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1. INTRODUCTION

In this paper we shall investigate the equation

(1.1) Uy — Uy = &f (8, X, u, Uy, uy)

onthedomain G = R x (0, m) (R = (— o0, o)) of the plane (Z, x) with the boundary
conditions
(1.2) lim u(t,x)=0= lm u(f,x).

(t,x)-(¢,0) (t,x)—>(t,m)

We shall seek a solution of the problem (1.1), (1.2) 2n-periodic in ¢ under the
assumption that the function f is 2n-periodic in ¢.

Vejvoda in [ 1] gave some sufficient conditions for the existence of periodic solutions
of the problem (1.1), (1.2). In [3] the existence of 2n-periodic solution of the problem
(1.1), (1.2) is proved if f depends only on t, x, u and f, £ —y. < 0. Further in this
paper Rabinowitz proved, that the problem (1.1), (1.2) has a 2z-periodic solution if
the right hand side of the equation (1.1) has the form &(oau, + g(t, x, u)) where « is
a constant.

In this paper in paragraph 2 the existence of 2n-periodic solution in the linear case
is treated. In paragraph 3 some auxiliary theorems are introduced. In paragraph 4
the existence of 2z-periodic solution of the problem (1.1), (1.2) is proved under the
assumptlons offou, £ —y <0 on G; and sup of[ou, — mf oflou, < y, where

G, = G x R x R x R, and certain restriction on the growth of f. In paragraph 5
the existence and continuous dependence on & of 2n-periodic solution, if f =
= f(t, x, u, &) and f, £ —y < 0, is proved under weaker assumptions on the smooth-
ness of f than in paper [3].

We conclude the introduction with some notations. Let D,f denote the derivative
of f with respect to i variable. Then we shall denote by C, the Banach space of
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functions defined on G, 2z-periodic in t, for which D{Dif (i + j < k, i, j = 0) are
continuous and bounded on G, with the norm:

feCei|fle. = |f|x = sup sup |DiDif(1, x)|.
i+j<k (t,x)eG

(
Let us note, that functions which belong to C, have derivatives up to the order k — 1
continuous up to the boundary of G.

Let C* denote the Banach space of 2rn-periodic functions p (of one variable) which
are continuous together with their derivatives up to the order k and for which [p] =
= (3% p(y) dy = 0. The norm in C* is given: |p|cx = |p|x = sup (|[D* p(»); 0 < i <
< k, yeR).

The space of all linear operators mapping a Banach space B, into a Banach space B,
will be denoted by [B; — B,].

R(A), N(A) respectively denote a range and a null space respectively of the
operator A.

2. THE LINEAR CASE

It is known (see e.g. [1]), that every classical solution of the homogeneous problem
(1.1), (1.2) is 2n-periodic and has a form

(2.1) u(t, x) = p(t + x) — p(t — x),

where p is 2zn-periodic and continuous together with its second derivative.
For nonhomogeneous equation

(22) Uy — Uy = f(2, X)

we shall derive necessary and sufficient condition for the existence of 2n-periodic
solution, which fulfils the condition (1.2).

Let u € C, be a solution of (2.2), (1.2). Integrating the equation (2.2) over the
triangle [(t, x), (t — x + =, n), (t + x — 7, )] and using the Green formula on the
left hand side we obtain (as u(t, ©) = 0):

1 t—x+n 1 n pt—x+<&
u(t,x) = — EI u (t, m)dt *EJ‘ j f(r, &) drdé.

t+x—= t+x—¢&¢

Since u(t, 0) = 0, we get

T Pt+é t+=n
j f(xr, &) drdé = — f u,(t, 7) dr = const
3

0J1t— t—m

because u, is also 2n-periodic. Differentiating this relation with respect to t we get

(23) j T+ 68— £t - & 9]dE =o0.
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If the function f has continuous and bounded derivative D, f, the condition (2.3) is
also sufficient for the existence of a solution u € C, of the problem (2.2), (1.2).
Indeed, if (2.3) holds, then

T rt+E
(2.4) J J‘ f(z, &) dr d& = const = k
. 0Je-¢
and it is easily seen, that the function

(25 u(t,x)= - lJn‘rﬁﬁgf(r, ¢)dr dé + In—x,
D . 2 * 2 T

t+x—¢&

is the saught solution.

Now let us prove, that the space C, can be written in the form of a direct summ
C, = N @ N* where N is the set of such functions for which (2.3) is fulfilled (i.e. for
which theré exists a solution of the problem (2.2), (1.2)) and N* is the set of functions
which have the form (2.1) (i.e. which are solutions of the homogeneous problem).

Let us define the operators Z and Q on the spaces C° and C, respectively:

(2.6) peC®:Zp(t,x) = p(t + x) — p(t — x), (t,x)eG,
(2.7) feCo:Qf(y) =%tfn(f(y —s,5)—f(y +s,5)ds, yeR.

Lemma2.1. 1) Ze [C* - C.] for k = 0 and

(2.8) . - peC= “ZP"k = 2|P|k .

2) Qe[Cy - C¥] for k = 0 and

(2.9) feCy= IQflk =< nf“k .

3) QZ = E.

