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Czechoslovak Mathematical Joarnal, 20 (95) 1970, Praha 

ON A CERTAIN RELATION FOR CLOSURE OPERATION 
ON A SEMIGROUP 

BEDRICH PONDELICEK, Podebrady 

(Received January 6, 1969) 

Let S be a semigroup. It is well known that S* is regular if and only if the relation 

(*) AnB = AB 

holds for every right ideal A and for every left ideal В of S. (See [l].) 
If the relation (*) holds for every left ideals A, В of S, then every left ideal of S 

is a two-sided ideal of S and S is a left regular semigroup. Analogously for right ideals 
of 5. (See [2].) Finally, if the relation {^) holds for any left ideals A, В of S and for 
any right ideals A, В of S, then S is a semilattice of groups. (See [3].) 

In this paper we consider semigroups satisfying the relation (*) for every U-closed 
non-empty subset Л of 5 and for every V-closed non-empty subset В of S where Ü, V 
are arbitrary closure operations on S. 

In this section, S will be a fixed non-empty set. 

Definition 1. The mapping U : exp S -^ exp S is said to be a topological Cech's 
closure operation (or simply a ^-closure operation) if the mapping U satisfies the 
following conditions: 

1. U(0) = 0; 
2. if A cz В cz S, then U{A) a U{B); 
3. Ac: U{A) for each A cz S; 
4. U{U{A)) = U{Ä) for each A a S. 

For X e SwQ write simply U(x) instead of ^((л:}). The set of all ̂ -closure operations 
for the set S will be denoted by ^(S). (See [4] and [5].) 
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Lemma 1. Let U e '^(S) and A^ <=: S{iel ф 0). Then 

a) и и{А,) с: Ц и А.;); 
tel 

b) u( n ^0 =̂  n ЩА^). 
iel iel 

P r o o f follows from Definition 1. 

Definition 2. A ^-closure operation U is said to be a quasi-discrete closure opera-
tion (or simply a ^-closure operation) if there holds 

5. ü( и A^ - и Щ) for Л, с S (i G / Ф 0). 
iel iel 

Let â{S) be the set of all »^-closure operations for the set S. (See p. 479 [6].) 

Definition 3. Let U e ^(5) . A subset Л of 5 will be called U-closed if U(A) = A, 
и-open if U(S ~ A) = S — A. The set of all U-closed (U-open) subsets of S will be 
denoted by J^(ü) {(P{U)), 

Theorem 1. Let U e ^(S). T/z^n: 

L 0, S G J ^ ( Ü ) ; 

2. ï/ ^ i G J^(U) (/ G / Ф 0), /̂zen OA^e 3^{U); 
iel 

3, if A c: S, then U(^A) = f) Ai where A^ {i el) are all U-closed subsets of S such 
iel 

that A cz Ai, 

Proof. L Evident. 2. If Л^ G J ^ ( U ) (i G / Ф 0), then U{A^ = A-,, From Definition 1 
and Lemma 1 it follows that П ^ i <= Ц П A) с П U{A) = П ^£- Thus U( П A) = 

iel iel iel iel iel 
= OAiB 3F{U). 

iel 

3. Clearly U{Ä) is a U-closed subset of S.lî A^ is an arbitrary U-closed subset of S 
such that A с Ai, then by Definition 1 we have U{Ä) с и(Л^) = Ai. Therefore, we 
have и(Л) cz Ç\Ai and since П ^ i ^ ^ ( ^ ) ^^ ê^^ ^̂ ^̂  required result. 

iel iel 

R e m a r k L If U is a ^-closure operation, then we also have: 

4. if Ai G #'(U) (i G J Ф 0), then (J ^ i e ^ ( U ) . 

P r o o f follows from Definition 2. 
Now we shall introduce an order relation ^ in the set ^(S). 

Definition 4. If U, V G ̂ (S), then U ^ V if and only if U{A) a V{A) for each A cz S. 
(See [4].) 
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Put 0(Л) = A for each Л с S and 1{А) = S for each A с S, A ^ 0; f(0) = 0. 
Then O, I e J(S) and for each U e ^(S), 

О SU SI 
holds. 

Remark 2. If Ü, V are J-closure operations, then Ü ^ Vif and only if U(x) с V(x) 
for every x e S. 

