lim inf 22477 (”uv,l”: +¥ (?)j ou aq:_,?
i=1 \1 R

I\

im0+ n faxl 0x

< lim inf C*Y" (:) AZILW o(y)?

; a—i
-0+ i=1 | oy

2
dx)

dy=0.

Proposition 8. Let a function u be defined on R" and has generalized derivatives
of all orders <q. Let there be such s € N that

L () =|alz<qes§;gp (1 + |x]?)~ =2 |D*u(x)| < +o0.

Then u € 0., Moreover, it exists a constant C > 0 (which does not depend on u)
for which
(6) “u”qﬂ,q =C aq+s,q(“) . »

Proof by direct calculation.

It is well known that if u € 0 o then 6, o(#) < + co. This may not be the case for
any space 0, ,. It was shown in [5] that in one-dimensional case sup |v(x)| < [[ ||1

for each ve H'. Hence for ue H® we have |uv] = [2, |uv|2 dx lo]? ” ”2
which means u € 0, ,. Thus we can easily find an element u € I*(— oo, oo) = H° for
which o, o(u) = + co.

Proposition 9. If u€ 0, , then u has generalized derivatives of all orders <q.
Proof is contained in [5]

Example. Derivatives of a function u€@,, need not be continuous on R"
Take n = 1and put u(x) = (1 + |x|)~Y/2. Then u € 0, , and du/dx is not continuous
on R". However it is shown in [5] that the space C* of all k-times continuously
differentiable functions contains H**" where r = 1 + [4n]. Thus if u€ 0,4, q4r
then u exp (—|x|?) € H**" = C* and again u = (u exp (- |x|*) exp |x|*e C*.
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Definition 6. For each pair p, g € N denote by #,, the vector space {ueo,,
0,4(u) < +c0} with a norm o, ,. Further, put 2}, = F2,, with a norm o}, ,(u) =
= 0, (% "'u), where u e Z; . _

For each geN we also define 2, = 2,, and 2 =N2; 25 =UZ;,

peN qeN peN

and #* = 2;. We equip these spaces with the final locally convex and initial
geN

topologies.
As evidently each 2, ,, Z; ., with the norm g, ,,
all topologies defined in Definition 6 have sense.

a: o respectively, is a Banach space

Theorem 3. 1) 0,y = 2, and Oy = P*. Both these equalities are meant as between

vector spaces. The spaces on the right side have finer topology than the corresponding
left side.

2) The mappings (u, f) - uf, (u,f) > u * f, are continuous from P,, x H™4
into H™P ,g’;‘,q x H™%into H™?, respectively, for each pair p, g€ N, and they are also
continuous respectively from 2, x H™%, 27 x H™% into &', for each q € N.

Proof. 1) We have only to show 0,y = N\ U2, ,. Take u € 0y, then according
peN geN
to the definition of 0,, for each g € N there exists such p,eNthatue?, ..
2) The continuity follows from (6).
LARs HORMANDER is using in [4] some spaces of temperate distributions which he

denotes by %, , where 1 < p < +00 and k is a positive function, defined on R",
for which there are constants C > 0, s € R, such that

™ k(x +y) < (1 + Clx[) k(y), x,yeR".

A temperate distribution u belongs into 2, . if and only if #u is a function and ”u]]p o=
= (frn |k . FulP dx)'’? < +o00. If p = + o0 then ”u“w'k = ess sup Ik(x) Fu(x)|.
xeRn

There is a relation between spaces ﬂ:'q and #, x., where k, = (1 + I XIZ)SIZ.

Proposition 9. ue 2, if and only if xue®,,
|a| < q. Moreover,

a-p-1a| holds for each o€ N",
0':,4(11) = Z ”(znx)au”w.kq-p—m > UEDPE .
|¢]§q p.q
Proof. Take u e 2} ,. Then

* _ -
0pa(¥) = 0, (F lu) = 0, Fu) =Iul2§qesisil:p 1+ |x]?) @2~ fay/2 |D(Fu) (x)] =

= Z €SS sup kq_,,-la](x) lf((—2n:ix)a u(x))| §| Z “(27rx)“u
a|<q

lz|<g xern

lw'kq-p-ﬂul'
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