4) The operator P, = ZQ is a projector of C, on R(Z) and for f € C, it holds
(2.10) IPiflle = 2071 -

5) The operator P, = E — Py is a projector of C, on N(Q) and for f € C, it holds
@.11) [Pl < 3]/ e

Proof. It is obvious that 1) holds.
ad 2) Let f e C,. Evidently, Qf is continuous and 2z-periodic. Let us prove, that

[of] = o.
[of] = f :"Qfm ay =5 f ( j G =9 =10 +59) ds) dy =

N
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because oftfé"f(y =, s)‘dy = [ 2f(y + s,5)dy = [o"f(y + 5,5)dy. For f e C,
it holds: D'Q f(y) = QD1 f(¥) and from here we get, that Of e C* and |Of |k = [I£[|e-
ad 3) Let pe C°. Then Zp(t, x) = p(t + x) — p(t — x) and so

0Z p(y) = 2_17; f : [(P(y) — p(y — 25)) = (p(y + 25) — p(y))] ds =

=20) =3 [ oy =29 = Lo+ 20 = 0

because [§ p(y + 2s)ds = i[p] = 0.

ad 4) P} = (Z20)(ZQ) = Z(QZ) Q = ZQ = P, and so P, is a projector. For
feCy PifeC, and further |[Pfle = [Z(Qf)|x < 2/Qf] < 2|/ Obviously
R(P;) = R(Z). On the other hand if f € R(Z), then there exists p € C° such that f =
=Zpand P,f = (2Q)Zp = Z(QZ) p = Zp = f and so R(P,) = R(Z).

ad 5) According to 4) P, is a projector and for f € Cy [|P,f [l = [[(E — P,) f] <
< £l + IIP:f ]k < 3|[f |- Let us prove, that R(P,) = N(Q). QP, = Q(E — ZQ) =
=Q—0ZQ =0 and so R(P,) = N(Q). For feN(Q): P,f =(E - ZQ)f =
— f - 2(0f) = f and so R(P,) = N(0).

Let us denote N = N(Q) = R(P,), N* = R(Z) = R(P,). Then by lemma 2.1
Co, = N @ N*.Further let N, denote N n Cy. From lemma 2.1 it follows easily, that N,
is a closed subspace of C, and P, is a linear bounded operator from C, onto N,.

Let us define the operators S” and S on the space N:

\ 17 —x n prt+E .
(2.12) S'f(t, x) = = J J f(r,&)drdé, (1, x)eG,
2z 0Jt-¢

n t—x+¢&
(2.13) Sf(t, x) = — %J f (e, &) drdé, (tx)eG,

x J t+x—¢&
and let us prove the following

Lemma 2.2.
2
(2.14) 0§ €[N Cersds [8Flher =7 1]
2

(2.15) 2) Se[Ne— Cerrls [Sler = (k + ?2—) I£]e.

Proof. ad 1) For feN [z [iZ§f(x, &) drd¢ = const and so only S'f and D,S'f

are different from zero.
T rt+é TL'Z
sl ([ ] aeae) = S sl
0Jir-¢

IS’fllo
ppsrlo s L lo ([ aeae) = Zislo s S sl

IIA
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From here follows that ||S'f|; < (=%/2) [f]o and [|Sf e+ = |Sf]: < (=%]2).
Nfllo = (=212) | £

ad 2) From the form of the operator S it follows immediately that ||Sf], < (7?/2).
. | f|lo- Differentiating the relation (2.13) we get

(@16 Dsfex) =5 J e+ x = 5,9 = £t — x + 5, 5)) s,

@17)  D,Sf(tx) = % '[ (@ +x = 5.8) + (1 = x +5,5)) ds

and from here |D,Sf|o < 7| f]o < (7?/2) | f]lo (i = 1,2).

We shall prove that for k = 1 and f € N, there hold the relations:

(2.18) DX*Sf = D,SD%f,
(2.19) DiD,Sf = D,SDif,
k-1
(2.20) DYMISf = ~%20(1 + (=1)) D5'7'DIf + DyyySDLS,

where b(k) = 1 for odd k and b(k) = 2 for even k.

The first and the second relations are obvious, the third one will be proved by
induction with respect to k.

For k = 1 we get by differentiating of the relation (2.17):

D3Sf = —f + D,SD,f.
Let us suppose that the relation (2.20) holds for k = n. Then
n—1

D3*2Sf = D,(D3*'Sf) = ‘%._Zo(l + (=1)) Dy7'Dif + DD,y SDLf
b(n) = 1 for odd n and then

D, DyySDf = D,SD}f = _%(1 + (—1)") DD} f + Dy 1y SDYHf
b(n) = 2 for even n and then

D,D,,SDf = D3SD}f = —D}f + D,SD}*'f =
= —%(1 + ("1)") DgD'llf + Dyeus 1)SD:+1f~

In both cases we get

Dy**Sf = _%.20(1 + (—1)") D37'Dif + DyusnSDYTSf .
&
The inductive step is performed.
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Let f € N,. We shall estimate |D{DSf|, fori +j <k + 1.Ifj = 0,i > 1, then
it holds