Proof. If U ^ \̂ , then by Definition 4 we have U(x) a У{х) for every x e S. 
Conversely, let U[x) a V(x) for every x e S. It follows from Definition 2 that U{A) = 
= и U(x) с и V{x) = У(Л) for each A Œ S, A Ф 0. 

xeA xeA 

Theorem 2. IfU,Ve ^(S), Г/гея U S V if and only if 3^{V) с #'(U). 

Proof. Let a ^ \r. If Л G #'(V), then Л = V{A). By Definition 1 we have A с 
с и(Л) с У(Л) = Л. Hence А = ЦЛ) G # ' ( Ü ) . This impHes ^{V) с J^(U). 

Let ^{V) с J^(U). If Л с S, then it follows from Theorem 1 that U{A) = П ^i 

where Ai (i e I) are all U-closed subsets of S such that A a Ai. Since ̂ (V) is non-empty 
(it contains S) there exists a subset of indices К a I such that A^ {k e K) are all 
V-closed subsets of S containing A. Hence it follows that U(A) = f) A^ a f) A], = 

iel кеК 

= V{A), Therefore U S V, 

Corollary. IfU,Ve ^{S), then U =^ V if and only if ^{U) = ^{V), 

Theorem 3. Let ^ с exp S and 
1. 0, SGJST; 
2. z/ Л ̂  G #" (i G / Ф 0), then С\А^е^. 

iel 

Then there exists a unique ^-closure operation U such that ^ = #"(1/). 

Proof. If У4 С S, then we put ЦЛ) = С\А^ where A^ (i el) are all sets from J^ 
iel 

such that A cz Ai. Evidently U is a '^-closure operation. The unicity of U follows 
from Corollary to Theorem 2. 

Remarks. Let ^ satisfy the conditions of Theorem 3 and the following condition: 
3. if Ai e^ {iel Ф 0), then \) A^e^, 

isl 

Then there exists a unique ^-closure operation U such that #" = i^(U). 
Proof. It follows from Theorem 3 that there exists a unique U e ^{S) such that 

#- = ^(U), We shall prove that U e J(S). Let A^ cz S (i e I ф 0). It follows from 
Lemma 1 and Definition 1 that [J ^t a (J и{А^) с U( (J A,). Thus U( (J A,) cz 

ieJ iel Ш iel 
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с U( и U{A,)) = и U{A,) с U( и Л,.). Hence U( U ^г) = U l^(^,)- This implies 
ie/ ie/ iel iel iel 

и e Щ. 
If U^V e ^{S), then their greatest lower bound in ^(S) will be denoted by U A V 

and their least upper bound in ^(S) will be denoted by U v V. 

Theorem 4. If U,Ve Щ8), then there exist U v V, U A V and 
1. ^{U V K) = ^(U) n #'(V); 
2. #-(0 л V) = {^ П Б/Л e #-(0), ß e ^{V)}. 

The ordered set ^(S) is a lattice. 

Proof follows from Theorem 2 and Theorem 3. 

Remark 4. Let for U, V G ^(S) be W = Ü л К Evidently, if Л с S, then we have 
W{Ä) = U{A) n У(Л). 

Remark 5. If U, VG J(S), then U v Ve J(5). The following example shows that 
и A V G J(S) does not hold in general. 

Let S = {a, b, c, d], ^{U) = (0, (a, b), (c, d], S] and #'(\^) = {0, (a, c}, 
(b, d), S]. Evidently U, \Гс J(S). Further we have J^(U л \Г) = J^(U) u #'(\Г) u 
u ( 4 u [b] u (c) u [d]. This implies U л V G ^ ( S ) - J(S). 

Definition 5. Let U G <^(S). We define U* : exp S -^ exp S. If Л cz S, then x G и*(Л) 
if and only if U(x) n Л ф 0. 

Theorem 5. If U e ^(S), Г/геи U* G J ( S ) . 

Proof. We shall show that Ü* satisfies conditions 1, 2, 3 and 4 of Definition 1 and 
condition 5 of Definition 2. 

1. Evident. 2. Let Л с Б с S. If x G и*(Л), then U(x) n Л Ф 0. Thus U(x) n ß Ф 
Ф 0. Hence x G U*(B). Therefore U*(^) с U*(ß). 

3. Let v4 с S. If X G A, then it follows from Definition I that x G U(X) n Л. Thus 
X G U*(/i). This implies Л c= U*(^). 

4. Let yl с 5. From 3 and 2 it follows that U*(v4) с U*(U*(^)). If x G Ü*(U*(^)) , 

then U(x) n и*(Л) Ф 0. This implies that there exists some z G U(X) n и*(Л). 
Since z G и*(Л), we have U(z) n Л Ф 0. Definition 1 implies U(^z) с U(x), hence 
U(x) n Л Ф 0. Therefore we have x G и*(Л). Hence U*(U*(^)) с и*(Л). Therefore 
и*(Л) = и*(и*(Л)). By Definition 1 we have U* G ^ ( S ) . 

