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(Received August 26, 1970)

Let X, Y be two topological spaces. The function f : X — Y is said to be quasicon-
tinuous (neighborly) at the point x, € X if for each neighbourhood U(x,) of the
point x, (in X) and each neighbourhood V(f(x,)) of the point f(xo) (in Y) there
exists an open set U < U(x,), U * 0 such that f(U) < V(f(x,)) (cf. [1]—[4]).

Let Y be a metric space with the metric ¢’. The function f : X — Y is said to be
cliquish (apparentée) at the point x , € X if for each ¢ > 0 and each neighbourhood
U(x,) of the point x, (in X) there exists an open set U <= U(x,), U = 0 such that for
each two points y’, y” € U the inequality ¢'(f()"), f(»”)) < & holds (cf. [3], [4]).

If Yis a metric space and f : X — Yis quasicontinuous at x, € X, then it is cliquish
at xo, too. The converse is not true (cf. [4]). S

The function defined on X is said to be quasicontinuous and chquxsh (on X),
respectively if it is quasicontinuous and cliquish, respectively at each point x € X.

We denote by Q, (4,) the set of all such points at which the function f defined
on X is quasicontinuous (cliquish). If f : X — Yand Y is a metric space, then we have
Q< Ay

In this paper we shall study the structure of the sets Q, A,.

Theorem 1. Let X be a topological space and Y a metric space (with the metric o').
Then A, is a closed set for each f : X — Y.

Proof. Let yo€ A, (M denotes the closure of the set M). We shall prove that
Yo € A;. Let U(y,) be an arbitrary neighbourhood of the point y,. There exists an
xo € A, such that x, € U(yo). So U(y,) is a neighbourhood of the point x, and
since f is cliquish at the point x,, there exists for ¢ > 0 an open set U < U(y,),
U # 0 such that o'(f(y"), f(»")) < & holds for each two points )’, y” € U. Following
the definition of the cliquishness the function f is cliquish at y, and hence y, € 4.

In the paper [3] the following results are proved (Theorems I and I1).
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Theorem L. If f: X — Y(Y is a metric space) is cliquish at each point of a set
dense in X, then f is cliquish on X.

The function f : X — Y (Y is a metric space) is said to be pointwise cliquish on X
if the set X — A, is a dense set, not closed in X (see [3]).

Theorem II. The set A; for an arbitrary pointwise cliquish function f on X is
nowhere dense.

It is easy to see that the both theorems I, II follow at once from the fact that 4 is
a closed set (see our Theorem 1).

It is shown in the paper [3] that for each set S nowhere dense in an interval (a, b)
there exists such a real function on (a, b) which is cliquish at each point of the set S
and is not cliquish at any point of the set (a, b) — S, S being the closure of the set S
(relative to (a, b)). We now extend that result of the paper [3].

Theorem 2. Let X and Y, respectively, be two metric spaces with the metric ¢
- and @', respectively. Let us suppose that

(i) X has no isolated points;
(ii) There exists a one-to-one Cauchy sequence {y,"},‘f’:o of elements of the space Y.

Then for each set A < X closed in X there exists a function f : X — Y such that
A=A,

Proof. If A = X, then we choose an element y, € Y and set f(x) = y, for each
x € X. Evidently 4, = X.

Let A = 0. Professor W. SIERPINsKI proved in the paper [5] the following result:
If each open non-void set in the metric space M contains at least m = N, elements,
then M can be expressed as a union of m pairwise disjoint sets so that each of these
sets has with each open non-void set at least m common points. It follows from this
result in view of the assumption (i) of our theorem that X can be decomposed in two
disjoint sets X, X, each X, (i = 1, 2) being dense in X.

Let us choose two points y;, y,€Y, y, & y, and define f(x) = y; for xe X,
(i = 1,2). Then we have obviously 4, = 0.

LetA+0,4+ X, Ac X, Abeclosed in X. Let X; (i = 1, 2) have the previous
meaning. We put

Ao = {xe X; o(x, A) > 1},

A, ={xeX; #<g(x,A)§ 1} (n=12..).
n+1 n )

e

Then X — A = U A4,. Let us choose an arbitrary element y, €Y and define the
k=0
function f in the following way:
f(x) =y, for xed, f(x)=yyu for xeX, n A4
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and f(x) = yyk+1 for xeX, n A4, (k=0,1,2,...) (see the assumption (ii) of
Theorem).
We shall prove that 4, = 4.