[Disflo = 12525 flo = #1257 o 5 5 -

2
If j >0, then |DiDiSf|, = |D{SDif|, = l!—%ZO(l + (=1)") D52 7"Ditf +

. -z . m=. .
+ Dy;-ySDI 7 fllo = X [DFT2 DY fllo + 7| DT flo < (k+72/2) | f[wand
m=0
from here we get that for k > 0, f € N, it holds

I57less = (k+ 5) 17l

Lemma is proved.
Let us define the operator A on N

(2.21) feN:Af=P,(S+ S)f.
From the preceding it follows that for k = 0
(2-22) Ae[Ny> Niwtl, | Af s S 3(k + 7%) | £ -

Remark 2.1. R(P,) = R(Z) is by (2.1) a class of solutions of a homogeneous
equation (2.2) and so the function u = Af = (S + S')f — Py(S + S')f for fe N,
is by (2.5), (2.4) a classical solution of the equation (2.2).

3. AUXILIARY THEOREMS

Lemma 3.1. Let r; be positive numbers (i = 0, 1, ..., k + 1, k nonnegative integer)
and let My = {pe C* |D'plo <1y, i =0,1,....k}, M, = {pe C***, |D'p|, < 1y,
i=0,1,...,k + 1} (hence M, = M,). Let T be a continuous mapping of M, < C*
into C¥, which maps M, into itself. Then there exists a fixed point of the operator T
in M,.

Proof. The closure M, of the set M, in the space C* is a convex and compact
subset of M; = C* and by the assumptions of the lemma T'is a continuous mapping
of M, into itself. Hence, by the Schauder fixed point theorem T has a fixed point in
M, = M,.

Lemma 3.2. Let the operator I be given on C° by prescription

(3.1) pe C°:Ip(y) = jyp(s) ds + J'zn%[ p(s)ds, yeR.

0 0
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Then it holds
(3.2) 1) D**'Ip = D*p, (peC*), ID*"'p = D'p, (peC"“) for k=0,

" T
2) IE[C’C—* CHI], IIPIk+1 =5|plk-
Proof. By an easy calculation we can verify that 1) holds and that Ip is a unique

primitive function of p for which [Ip] = 0 and then Ip € C**1 for p € C*. To estimate
the norm of Ip let us remark that we can add to Ip any function of the form [§* f() .

-p(s)ds = f(y) [p] = 0.

f:p(S)ds +j:"i p(s) ds *J:(éy} n %) p(s)ds| =
N N e REC e

Si([[ 57 wajo e [ - o) S

2
From here and from 1) our assertion follows.

[Ip(y)| =

Lemma 3.3. Let pe C°, J = (0, ), g be a continuous and bounded function on J,
—B = 9(s) £ —y <0 (seJ). Let us denote J; = {seJ, p(y) — p(y — 2ks) = 0},
Jo = JNJ{, k a nonzero integer. Then it holds

(3.3)
=1 ) = 500 (00) = 0 = 285) 5 [ 9(6) (#0) — P> 2 s =
SeJ e 0
< —my p(y) + nB sup (p(y — 2ks) — p(y)).
seJy -~
Proof. Because of [, + p(y — 2ks)ds = — {5.- p(y — 2ks)ds, we obtain

Jpoer sy -2as=[ o] <[ )= s - 2+

+ L 1@ (v = 2ks) = p(v)) ds < —y p(y) m(J{") — 7 f p(y — 2ks)ds +

Ji~

+ 7B sup (p(y — 2ks) = p(¥)) < —y p(y) m(J7) — Vf p(y) ds +

seli~
Ji~

+ mB sup (p(y — 2ks) = p(¥)) = ~ny p(y) + 7B sup (p(y — 2ks) — p()) .

K
eJic™ seJi~
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On the other hand

| 6060 - o - 21905+ [ o060) ~ 16 - 21y 0s 2
> —f f w(p(y) -y - 2ks)) ds — Vf () =p(y = 2ks)) ds =

= = sup () = p (v = 249) = 3 p(y) m(s5) — j Py - 2ks) ds =

Jr

> -nﬂs:;ilz (P(y) = p(y — 2ks)) — y p(y) m(Jy) — yf

Jic

p(y)ds =
= —nﬂseszg (P(y) = p(y = 2ks)) — =y p(y).
Lemma is proved.

ienzlr;aj.z. fet }};E io, J = (0, n), g be a continuous and bounded function on J
a = g(s) £ S€J), k a nonzero integer, J} = {se J, - ,
2sol) b e P =1 p(y) + Py = 2ks) = 0},

(3.4) 7@ P0) + (b = @) o) m(J) = (b - a)|ply
< f o"g<s) () + p(y — 2ks)) ds <
< map(y) + (b — a) p(y) m(J¢) + g(b = a)|p|o .

Proof.