5. Let Л̂  с 5 (i G/ Ф 0). It follows from Lemma 1 that U У*(Л,.) с U*( (J Л )̂. 

If X G U*( и Л .̂), then U(x) n ( и Л )̂ Ф 0. There exists therefore some к el such 
i s / ieJT 

that ü(x) n Л^ Ф 0. Thus x G и*(Л^), hence x G U и*(Л,.). Therefore (J и*(Л,.) = 
te/ iel 

= ü*( и Л )̂ and U* G J(S). 
ie/ 
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Theorem 6. Let U e ^^(S). Then: 

1. U**(x) - U{x)for every x e S; 
2. U** ^ U; 
3. ^{U) cz (P(ü*); 
4. ß)(U) c J2r(^*) 

Proof. 1. The proof follows from z G U(X) <:> X G Ü*(Z) О Z G U**(X). 
2. Let Л c= 5:. By Theorem 5 and Lemma 1 we have и**(л) = IJ U**(.x) = 

= и U(x) с и(Л). Hence U** ^ U. 
xeA 
3. Let A e ^{U). Suppose that A ф ß (̂U*). Then S - A Ф U^\S - A), There 

exists therefore some x such that x e Ü*(S - A) and x ^ 5 ~ Л. Thus U(x) n 
n (S — Л) Ф 0 and X G Л. Consequently, there exists some z such that z G U(X), 
z ^ Л, On the other hand, z G U(X) С Ü(V4) = A. This is a contradiction. Hence 
A G (P(U*) and ^(U) с 6̂ (U*). 

4. Let A G {p(ü). Then S - Л G J^(Ü). By 3 it follows that S - Ae 6̂ (U*). Hence 
Л G J^(ü*). Consequently (P(U) с #-(0*). 

Theorem 7. Ler Ü, V G ^ S ) . If U S У, then Ü* ^ V*. 

Proof. Let U ^ \̂  and Л с S. If x G и*(Л), then U(x) n Л ф 0. Since U(x) с 
c= V(x), we have V{x) n Л Ф 0. Hence x G V*(A). Therefore U*(^) с У*(Л). This 
implies U* ^ V*. 

Theorem 8. Let U e ^(S). T/ze/t the following conditions are equivalent: 
1. Uel{S); 
2. Ü = U**; 
3. J^(U) = (P(ü*); 
4. (!)(ü) = #'(ü*). 

Proof. 1 =^2. This follows from Theorem 6 and Definition 2. 
2 ==> 3. It follows from Theorem 6 that .^(U) с d?(U*) с #-(0**) = #'(U). This 

implies ^{U) = d?(ü*). 
3 => 4. Evident. 

4 => 1. Let Ai G #-(0) (i G / Ф 0). Then S - A^e ф{и) = #'(U*). According to 
Theorem 1, S - (J ^i = П (-̂  - ^0 ^ -^C^*) = ^(^). Thus U ^f ^ «^C )̂- ^^^^ 
Remark 3 it follows that U G J ( S ) . 

Corollary. / / U G J(5), then U = U* or U || U*. 
Proof. If U ^ U*, then by Theorem 7 and Theorem g U* ^ ^** = ^ holds. 

Hence и =: U"^. Similarly, if Ü* ^ U, then U = U*. 

Remark 6. Evidently О = О* and I = /*. 
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п 
Let now S be an arbitrary semigroup. 

Definition 6. Let U,Ve ^{S). We shall say that Ü Q V if there holds 

(*) An В = AB 

for every U-closed non-empty subset Л of S and for every V-closed non-empty 
subset В of S. 

From Definition 6 and Theorem 2 there follows 

Lemma 2. Let U^, U^, V ,̂ У̂  e ^(S) and U, g U^, V, ^ ¥,. If U^ Q V^, then 

^2 Q У2-
Let AczS, Л Ф 0. Put L{A) = S^A = SAKJ A and R(A) = AS^ = AS и A. 

Finally L(0) = 0 = R(0). Clearly L, R e j(S') and ^ (L) is the set of all left ideals of S 
(including 0), #'(R) is the set of all right ideals of S (including 0). 