1) Let x, € 4. If X, is an interior point of the set A, then evidently x, € A,. Let us
suppose that x, is no interior point of the set A. Let ¢ > 0 and U be a neighbourhood
of the point x,. Let us choose a natural number [ such that

a) S(xo,1/l) = U*); b) diamB, <e,

where By = {y31, Vars1s Vares oo}

Since x, is no interior point of A there exists an x, € S(xo, 1/I) such that x, ¢ 4.
Since g(x;, Xo) < 1/l we have g(x,, A) < 1/I. From the continuity of the (real)
function Y(x) = o(x, A) it follows the existence of such a positive real number §; > 0
that

2) S(x,0)=X—A, b) ¥V gl A) <1

xeS(x1,d1)
From this we obtain

1) Sy = S(xy,64) JAk.
k=1

Let x', x" € S;. From (1) and from the definition of the function f we get f(x'),
f(x") e B, and hence (see b)) ¢'(f(x"), f(x")) < diam B, < &. Hence f is cliquish at x,.

2) Let xo € X — A. Then g(xo, A) > 0. We can find a natural number s such that
o(xo, 4) > 1/(s + 1). Following the continuity of the function ¥(x) = ¢(x, 4) there
exists a J > 0 such that for each x e S(x,, 6,) we have g(x, 4) > 1/ (s + 1). Hence

S(xo5 80) = U A, and so we have

f(S(xm 50)) < {YS, y/h AL ylz.w y;s+l} = B .

Let us put &, = min ¢'(z, u), z, u € B, z + u. Then &, > 0 in view of the assumption
(ii) of Theorem. If S; = S(x,, 6,) is an arbitrary subsphere of the sphere S(xo, o),
then f(S;) = B and since X; N S; + 0 (i = 1,2), the function f attains on S, at
least one value y5, for some k, 0 < k < s and at least one value y5;,, for some j,
0 < j < s. From (ii) we have o'(yas, ¥3;+1) 2 &. Hence f is not cliquish at x,.

Remark 1. The assumption (i) in Theorem 2 is substantial and so it cannot be
omitted. If namely X has some isolated point p, then 4 = X — {p} is a closed set.
But for each f: X — Y(Y is an arbitrary metric space) the point p is a point of con-
tinuity (and so also of cliquishness) of the function f and hence the equality A, = 4
cannot occur for any f: X - Y.

*) S(p,8) = {x € X; o(p, x) <6} — the spherical neighbourhood of the point p (shortly
sphere).
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Remark 2. The assumption (ii) in Theorem 2 is certainly fulfilled if Y has at least
one accumulation point.

From Theorem 1 and 2 we get at once the following

Theorem 2'. Let X, Y be two metric spaces satisfying the conditions (i), (ii) from
Theorem 2, let A = X. Then there exists a function f : X — Y with A, = A if and
only if A is closed in X.

In the continuation of this paper we shall restrict ourselves to real functions defined
on the n-dimensional Euclidean space R". We shall stipulate X = R" and Y = R.
For this class of functions the following theorem concerning sets of quasicontinuity
points holds:

Theorem 3. The set E is a set of quasicontinuity points if and only if (Int E) — E
is a first category set in the sense of Baire.

Proof. Let f be an arbitrary function defined on the set R". Let us denote by Q,
the set of all the points x for which there exists a number §, such that the conditions
o(x', x) < .and o(x”, x) < &, imply the condition |f(x") — f(x")| < &. @, is evidently
open. Let E be the set of quasicontinuity points of f. Let x, € E. For an arbitrary
number 7 > 0 and for the number }¢ there exists an interval I such that I <« U =
= S(xo,7) and f(I) = (f(xo) — %&, f(xo) + %€) = V. It follows from x’ eI and
x" el that |f(x") — f(x")| < e. We have thus demonstrated that Int] = Q,. As n
was an arbitrary number it follows now that x, € Q;, where Q. denotes the set of
accumulation points of Q,. Hence we have shown that E < Q.. Therefore Int E = Q,.
Thus the open sets Q, are dense in Int E. The set (Int E) — Q,is for any ¢ > 0 nowhere

(e} -]
dense. Hence U [(Int E) — Q,,,] = (Int E) — N Qy,, is a first category set. It is
n=1 n=1

] Lol
sufficient to show that (Int E) — E < (IntE) — () Q,,, ie. that E > () Q,,,. It can
n=1 n=1

be easy seen that each point of the set () €2, ,, is a point of continuity of the function f.
n=1

Continuity points are always quasicontinuity points. Thus also the last inclusion

holds. Hence (Int E) — E is a first category set and we have shown the necessary

condition.