060+t =20as = [ +[ <y msy 4 [ p0-2w9aes

+ a p(y) m(J;) + af

- p(y — 2ks)ds = p(y) (bm(J}) + a m(J;)) +

+ (b - a) J.wp(y = 2ks)ds < ma p(y) + (b ~ a) p(y) m(J;") + g(b - a)|plo -
On the other hand

f . 5 (P0) + Py — 2ks)) ds +f 905) (00) + p(y — 2ks)) ds =
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= a p(y) m(J;) + a j

Tt

p(y — 2ks)ds + b p(y) m(Jy) + b‘[ p(y — 2ks) ds =

Iy~

= ) (an) + bmOD) + (b= )| ply— 2as 2
2 na ) + (b — @) P mU7) = Z (b — @) ol

Let us conclude this paragraph by some estimates of the norm of a composite
function.

Let f be a function of (n + 2) real variables and let u, € Cy (m = 1, ..., n). Let
us denote f[uy, ..., u,] the function defined on G by

(3:5) SFlugs oo ug] (8 %) = f(t, x, uy(t, %), ..., u,(t, x)) .

Then it holds: Each derivative of the function f[uy, ..., u,] of the order I < k has not
more than I! (n + 2)' members each of them being estimated at the point (z, x) by

sup |D¥f(t, X, u(t, x), ..., u,(t, x))| (max ( sup sup [D Dju,(t, x)|, 1))!

0slil=1 1<m=Zni+
n+2
where i denotes the vector (il, DY 2) i,, a nonnegative integers, |1| = Zl
and D’ denotes the derivative D{'D% ... D#2,

If f is such that for any ¢ > 0
(3.6) Fy(k, ) = sup sup |D¥f(t,x, oy, ..., )| < +o0

lilsklam|=e
(1, x)eG

then for any u, € C, [[tnlli < 7, [tmo < 7o (m =1,...,n, ¥ 2 1) the function
fluy, ..., u,] belongs to C; and

61 7T ool S KL (n + 2)F Fy(k 7o) 7

Let us denote K /(k, ro, 1) = k! (n + 2)* F (k, ro) r*.

Lot 5y € G ke 5 12 o S 7 il © 1o [l S 70 (1 = )
and let D'f be continuous for |i| < k + 1. Then from the mean-value theorem we
obtain

f[ula LERY un] —f[vb seey Un] = igm(um - vm)

where gn(t, X) = [ Dps2f[015 - 0r Opy, 0, + 0ty — Vp)s Uy 15 -ns U] (2, X) do
Evidently the functions g,, € C, and ”gm”k S K (k +1,ry,7). For i +j <k we
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have

PiDs( s, ] = ST 0o =
i i <l) (j ) mél Di'Di g, DIDY(u,, — v,) || <

I=on=0\l/ \h o

:

Thus the following lemma holds:

é 2i+ij(k + 1, Fo, r)mz=1“um - Um”iJrj .

Lemma 3.5. Let Df be continuous for |i| < k + 1 and let the condition (3.5) be
fulfilled. Then for u,,v,€Cy lunfo < 7o [[vn]o < 7o [[tmc S 70 |om] S 7
(m = 1, ..., n) the following estimates hold

(3-8) 1) | fLugs oo ] £ Kk, 1o, 1),

(3.9) 2) | fTugs oo ta] = fLo1s oo 0]k < 2K (K + 1, 7, r)mgll]um — vm”k ,

where K (k, ro, r) = k! (n + 2)* F(k, ro) ¥, F (k, r) is given by (3.6).

4. NONLINEAR EQUATION

Let us solve the problem (1.1), (1.2) under the assumptions:

1° D'f are continuous for |i| < k + 1 and the assumption (3.6) is fulfilled.
2° There exist y > 0, ro > 0 such that

(4.1) a) DS —y<0 on G, =G x {—mry,nrey x {—2r¢,2r¢) X
X <_2r07 2r0> B
(4.2) b) d = yro — sup {|f(t, x,u, 0, w)|, (1, x) € G, |u| < 7ry, |w| £ 2ro} >0,

(43)  c¢) supDsf —infDsf —y = - <0.
G2 G2

Let f{p, u} denote the function
(4.9) fp,u} = f[ZIp + u, Zp + Dyu, Z,p + Dyu],

where Z, is the operator defined by Z,p(t, x) = p(t + x) + p(t — x)-

We shall prove the existence of a 2n-periodic solution of the problem (1.1), (1.2)
in the following way: First we shall prove that if ¢ is sufficiently small and p e C*~*
then there exists a function a*(p) € C, which satisfies the equation (D} — D3) (ZIp +
+ a*(p)) = eP>f{p. a’(p)} and further we shall seek such p for which P,f{p, a*(p)} =

= f{p, a*(p)}-
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Let r; (i =0,...,k) be positive numbers, r = mmax(r,0 =i < k) + 1. Let
us denote fori = 0, ..., k

(45) A= peCh DIl S rd = 0}y Bi= fueNpes s £ 1)
(then A,,, = A;, By, < B).