Tiieorem 9. Let Ü, Ve^{S). Then U QV if and only if R ^ U, L S У and x e 
e U(x) V(x) for every x e S, 

Proof. L Let UQV. Clearly S e ^{V). If A e ^{U), then A = A n S = AS, Thus 
A e #'(R), hence #'(U) c= #'(R). From Theorem 3 it follows that R й У Similarly 
we can show that L g V. Finally, by Definition 1 we have U(x) e # ' ( ü ) and V[x) e 
e ^{V). Thus X G U{x) n V{x) = U{x) V{x). 

2. Let now R^ U, L ^V andxe U{x) V{x) for every xeS.ïî Ae ^{U\ Л Ф 0 
and В € ^{V), Б Ф 0, then according to Theorem 2 AE # ' ( R ) and Б e #'(L). Thus 
AB Œ AS cz A and AB a SB a B. Hence ЛБ с Л n Б. 

Let X e A n B. Since x G Л, there holds U{x) cz Л. Similarly we obtain that 
¥{x) с Б. Thus X G U(x) V{x) a AB, Hence Л n Б с ЛБ. This implies (*). 

R e m a r k 7. It is clear that / Q / if and only if S^ = S. 
Put M = L V R, H = L л R. Evidently M G 1{S) and H G ^ ( S ) . By Theorem 4 

it follows that ^{Ni) is the set of all two-sided ideals of S (including 0) and #'(H) is 
the set of all quasi-ideals of S (including 0). 

A semigroup S is called left regular (right regular, regular) if x G Sx^' (x G X^S, 
X G xSx) for every x e S. 

Lemma 3. A semigroup S is left regular (right regular, regular) if and only if 
X G S^x^ (x G x^S^, X G xS^x) for every x e S. 

Proof is obvious. 

Theorem 10. R Q L // and only if the semigroup S is regular. 
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Proof. Let RQL Then by Theorem 9 x e R(x) L(x) = xS^S^x ^ ^S^x. It follows 
from Lemma 3 that S is regular. 

Let S be a regular semigroup. Then x G XSX С R(X) L(X). Theorem 9 implies that 
R Q L 

(See [1].) 

Theorem 11. The following conditions on S are equivalent: 
1. LQL, 
2. LQM; 
3. S is left regular and R ^ L 

Proof. 1 => 2. This follows from Lemma 2. 
2 => 3. By Theorem 9 we have R ^ L and x G L(X) Л1(Х) = L(x) L{x) ^ s^xS^x = 

= S^ R(x) X cz Ŝ  L(x) X cz S^x .̂ It follows from Lemma 3 that 5 is left regular. 
3 => L If S is left regular and R й f-, then x e 5x^. Hence x G L(X) L{X). Theorem 9 

implies that LQL 
(See [2].) 
The following left-right dual of Theorem 11 holds: 

Theorem 12. The following conditions on S are equivalent: 
L RQR; 
2. M Q R; 
3. S is right regular and L ^ R. 

Theorem 13. H Q M if and only if the semigroup S is regular and R ^ L. 

Proof. 1. Let H Q /И. Then by Theorem 9 R ^ H and x G H(X) M(X). Thus R ^ L 
and X G R(x) L(x) = xS îS^x. Lemma 3 implies that S is regular. 

2. If 5 is regular and R S i-, then by Theorem 10 R Q L. Hence H Q M, 

Theorem 14. M QH if and only if the semigroup S is regular and L ^ R, 

Proof. The proof is dual to the proof of Theorem 13. 

Lemma 4. Let L = R. Ä semigroup S is regular if and only if S is left regular 
{^right regular). 

Proof. This follows from Lemma 3 and from x^S^ = x R(x) = x L(x) = XiŜ x = 
= R(x) X = L(x) X = S^x^. 

Lemma 5. Let L = R. Then ef = fe for any couple of idempotents e.feS, 

Proof. The proof is an easy modification of the proof of Lemma 1 [7]. Evidently 
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L{e) = R{e). Thus ef e eS^ = S^e = Se and fe e S^e = eS^ = eS. This implies that 
ef == ue for some ii e S and fe = ev for some v e S. Hence ef = (ue) e = efe = 
= e{ev) = fe. 

Lemma 6. S is a semilattice of groups if and only if S is regular and L = R. 

Proof. Let be L = R and S regular. It follows from Lemma 4, Lemma 5 and 
Theorem 8 [8] that S is a semilattice of groups. 

