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ON UNISOLVENT SYSTEMS*¥)

HowarDp B. LAMBERT, Commerce

(Received December 11, 1969)

The purpose of this paper is to give some miscellaneous results concerning
unisolvent systems of equations.

Let f1, f2, - .., f, be real valued functions defined on a set S. Denote by | x| s=1
the n by n determinant

f1(x1) fx(xz) cee f1(xn)
f;(’ﬁ) fax2) - fa(x)

‘f:.n(xl) fn(x2) fn(xn) 1

where x4, x5, ..., X, is a subset of S consisting of n distinct points.

Definition. The system of n functions f;, f5, ..., f, is unisolvent on the set S if and
only if | f{(x J)I'i', ;=1 * 0 for every selection of n distinct points in S [1, page 31].

Theorem 1. Let f4, f5, ..., f, be an even number of continuous functions which are
unisolvent on the closed interval [a, b].

Suppose that f, ., is continuous on the open interval (a, b) with lim f, +1(X) = —o0
x—a

and limf(x) = +00. Then the set f, fs, ..., fur1 cannot be unisolvent on (a, b).

x—b
Proof. Let the numbers ¢ and d be chosen such that a < ¢ < d < b. Then f, 4 is
bounded on [c,d] and the f;’s, i = 1,2,...,n are bounded on [a, b]. Let M be
a number which is greater than the absolute value of all of these upper and lower
bounds. Since the expansion of |fi(x;)|7,j— contains n! terms, with n factor in each
term, it follows that an upper bound for the absolute value of I fix)|1 =1 is n! M".
Choose n + 1 points such that ¢ < x; < X, < ... < X, < X,4+; < d and consider

|fi(x;)|152 . Denote the cofactor of fi(x;) by F {(x;) and we have

|fi(xj) ':ji1 =f..+1(x1) Fn+1(x1) + .0+ fn+1(xn+1) Fn+1(xn+1)

*) This work was done under a Faculty Research Grant from East Texas State University.
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If we hold X5, X3, ..., X,+ fixed and let x, tend toward a, the sign of |f,(x,)|1%L,

will be dominated by the sign of f,,4 ;(%1) Fu+1(x;). To see this, note that (1) F,, ,(x,)
is a constant, since it does not contain x4, (2) F,{(x,) is not zero, since fi, ..., f, are
unisolvent and (3) F,;(x;), i = 2, ..., n is bounded in absolute value by n! M".

On the other hand, if we hold x,, X5, ..., X, fixed and let x,,, tend toward b, the
sign of |f(x;)[15L, is dominated bY fo+1(Xns1) Fus1(¥ns1). Now F,,4(x,) has the
same sign as F,; ;(x,+,) since the fy, f2, ..., f, are continuous and unisolvent and the
deminsions of |f,(x;)|} 51, is odd. Since the determinant |fi(x,)|i %L, takes on values
continuously, and f,,(x;) and f,(x,) have opposite signs in the limits above, it
follows that | f,(x;)|7 2, must be zero for some value of x; or X, . Therefore fy, ...
«.+» fas1 cannot be unisolvent on (a, b).

Theorem 2. Let 1, f5, ..., f, be an odd number of continuous functions which are
unisolvent on the closed interval [a, b], Suppose that f,, is continuous on the open
interval (a, b) with

lim f,, (x) = lim £, ,(x) = .
x—a x-b
Then fi, f5, ..., fy+1 cannot be unisolvent on (a, b).
The proof is similar to that of Theorem 1.

Theorem 3. Let fy, ..., f,, be n functions defined on a set S. If anyn — k,0 < k <
< n — 2, of these functions have common values for k + 2 points in S, then f, ..., f,

are not unisolvent.

Proof. We may assume that fi, ..., f,_, have common values at the points
X1, X2, .- Xg4 2. Choose any other n — (k + 2) points of S and expand |f{(x;)[7 ;-1
by minors with respect to the last row. After k expansions, we have for a first term

fn(xl)fn—l(xl) cor S 1 (%) f.l(xkﬂ) oo fi(xn) I
f:n—k(xk+ 1) ce fn—k(xn)

But the first two columns of this determinant are identical. Thus this term is 0. A simi-
lar argument hold for each term. Therefore f5, ..., f, are not unisolvent.
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