Lemma 4.1. The equation
(4.6) u = eAP,f{p, u)

has for pe Ay and ¢ < [54 25k + n*) K (k + 1, nrq + 1,7)]™" a unique solution
a*(p) € B, and further it holds

1) a*(p)eB; for ped; (i=0,..,k),
(4'7) 2) ”ae(p)”i+1 < ¢k, (P € Ai) >
48)  3) |a(p) — a¥(@)]i+1 S eKalp — al: (p.ge4),

where K| = 9(k + n*) K (k, nro + 1,7), K, = 18(k + %) (n + 4) 2K (k + 1,
Tre + 1, 7).
Proof. Let pe 4; (0 < i < k). Then by (2.11) and (2.22) eAP,f{p, u} maps N, ,
into itself. Using lemma 3.4 we get for u € B;
(4.9 o edPof{p.u}]iny = &3(i + 7%) 3| f{p, u}]: <
< ek + n?) K (k, nro + 1,7) < 1

and so AP, f{p, u} maps B; into itself. Further for u € B;, ve B,

(4-10) HEAsz{Pa “} - £AP2f{p, U}”i+1 = 89(i + nz) Hf{p, u} - f{p, ”}”i =
< 9k + 7n?) 2K (k + 1, nrg + 1,7) (Ju — of; + |Du — Dyof|; +

+ |Dyu — Dyof)) < e27(k + n?) 2K (k + 1, nrg + 1,7) [Ju — v] ;s <

< 3u = o -

We get that e4P,f{p, u} is a contraction on B, for p e A,. Hence there exists
a unique solution a*(p) e B, of the equation (4.6). As for p e A; the operator
¢AP,f{p, u} is also a contraction in B, there exists for pe 4; = A, a solution of
the equation (4.6) in B, = B, and from the uniqueness in B, it follows that a“(p) € B,
for pe A,. -
The assertion 2) follows immediately from (4.9).
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The solution a“(p) we can get by the method of successive approximations: u, =
= a%(q), Uy+1 = eAP,f{p, u,}. By the well known estimates, using (4.10), we get

”as(p) - ae(q)”i'H = 1i_{lzollun - “0||i+1 < 2“141 - u()”i+1 =
< 2[eAP,f{p, a’(q)} — AP, f{q, a(@)}]i+1 < 18(i + =°)| f{p, a*(q)} -
— f{a, a(@)}]|; = e18(k + 72) 2K y(k + 1, wrg + 1, 7) (|ZI(p — g)]; +
+[2(p = @) + [2:(p = 9)]) <
S el8(k + 7)) (4 + 1) 2K (k + L nrg + 1,7) |p—al-

Lemma is proved.
Now let us solve the equation

(4.11) Pof{p, a’(p)} = f{p, a'(p)} ,

where a‘(p) is defined in lemma 4.1.

We shall solve this equation with help of lemma 3.1. The role of the sets M, M,
respectively will play the sets 4, _;, 4, respectively with r, fulfilling the assumption 2°
and r; which are given by the recurrent formula

(4.12) Figg = i(Ff(l, nre) + (i + 1)! 8i+12Ff(i +1,7r,).

. [max (ro, ..., r)J'*1) + 1.

Further let r = nmax r; + 1, 4A; and ¢ be as in lemma 4.1 and besides it ¢ <
< min («, d) (23K (k + 1, mry + 1,7) K;)™", where K, is given by (4.7).
The equation (4.11) is by 5) of lemma 2.1 equivalent to the equation

(4.13) of{p, a’(p)} = 0.

Let T,, T, denote the operators defined on 4,

(4.14) Tip = Of{p, 0},

(4.15) Top = Q(f{p. a’(p)} — f{p 0})
and for 6 > 0

(4.16) T;p = (E + 6T, + 6T,) p.

According to lemma 2.1 and lemma 4.1 the mappings T,, T, map 4; into C'.
Further it is obvious that to solve the equation (4.13) means to find a fixed point of

the operator T for some 6 > 0.
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Using (2.9): (3.9), (4.7) we get the estimate for the operator T,

@17) el = [Q(f{p, a’(p)} — F{p. OY: = [F{p, a*(p)} — f{p. O}]: =
S2BK(i + Lrg + 1,7) |a*(p)] 141 < K5,

where K3 = 23K (k + 1, 7ro + 1, 7) K, (K, is given by (4.7)).

Let #n = min [(d — eK,) (F (1, nro)) "% 7o), 0 <6 < 3o < min (n(F,(1, wro) +
+ eK;)™1,y7") and let us prove that T; maps 4, into itself. If y is such that IP()’)| =
< rq — 1, then

T p(v)| = |p(¥) + ;—nr[f {P,0} (v = 5,5) = £{p, O} (y + 5,5)] ds + 0T, p(¥)| =

< ro — N + 6F 0, mry) + 0Ky < 1

If ro—n= p(y) < ry, then from the same expression we obtain the estimate:
T, p(y) = ro — 1 — 8F (0, nry) — 0eK3 = —r,. Using the mean-value theorem we
get the operator Tj in the form

Tp(y) = 20) + %r[g 1(9:5) (p(v) = p(y = 25)) + g2(v, 5) (p(v) = p(y + 25))]ds +
+ ;;r(f[lfp, 0,Zp] (v = s,5) = f[2Ip, 0, Zp] (y + 5, 5)) ds + 6T, p(y) »

where g,(y, s) = [5 Duf[ZIp, 0Zp, Z,p] (y + (=1)"s,5) do (m = 1, 2).
From this expression we get for ry — n < p(y) < r, by lemma 3.3 the estimate

T; p(y) < p(y) — 0y p(y) + OF (1, mro) m +
+ o sup {|f(t, x, u,0,w)|, (t, x) € G, |u| < nro, |W| < 21} +
+ 0eK3 < 1o + 0(—d + nF (1, ro) + eKs) < 1g .