If 5 is a semilattice of groups, then clearly S is regular. From Remark to Theorem 2 
[9] it follows that L = R. 

Theorem 15. The following conditions on S are equivalent: 

1. LQR; 
2. LQL and RQR; 
3. L Q M and M Q R; 
4. S is a semilattice of groups. 

Proof. 1 => 2. From Theorem 9 we have L ^ R and R ^ L. Hence L = R and 
thus LQL, RQR. 

2 => 3. This follows from Lemma 2. 
3 => 4. This follows from Theorem 11, Theorem 12, Lemma 4 and Lemma 6. 
4 => 1. By Lemma 6 it follows that S is regular and L = R. Theorem 10 implies 

that RQL. Hence LQR. 
(See [3].) 

Lemma 7. L v R* = / = L* v R. 

Proof. Let Л G ^{L V R*), Ä ф 0. Then by Theorem 4 and Theorem 8 it follows 
that Ä e #'(L) and S - Ä e #'(R). Suppose that Ä Ф S. Then we obtain {S - A) Ä a 
c: A n {S — A) which is a contradiction. Hence A = S and L v R"^ = I. Similarly 
we obtain that L* v R = /. 

A semigroup S is called simple [left simple, right simple) if Л4 = / (L = /, R = I). 

Lemma 8. A semigroup S is simple if and only if L ^ УИ* (R ^ /И*). 

Proof. 1. If M = /, then L ^ / = /* - /И* and R ^ f = M*. 
2. Let L ^ M*. Since R ^ /И we have by Theorem 7 R* ^ M*. Now from Lemma 

7 it follows that I = L y R"" ^ M*. Thus M* = I. By Corollary to Theorem 8 we 
have M = I. 

Theorem 16. The following conditions on S are equivalent: 

1. M* QI; 

2. f Q M * ; 

3. S is simple. 
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Proof. 1=>3 and 2 => 3 follow from Theorem 9 and Lemma 8. 
3 =^ 1 and 3 => 2. If S is simple, then clearly S^ = 5 and M = f == УИ*. Remark 7 

implies that A4* Q I and I Q УИ*. 

Lemma 9. Ä semigroup S is left simple if and only if R S ^*-

Proof. L If L = /, then R S ^ = ^^ = l-'' 

2. Let Я g L*. Lemma 7 implies that ! = L^ v R ^ L"^, Thus L* = / and L = /. 

Theorem 17. The following conditions on S are equivalent: 

1. L * Q / ; 

2. L Q L*; 
3. S is left simple. 

Proof. The proof is analogous to the proof of Theorem 16. 

Lemma 10. A semigroup S is right simple if and only if L ^ R*. 

Theorem 18. The following conditions on S are equivalent: 
1. IQR*; 
2. R* QR; 
3. S is right simple. 
Evidently, a semigroup S is a group if and only if S is left simple and right simple, 

i.e. H = 1. 

Theorem 19. The following conditions on S are equivalent: 

1. L* QR^; 

2. L^ QR; 
3. LQR^; 
4. L"^ QI and I QR"^; 
5. LQI"^ and R^ QR; 

6. S is a group. 

Proof. 1 => 2. From Theorem 9 we have L ^ R*. By Lemma 10 it follows that 
R:= I =. R*. Thus L* Q R. 

2 =» 3. From Theorem 9 and Lemma 9 we obtain L == ! = L^ and L g R. Thus 
R ^ I = R*, Hence L Q R*. 

3 => 4. It follows from Theorem 9 and Lemma 10 that R = I = R^ and L = / = 
= L*. Thus L* Q f and / Q R*. 

4 => 5 => 6. This follows from Theorem 17 and Theorem 18. 
6 => 1. If S is a group, then L = / = L*, R = / = R* and S^ = S. By Remark 7 

we have L* Q R*. 
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A simple semigroup S is called completely simple if it contains at least one minimal 
left and at least one minimal right ideal of S. 

Lemma 11. A semigroup S is completely simple if and only if L = L"^ and R = R*. 

Proof. 1. If 5 is a completely simple semigroup, then by [10] every left ideal of S 
is a union of disjoint minimal left ideals and every right ideal of 5 is a union of dis­
joint minimal right ideals. Clearly L = L^ and R = R*. 