Let us assume now that (Int E) — E is a first category set. It is clear that E — Int E
is nowhere dense. Let G, = @ and for n = 1 let G, = {x; o(x, E) > 1/n}. Assume
that B, is a set dense in R" — E and a border set. Let us accept f(x) = 0 for x e
€(R" — E) — B, and f(x) = 1/n for xe B; n (G, — G,_,). These conditions define
the function f in the set R* — E. This function is not quasicontinuous at any point
of this set. Indeed, let x, € R* — E. Then there exists a number n, for which x, e
€G,, — G,,—;. Let U be the neighbourhood of x, enclosed in G,,. Furthermore
assume that V = (f(xo) — 1/2no, f(x,) + 1/2n,). The function f attains in U the
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values 0, 1/ny and possibly 1/(no—1), 1/(ng—2),..., 1. The value 0 is attained on a set
dense in U. Thus the set f(I) must contain (for each interval I < U) two points distant
at least 1/n, from each other. These points cannot belong simultaneously to V. Hence
there does not exist an interval I = U where f(I) = V. The function f cannot be
quasicontinuous at x.

Let us assume now that f(x) = 0 for x e E — Int E. We shall demonstrate that f
is quasicontinuous at each point of E — Int E. Let x,€ E — Int E. Assume that
U < R" and V < R are open sets enclosing the points x, and f(xo) respectively.
Choose ny so that <0, 1/ng> = V. Let I be an arbitrary interval in the set U n
N {x; o(x, E) < 1/ny} which is non-void (as x, belongs to it) and open. It follows
from the definition of f that for x eI we have 0 < f(x) < 1/no. Thus f(I) =
< (0, 1/n0> < V, what proves the quasicontinuity at x,.

We shall define now the function f on the set Int E. As (Int E) — E is a first category
set, there exists a first category set F € &, such that (Int E) — E = F < Int E. We

o0

have F = \J F, where F, < F,,,, F, = F, and the sets F, are nowhere dense.

n=1
Assume that D, = (Int E) — F,. The sets D, form a decreasing sequence of open sets

@

dense in Int E and (Int E) n E o () D, = H. The set H is therefore a G, set dense

n=1

in Int E. We choose in Int E a set B, which is dense and a border set in Int E. Assume
now that f(x) =0 for xe EnlIntE, f(x)=1/n for xe B, n[(IntE) — E] n
n (D, — D,_,) and f(x) = 1/2n for xe (R" — B,) n [(Int E) — E] n (D, — D,_,).
For x € D, we have 0 < f(x) < 1/n. It follows therefrom that f is continuous at each
point of H. Assume now that x, € E n Int E. We choose the sets U « R"and V = R
such that xo € U and f(x,) € V. The density of H implies the existence of a point
xeU nInt En H. As X is a continuity point of f there exists an interval I such that
xel, 1 = U and f(I) = V. The point x, is hence a quasicontinuity point of f.

We shall demonstrate now that the points of (Int E) — E are not quasicontinuity
points. The set E is dense in Int E. For x € E we have f(x) = 0. The number 0 is
enclosed in the set f(I) for each interval I = Int E. Let x, e (Int E) — E. Hence
f(xo) > 0. Assume that Vis an open set not enclosing 0, such that f(x,) € V. Then in
no neighbourhood U of x, enclosed in Int E an interval I exists such that f(I) < V.
This means that there are no qusicontinuity points in (Int E) — E.

The function f has not yet been defined in the set (E — Int E) — E which is
a nowhere dense set. Assume that f(x) = 2 for x belonging to this set. In its
complement the function f attains values not greater than 1. This complement is
dense. We can now easily prove, just as in the case of the set (Int E) — E that a point x
in which f(x) = 2 cannot be a quasicontinuity point of f.

Finally E is the set of all quasicontinuity points of the function f.

Remark 3. Theorem 3 can be generalized. So for instance the condition formulated
in this theorem is necessary for sets Q, where X is an arbitrary topological space,
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and Y is a metric space. The condition is also sufficient when X is a complete metric
space dense in itself and Yis a metric space possessing at least one accumulation point.
The necessity can be shown similarly as the first part of Theorem 3. The sufficiency

can be shown by means of methods applied in the proof of Theorem 2 and the second
part of the proof of Theorem 3.
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