In a similar way (using the first inequality in lemma 3.3) we get for —ro <
< p(y) £ —ro + nthat —ry < T5p(y) < 1o and thus T;p € A, for p e A,.
Let us assume that there exist suchd; > 0,0 = j < i £ k — 1,thatfor0 < § £ d;

the operator T; maps the set 4; into itself and let us seek J;,; such that T; for 0 <
< 6 < 6;4, maps A4;,, into itself.

(4.18) DiHT}p(y) — pitt p(y) +
+ 2 j IDuf{p, 0}y = 5,5) (D'*1 p(3) — D*1p(y — 29)) +
+ Duf(p. 0} (v + 5,5) (DI p(y) — D 1p(y + 25)) +
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+ Dsf{p,0} (y = 5,5) (D" p(y) + D'*'p(y — 25)) —
— Dsf{p, 0} (y + s5,5) (D"** p(y) + D**'p(y + 25))] ds +
+ 0X;14(y) + OD"IT, p(y)

where X+ 1 is the sum of at most (i + 1)! 4*! members of the form
1 n
E;J\ [D"f{ps 0} (y -, S) h(y -, S) - D"f{P, 0} (y + s, S) h(y + s, S)] ds 4
0

|n| < i+ 1 and his the product of at most i + 1 members D{ZIp, D%Zp, D'Z,p
(1<j2i+1,1<k=i1=1=i)and from here an estimate for X;,, follows

(4.19) |Xivqlo < (i + 1)1 8 2F (i + 1, 7r) [max (ro, ..., 7)) = Ciuy -
Let us suppose that pe A;,,. Then for y for which [D*** p(y)| < riz; — 1 we
get by (4.18), (4.19)
(420) DTy p(y) < ripy — L+ SQF (1, rg) 2r;4y + Cipy + 6K3) < 1ipy
if0 <68 <8y, =min[, (4F (1, mro) rivy + civy + eK3)7H].
If iy — 1 < D' p(y) < 7y, then from (4.18) we get D'*'T; p(y) = —ripy
and further by lemma 3.3 and lemma 3.4
DTy p(y) < rivq + 0(=yrivs + Fy(1, 7ro) +
+ (sup Dsf{p, 0} —inf Dsf{p,0}) riyy + civq + ¢K3) <
G2 G2

S rieq t 5(_°‘ri+1 + Ff(]a 7”‘0) + Cipq + 8Ks) =it

For —r;4; < D' p(y) £ —r;4y + 1 we proceed analogously and finally we get
IDHlTa P(y)l S i if IDHl P(J’)l S Fivge

Thus we have proved that for 6 fulfilling (4.20) and r;.; given by (4.12) the opera-
tor Ty maps the set A4, into itself.

T; is a continuous mapping on C* and from above it follows that it fulfils the assump-
tions of lemma 3.1 with M, = A,_, and M, = A,. Thus there exists a fixed-point
Do € Ay_, of the operator T;. This p, satisfies the equation (4.13) and hence

ag(Po) = 8Af{1707 as(Po)} .

From remark 2.1 it follows that the function u, = ZIp, + a’(p,) is for k = 2
a classical solution of the problem (1.1), (1.2). We have proved the following theorem

A TIA

Theorem 1. Let f be defined on G, = R x (0,m) x R x R x R and fulfil the
following assumptions:

1) f has derivatives up to the order k + 1 and forr > 0 sup sup {ID¥(t, x,u, v, )],
(tx)eG lul<rsrn w1} <+ lil=k
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2) There exist ro > 0 andy > 0 such that
a) Duf < =y <0 on Gy =G x {—mrg, wroy X {—2rg,2re) x {—2rq, 2re),
b) supD5f 1nfD5f— y=—a <0,
c) d = yry — sup {I£(t, x, u, 0, w)|, (1, x) € G, |u| £ nro, || < 21} > 0.

Then there exists ¢, > 0 such that for each ¢ € {0, &y there exists the function
u, € C, which is a solution of the problem (1.1), (1.2).

5. ANOTHER NONLINEAR CASE

We shall solve the equation
(5.1 . Uy, — uy, = &f(t, x, u, &)

with the boundary conditions (1.2). Let f be defined on G; = R x (0,7) x R X
x <0, &y and fulfil the following assumptions

1) DYDED%f, iy + i, + iy < k + 1, are defined and continuous on Gj.

2) There exists y > 0 such that

(5.2) Dif < —y<0 on Gy,=G x {=2rg —1,2ry + 1) x <0, &>,
where

ro > 3}1— sup (|f(t, x,0,0)|; (1, x) € G) .

(5.3) 3) sup. sup IDf(t, x, u, €)] < +o0.
li|=

14—0

In this paragraph f[u, €] (¢, x) = f(t, x, u(t, x), €).

