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1. Let
(1.1) S,(x) =k§.0ak P(x)

denote the nth partial sum of the Fourier Legendre series of a function f(x). It is
well-known that S,(x) converges uniformly to f(x) in [ —1, 1] if f(x) has a continuous
second derivative on [—1, 1]. Recently SUeTIN [4] has shown that S,(x) converges
uniformly to f(x) if f(x) belongs to a Lipschitz class of order greater than 1/2 in
[-1,1].

More precisely he has established the following result.

Theorem 1. (P. K. Suetin [4]). If f(x) has p continuous derivatives on [—1, 1]
and f®)(x) e Lip o, then

¢, logn
ppte—1/2”

(12) [7(x) = Six)| = xe[-1,1],

forp +a =12

In establishing this remarkable theorem he has employed the following well known
theorem of A. F. TIMAN [6] which is a stronger form of Jackson’s theorem.

Theorem 2. If f(x) has p continuous derivatives on [—1, 1] and f®(x)e Lip a,
then there is a sequence of polynomials {g,(x)} for which

° \/(1—x2)+1m xe[-1,1]
P+1 n 3 ’ .

|[7() = eulx)| =

n

Very recently SAXENA [3] has proved the following theorem for S;(x), the first
derivative of S,(x) with respect to x.
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Theorem 3 (R. B. Saxena [3]). If f(x) has p continuous derivatives on [—1,1]
and f®(x) € Lip o, then together with (1.2) the following inequalities hold:

13) (=) -S| = 28" 0<a<t, pz ),

np+a— 1

1
(1.4) (1 = )2 [f(x) - Sy = ::+fi72, G<a<1,p21)
and
, cslogn
(1'5) If'(x) - Sﬂ(x)l é n:+a_g5/2 4 (JZL <a< 1’ p ; 2)

uniformly in [—1,1].
In connection with theorem 1 we shall prove the following theorem which gener-

alizes theorem 3.

Theorem 4. If f(x) has p continuous derivatives on [—1,1] and f®(x)e Lip a,
then together with (1.3) and (1.4) the following inequalities hold:

(1.6) (1 = )" |f(x) = S,(x)| = CGn:ga—n , (p+azd)
and
(17) F9(x) — SO)| < n_f_'_f’.f"_m (pz2r t<a<l)

uniformly in [—1,1].

2. To prove the theorem we shall need the following well-known results on
Legendre polynomials. The orthonormalized Lengendre polynomial P,(x) is given
by [1]

(1) Px) = /( E 1) PLx).

where P,(x) denotes the nth Legendre polynomial with the normalization P,(1) = 1.
From [1], [2] and [5] we have for —1 < x < 1,

22) IP.(3)| < €7y

and the inequality

(23) (1 = 2 B3] < s
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For the derivatives of P,(x) we have the following inequalities which hold for
—-1=x=1,

(2.4) (1 = x?)V2|Py(x)| £ con®'?,

(2.5) (1 = x?)¥*|Pyx)| < cyom
and the Markov’s inequality

(26) ‘ |P(x)| < eqyn® 2, r=0,1,2,...
3. In order to prove Theorem 4 we require the following lemmas.

Lemma 3.1. For —1 £ x £ 1, we have

1 n
(3.1) (1 - x2)1/4j | ¥ Pi(t) Pi(x)| dt < ¢yn'/?
~1 k=0
and ‘
1 n
(3.2) j | ¥ Pi(t) PO(x)| dt < cyontt.
i -1 k=r .

Proof. We give here the proof for (3.2) only. The proof for (3.1) can be given on
the same lines. Making use of (2.6) we have

1 n n n ’ '
J. [z Pk(t) Pir)(x)]z dt = z |p;cr)(x)|2 é 13 2 k4r+1 < C14n4r+2 ,
—1 k=r ‘ k=r \ k=0
from which (3.2) follows.