2. Let L = L* and R = R*. Then M = LvR = LvR'' = l (Lemma 7), and S 
is simple. Let a e S, Evidently L(a) is a left ideal of S. We shall show that L(a) is 
a minimal left ideal of S. Let ^ be a left ideal of S such that A cz L(a), If x e A, then 
X e L(x) c: A c: L(a). It follows from Definition 5 that a e L*(x) = L{x). This impUes 
that L(a) cz L(x) and therefore L(x) = A = L(a). Hence L(a) is a minimal left ideal. 
Similarly we obtain that R{a) is a minimal right ideal. Consequently, S is completely 
simple. 

Theorem 20. The following conditions on S are equivalent: 

L R"" qV; 
2. RQW and R* Q L; 

3. IqU" and R* Q /; 
4. S is completely simple. 

Proof. 1=>2=>3=>4 . This follows from Theorem 9, Corollary to Theorem 8, 
Lemma 2 and Lemma 1L 

4 => L Let S be completely simple. Then by Lemma 11 R = R"^ and L = L'̂ , 
Obviously S is regular and Theorem 10 imphes that R Q L. Thus R* Q L*. 

Put P(0) = 0. If Л с 5*, Л Ф 0, then we denote by P{À) the subsemigroup generated 
by all elements of A. It is clear that P e ^(S) and ^(P) is the set of all subsemigroups 
of S (including 0). Further P ^ H, 

Evidently the set (O, P, H, L, R, M, /} is ordered according to the following 
diagram: 

I 
I 

M 

H 
I 
p 
I 

о 
R e m a r k 8. Let A a S, A Ф 0. It follows from Definition 5 that Р*(Л) is the set 

of all almost nilpotent elements with respect to A in the sense of paper [11]. 
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Lemma 12. P ^ P^ if and only if P = О. 

Proof. L Let P ^ P"^. According to Theorem 7 and Theorem 6 it foliov/s that 
P* ^ P** S P. Hence P = P*. If X G S, then P(x) = P*(x). Thus x = x" for some 
integer n > L Evidently P(x) is a cyclic subgroup of S. Let ^ be an identity of P(x). 
Since e e P*(x), there exists some positive integer m such that x = e^ = e. Con­
sequently P(x) = {x} = 0(x) for every x e S. It follows from Remark 2 and Theorem 
5 that P = O. 

2. If P = O, then it is clear that P ^ P* = O. 
A semigroup S is called a left zero {right zero) semigroup if xy == x (xy = y) for 

every X, y e S. Evidently, each left zero semigroup (right zero semigroup) is left 
simple (right simple). 

Clearly: 

Lemm.a 13. A semigroup S is a left zero semigroup (right zero semigroup) if and 
only ifR^O{L = O). 

Theorem 21. The following conditions on S are equivalent: 

1. PQM; 
2. OQI; 

3. P"" Q!; 

4. S is a left zero semigroup. 

Proof. 1 => 2. It follows from Theorem 9 that R ^ P and x G P(X) /И(Х) for every 
xeS. Thus P = R g L = M. If X e S, then x e P(x) /И(х) = R(x) L(x) = xS^S^x с 
<= xS^x = R(x) X = P(x) X. Hence there exists some integer n > 1 such that x = x". 
Evidently P(x) is a cyclic subgroup of S, Let e be an identity of P(x). Then ex e R{e) = 
= P{e) — (e) and x = ex ~ e. Every element x of S is an idempotent. Consequently 
P{x) = (x) = 0(x) for every xeS, Thus P = О and R = O, L = I. Hence О ^l. 

2 => 3. This follows from Lemma 2. 
3 =^ 4. It follows from Theorem 9 that R ^ P"" and thus P ^ P*. By Lemma 12 

we have P = O. Hence R = O. According to Lemma 13 S is a left zero semigroup. 
4 => 1. If S is a left zero semigroup, then it follows from Lemma 13 that R =^ O. 

Thus L^ L Since x e 0(x) = 0(x) f(x), we get by Theorem 9 that O Q I . Thus P q Ni. 

Dually we have the following: 

Theorem 22. The following conditions on S are equivalent: 

1. MQP; 
I.IQO; 

3. IQP^; 
4. S is a right zero semigroup. 
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Theorem 23. The following conditions on S are equivalent: 

1. L Q P ; 

2. P Q R; 
3. L* Q P; 
4. PQR"^; 

5. L* Q P*; 
6. P * Q R * ; 

7. L Q P * ; 

8. P* Q R; 
9. O Q / flnrf I e O; 

10. S = (e) where e^ ~ e. 

Proo f follows from Theorem 21 and Theorem 22. 
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