As in the preceding case we shall seek a solution a’(p) of the equation u =
= ¢AP,f[Zp + u, ¢] and then we shall prove that there exists a function p such that
P,f[Zp + a*(p), €] = f[Zp + a*(p), &] with help of the implicit function theorem. We
could proceed in the same way as in paragraph 4, but using the implicit function
theorem we obtain immediately a continuous dependence of the solution on &.

Similarly as in lemma 4.1 for & < & = min ([18(k + n%) 2*K (k + 1, 2ro +
+1,r)] 7", &) and ped, ={peC’,|Dply =r;,j=0,...,i} the operator

AP, f[Zp + u, €] is a contraction on B; = {u €Ny, |u|;+, < 1}, hence we get
a unique solution a’(p) € B, for p € A, for which

(54) 1) [a(®)]irs S €Ky,
(53) 2 |a'(p) — a%(a)]i+1 = eKilp — 4l

where K, = 9k + n*) K (k, 2ro + 1,7), K2 = 18(k + n?) 2** 'K (k + 1,2r, +
+1,7), r =2maxr; + L.

0<isgk
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Further we shall prove that a*(p) is continuous for (p, &) € 4x x <0, &) and that
there exists G-derivative a’(p) continuous in (p, €). As (5.5) holds, it suffices to prove
that for a fixed p the function a‘(p) is continuous in &. Let ¢y, &, € €0, £). Then a“(p)
we get from a®(p) by the method of succesive approximations: ug = a*(p), #,,+; =
= &, AP,f[Zp + u,, ¢,]. Then

"ae'(P) - an(l’)”kﬂ = lim ”“n - “0”k+1 = 2””1 - “0“k+1 =

< 18(k + n?) |, f[Zp + a™(p), &1] — &2f[Zp + a®(p), & ]||x <
< 18(k + ) [(e1 — &) [f[Zp + a™(p). &1]|lx +
+ & f[Zp + a®(p). &1] — f[Zp + a"(p). ;][] < @(fer — &) »

where w is a function on <0, £), continuous in 0 and w(O) = 0,wdepends on f, kand r.
To prove the existence of a’(p) let us note that the function v"(p) = a*(p) + Zp
satisfies the equation

v"(p) = Zp + eAP,f[v"(p), €] .
Then according to the known theorem (see e.g. [4]) there exists for & sufficiently small
(e < (J|A|| | P] sup ID5f])™") a G-derivative v3(p) = [E — eR,(p)]~* Zq and hence
Ga .
a*(p) has a G-derivative

(5.6) ay(p) (4) = ([E — eR(p)] ™" — E) Zq,

where .
R(p) (w) = AP,(D3f[v"(p). €] w) -

It is obvious that this derivative is continuous in p and e.
Let & < &be such that all above assumptions are fulfilled for ¢ < & Let us denote

(5.7) V(p. &) = Qf[Zp + a*(p). €]

and let us prove that the operator V fulfils the assumptions of the implicit function
theorem.

The operator ¥ maps C* x <0, &) into C*. By lemma 3.1 we shall prove that the
equation V(p, 0) = 0 has a unique solution p, € C*. As in the preceding paragraph
we shall prove the existence of a fixed point of the operator Typ = p + 6V(p, 0).
Let ¢ = sup (|f(t, x,0,0)|; (, x) € G) and ro > c/y. Further let r; (i = 1, ...,k + 1)
be given by recurrent formulas

(5.8) r; = max (}17 Fi(1,2ry) + % 2(i + 1)V F (i, 2r) [max (ro, ..., ri—1)]’, 1) .

Let us denote M, = {pe C*, |D'p|o £ r;,i = 0,...,k}, M, = {pe C***,|Dp|, <
Sr,i=0,...,k+ 1}. Let pe M,. We shall prove that also T;p € M.
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If 0 < # < ro, then for y such that |p(y)| < ro — n we get |T; p(y)| £ ro — 1 +
+ 8F (0, 2ro).

From the mean-value theorem we get the operator T in the form
T; p(y) = p(y) +

+ ;—n_ﬁg {5 5) () = Py = 29)) + g2(v, 8) (p(y) — p(y + 25))] ds +

+ ir[f(y ~5,50,0) — f(y + s,5,0,0)] ds,
2n ),
where
1
In(y,s) = J Dyf[eZp, 0] (y + (=1)"s,s)de.
0

Then by lemma 3.3 we get for ro — 1 < p(y) < 7

T; p(y) < p(y) — 0y p(¥) + SnF (1, 2ro) + bc .
Obviousiy for such y

Ty p(y) = ro — 1 — Ff0,2r) .

If0 < < min [(yro — ¢) (F(1,2r0)) ™% 70), 0 < & £ 8o = min [7(F,0, 2ro)) ™",
77'], then |T,5 P(Y)l < ro. In the same way we can make the estimates if —ry <
< p(y) £ —ro + n and hence |T;ply < 7o.