Lemma 3.2. We have for —1 < x < 1 and o 2 12,

I j (V0 = )| $ P P9 d < 15 Togm

and
(34) ‘ jl_ (1 =)y ‘kngrpk(t) PY(x)| dt < ¢fn®* 2 logn .

Proof. We shall prove (3.4) only and (3.3) can be proved in the same manner.
Let us denote by 4,(x) the part of [—1, 1] on which |x — ¢| £ 1/n and by §(x) the
rest of the interval. Making use of (2.3) and (2.6), we obtain

I L CEAC T

é j‘ i(l _ t2)(p+a)/2 lpk(t)l 'P;{r)(x)l dt é K:k 1_ Z k2r+1/2 é Krn2r+ 1/2 .
Anix) k=1 n ¥=o
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To estimate the integral over J,(x) we make use of the Christoffel formula [5].

(36) ipk(t) P‘k(x) = 0n Pn+1(x) }_)n(t) :It_)"(X) F"+ 1(t) , 0 < On < 1.

On differentiating r times both the sides of (3.6) we have

(3.7) S By(i) P(x) = 0, LetsG) Pud) = PG P (O}

x —t

+0 ’i‘ (=1t {I_’f,"ll(x) P(1) - Pﬂ“)(x) 1_’,,H(t)} .
"o vi(x — gyt
Then we have

(3:8) (L—2)7/2 | Y B(i) BY()] dt <

On(x)
P)4(x) Pi(t) = PO(x) Py (1)
x —t

de +

é J‘ (1 _ tl)(p+a)/2
on(x)

+ j (1 _ t2)(p+a)/2 "il (‘ 1)'_" r! {P.(.Q ,(x) Fn(t) - PSIV)(X) P"H(t)}‘ldt
on(x)

v=0 vi(x — gyt

=ul+u2.

Since |x — #| > 1/n for t € ,(x) therefore we have by using (2.3) and (2.6),

(39) w éK:nz'“’zJ (=)t [P + [Pos O], E ] =
On(x) X —

< K"’ner/ZJ dt
suy X = 1]

SK/n**"logn, xe[-1,1].

For u, we have, on making use of (2.3) and (2.6),

(3.10) u, éj (1_t2)(p+a)/2ril r! {Ipﬂl(x)‘ |P(0)] + |PO()| |Par (D)} dt <

. oo e —
r—1 . dt r—1

< A’E n2v+1/2J‘ — < A';Z privtis2 < A:an—l/Z , xe [__1, 1] .
v=0 (%) Ix - tl' v v=0

Henge from (3.5), (3.8), (3.9) and (3.10) the lemma is obtained.

Lemma 3.3. Let f@(x) e Lipa (0 < & < 1) in [ —1, 1]; then there is a polynomial
Q.(x) of degree at most n possessing the following properties:

() 9 - 0] 5 28 [V =+ L]
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and
1) o - ore) s [ - i)

uniformly in[—1,1]andr = 1,2, ..., q.

For r = 1 the lemma has been proved by Saxena [7] and for r 2 2 it can be proved
on the same lines.

4. The proof of Theorem. We shall confine ourselves to proving (1.7).
We write

(4.1) |7O(x) = SO(x)| = |F7(x) — 0(x) + QV(x) — S(x)| <
<1706 = ovel + [ 10 101 £ P P9

Now using lemma 3.3 we have

[0 - 0] s L ,[w(l X 4 1]

+

IIA

c 1 1 no_ —
+ s j g(l Yoo —} | P ) at
-1 =r

s v oe[ a- e SR Pl o
n

T I IZPk(t) PO(x)| dr

which, with the help of (3.4) and (3.2), yields

*
If(r) x) - S(')(x)l 16, logn C16€12
p+a—r np+a—2r—l/2 n2p+2a-—2r-—1

IIA

c,logn
= pPte—2r-1/2 ’

p=2r.

This completes the proof of (1.7). The proof of (1.6) can be given in the same manner.
One can easily see that if » = 0 we have (1.2) and if r = 1 we get (L.5).

Acknowledgement. The author is grateful to the referee for his valuable comments.
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