For i = 1 we have

D'T; p(y) = D'p(y) + % j [0f12p. 01 (v — 5.5) (D'p(y) = Diply — 29)) +

+ D3f[Zp, 0] (y + s,5) (D'p(y) — D'p(y + 2s))] ds '+ 3X(y),

where | X (y)| is estimated by ¢; = 2/(i + 2)! F (i, 2ro) [max (ro, ..., r;—1)]"

Now if we choose 7 = 1 and 0 < & < 8; = min (6,_, (2F (1, 2ro) r; + ¢;) ") we
can prove similarly as above that ‘DiT5p|0 =< r;. Then the mapping T; fulfils the
assumptions of lemma 3.1 and hence there exists a fixed point p, e M, of the opera-
tor T; which is a solution of the equation V(p, 0) = 0.

This p, is unique in C°, because if p, € C° is another solution of the equation
V(p, 0) = 0, then for p’ = p, — p, it holds

0 = V(po, 0) () = V(p1, 0) (¥) =
- 21_; J :[gl(y, ) (P0) = p( = 29) + 920, 9) (P'(¥) = oy + 29)] ds,
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where

1
gnly:s) = f Dyf[Zpo + o(Zpy = Zpo)] (v + (=1)"s.5) do.
0
From this expression we get for p’ = const. and y, such that p'(y,) = max (p'(y);

y€R), V(po, 0) (v0) = ¥(p1, 0) (¥o) < O which is a contradiction and hence p’ =
const = 0 because [p'] = 0.

From above it follows that the operator V(p,¢) is continuous in p and ¢ in
a neighbourhood of (p,, 0) and that it has a G-derivative V,(p, &) continuous in p
and ¢ in the neighbourhood of (p,, 0). Further we must prove that the operator
H = V,(p,, 0) has an inverse operator H™'. It is easily seen that H maps C* into
itself. We shall prove that H is an 1 — 1 mapping. Let p € C* be such that Hp = 0. Let

p(vo) = max (p(y); y € R). If for some s p(y, — 25) < p(yo) or P(yo + 25) < p(¥o)s
then

0= [0usT200, 0105 = 5.9 (000 = ol = 29) +

+ D3f[Zpo, 0] (¥ + s, 8) (p(yo) — P(yo + 2s))]ds < 0.

This is a contradiction and hence p = const = 0 because [p] = 0.

Let us denote g(y, s) = D3f[Zpo, 0] (y — s, 5) + D3f[Zpo. 0] (v + s, 5), go(¥) =
= {3 g(», s) ds. Then we can write the operator H as a sum H = H,; + H,, where
1

H, P(J’) = P

go(y) p(y) - ij:ngo(s) p(s) ds ,

H, p(y) = -21— f :"go<s) p(s) ds — 2i j :(Dsf[Zpo, 01y — .5) p(y — 25) +

+ D3f[Zpo, 0] (y + s,5) p(y + 25))ds .

Evidently H,, H, are the operators from C¥into C*, H, has on C* a bounded H; !

i 20) = got)’) (p(y) B (J : " gol(S) ds) i J : n 901(8) ) ds) '

We shall prove that the operator H, is completely continuous. Let U be a bounded
set of C*. To prove that H,(U) is compact in C* it suffices to prove that the derivatives
of the order k of functions from H,(U) fulfil the assumptions of Arzela’s theorem.

It is obvious that they are uniformly bounded. Further (if k = 1)

D"H2 2(») - _ %{J‘R[Daf[lpo, 0] (y — s,5) Dkp(y — 2s) +
. ) 0
+ D3f[Zpo, 0] (v + s, 5) D*py + 25)] ds + X, =
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1 y—2n

y +'s y—35 "
= — D:flZpy, O ——, ——— ) D"p(s)ds —
an ], 3f[ Po ]< 5 > ) P()

y+2n —
—%J D3f[Zp0,0]<S+y, S—-—y> D¥p(s)ds + X, .
T y

2 2

In X, are only derivatives of p up to the order k — 1, so they are equicontinuous.
Further it is easily seen that the first and second integrals are also equicontinuous
with respect to p € U. So the operator H, is completely continuous. As the operator
E+ H{'H,= H['Hisalso an 1—1 operator and H; 'H, is a completely continuous
operator, there exists by the well known theorem a linear bounded (E + H;'H,)™*
on C* and then there exists on C* also the linear bounded H™' = (E + Hy 'H,) "' H{ "

Now we have verified all assumptions of the implicit function theorem and hence
the following theorem holds:

Theorem 2. Let f be defined on Gy = R x (0, ) x R x <0, &) and fulfil the
following assumptions:

1) D{DED%f, iy + iy + i3 < k + 1, are defined and continuous on Gj.
2) There exists y > 0 such that

Dif < —y<0 on G x<{—=2ryg —1,2rg + 1> x <0,¢4>,
where
ro >y 'sup (|f(t, x,0,0)[; (, x) € G)..
3) sup sup {|D¥(t, x,u, &), (1, x) € G, |u| £ 2ro + 1, e€ <0, gop} < +o0.

li|Sk+1
is=0

Let p, € C* be a solution of the equation Qf[Zp, 0] = 0 (which is unique). Then

there exists ¢* > 0 such that for ¢ € {0, ¢*) there exists a solution u, of the problem
(5.1), (1.2) such that u, = Zp, and u, depends continuously on ¢ in the space C;.
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