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Czechoslovak Mathematical Journal, 18 (93) 1968, Praha 

M-POLARS IN LATTICE-ORDERED GROUPS 

RICHARD D . BYRD, Bethlehem^) 

(Received November 3, 1966) 

1. Introduction. Throughout this note G will denote a lattice-ordered group 
("/-group"). If S ^ G and if M is a convex /-subgroup of G, let p{S, M) = {x e 
G G I |x| л \s\eM for all s G S}. Then p{S, M) will be called the M-polar of S in G. 
The definition of an M-polar extends the concept of a polar, that is, the case where 
M = (о}. Polars have been used extensively in the literature and this note is devoted 
primarily to an investigation of those properties of polars which can be extended to 
M-polars. 

In Lemma 3.1 it is shown that p[S, M) is a convex /-subgroup of G and that S and 
the convex /-subgroup of G generated by S define the same M-polar. If S is a convex 
/-subgroup of G, then it is shown in Lemma 3,3 that p(S, M) = p{S, S n M). Thus, 
without loss of generality, it may be assumed that M ç S and that S is a convex 
/-subgroup of G. It is shown (Theorem 3.10) that for a fixed convex /-subgroup M 
of G, the collection of all M-polars is a complete Boolean algebra. Also, it is shown 
(Theorem 3.14) that the collection of all M-summands is a subalgebra of this collec­
tion. These results generalize the theorems on polars and cardinal summands which 
were first proven by F. SiK in [9], and rediscovered by many others. P. CONRAD 
([3], Theorem 3.5) used a mapping т defined by Mi = M n 5 to establish a one to 
one correspondence between the prime subgroups of G not containing S and all 
proper prime subgroups of S, where S. is a convex /-subgroup of G. In Theorem 3.5 
the inverse of the mapping т is extended to all convex /-subgroups of S and this 
extension is done with M-polars. 

2. Notation and terminology. For the standard definitions and results concerning 
i-groups the reader is refered to [1] and [6]. A subgroup С of G is an Isubgroup 
provided that С is a sublattice of G, and С is a convex subgroup ifO^g-^ceC 
and g e G imply that ^̂  G С A convex /-subgroup С of G is called a prime subgroup 

^) This work was supported in part by National Science Foundation grants GP 1791 and 
64 239 and represents a portion of the author's doctoral dissertation, written at Tulane University 
under the direction of Professor Paul F. Conrad, to whom the author expresses his gratitude. 
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if whenever a and b belong to G'^ = {g e G \ g "^ 0} and not C, then a л Ь > 0. 
Theorem 3.2 of [3] gives six equivalent definitions of a prime subgroup. A convex 
l-subgroup that is maximal with respect to not containing some g in G is called 
a regular subgroup. Each regular subgroup is prime ([3], Corollary to Theorem 
3.1). Let Г be an index set for the collection Gy of regular subgroups of G. For 
each уеГ there exists a unique convex /-subgroup Ĝ  of G that covers Gy. If g belongs 
to Ĝ  but not Gy, then G y is said to Ыа value of g. By Zorn's lemma each 0 Ф g e G 
has at least one value. 

If S ^ G, then <S> ([5]) will denote the subsemigroup (subgroup) of G that is 
generated by 5. If A and В are sets, then A\B will denote the set of elements in A 
but not in Б, and A a В denotes that Л is a proper subset of В. 

3. M-polars. If S Ç G and if M is a convex /-subgroup of G, let p^{S, M) = 
= p{S, M) = {xe G\\X\ A |S| G M for all 5 G 5} and, by induction, let p\S, M) = 
= p(p"~4S, M), M) where n > 1, p{S, M) will be called the M-polar of S in G. 
The {0}-polar of S will be denoted by p{S) and will be called the polar of S.lf S = 
= {s}, then p(S, M) will be denoted by p[s, M) and we shall call p{s, M) a principal 
M-polar, Clearly p(5, M) = 0{p{s, M) \seS}. Let У = {|s| \ s e S} and if X ç G^, 
let X^ = {g E G^ \ g S X for some x G X}. 

Lemma 3.1. (l) p{S, M) is a convex Isubgroup of G, M ^ p{S, M), and S я 
Я p^{S, M). 

(2) If Т^ G such that S' Я (Т%, then р{Т, М) Я p{S, М). 

(3) <S'>^ is а convex subsemigroup of G^ that contains 0, hence [<S"> J is-
a convex l-subgroup of G. Moreover, p{S, M) = KL'^'^')*]' ^)-

Proof. (1) If x,yEp{S,M) and seS, then 0 ^ |x - j ; | л |s| ^ (|x| + \y\ + 
+ |x|) л \s\ ^ (|x| л |5|) + {\y\ A \s\) + {\x\ A \s\) G M. Siucc M is convex, it 
follows that |x — y\ A \s\e M and so x •- j G p{S, M). If z G G, x G p(S, M), and 
SE S such that \z\ S |^|, then 0 ^ |z| л |s| ^ |x| л |5| G M. Therefore z G p(5, M) 
and ^(5, M) is a convex /-subgroup of G ([3], Proposition 3.1). It follows from the 
definition of M-polar that M ^ p{S, M) and that 5" Ç p^{S, M). 

(2) Let X G p(T, M) and let s G 5. Then |5| ^ |t| for some t in T. Thus 0 ^ |x| л 
л \s\ g |x| л |r| G M and so X G p{S, M). 

(3) By the definition (^S'}^ is a convex subset of G^ and contains 0. If x, j ; G {S'},^^ 
then 0 ^ X + V g |5i| + .. . + \s„\ + l̂ il + ... + |/^| e <S'>, where 5̂ , tjES. Thus 
X + j ; G <S'>^. If T is a convex subsemigroup of G^ that contains 0, then [T] is 
a convex /-subgroup of G and [T]+ = '^([5], Theorem 2.1). By (2) p([<S'> J , M) ^ 
Ç ^(5, M). Let 0 ^ X G p{S, M) and let a G < S ' > ^ . Then 0 ^ Ö ^ |5i| + . . . -f |s„| e 

G <5'> where 5̂  G 5. Therefore О ^ х л а ^ х л (|si| + . . . + |5„|) ^ (x л jsij) -b 
+ ... + (x л |5,|) G M. Thus X G К[<^ '>*] ' ^ ) -
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It will be assumed for the remainder of this note that S is a convex l-subgroup 
ofG, 

For g^ G, let G{g) = (x e G | |x| ^ n\g\ for some positive integer /i]. Then G{g) 
is the smallest convex /-subgroup of G containing g ([3], Proposition 3.4). Clearly 
G{g) = G{\g\). The following is immediate from (3) of the lemma. 

Corollary 3.2. For each g in G, p{g, M) = p(G[g), M). 

cz Lemma 3.3. (l) / / Lis a convex l-subgroup of G such that M я L, then p{S, M) 
с p^S, L ) . In particular, for any convex l-subgroup J of G, p(S, M) n p[S, J) = 
= p{S, M n J). 

(2) p{S, M) - p{S, S пМ) = p{[S u M], M). 
(3) S я M if and only if S я p{S, M) if and only if p{S, M) = G. 

Proof. (1) Let 0 g X G p{S, M) and let 0 ^ s e 5. Then x л s e M ^ L and so 
X e p{S, L). Thus it follows that p(5, M n J) с p(5, M) n p{S, J), If 0 g x e 
e p(S, M) n ^(5, J) and if 0 ^ s E S, then x л s e M n J and so x e p(S, M n J). 

(2) By (2) of Lemma 3.1, p([S u M] , M) с p(S, M). Let 0 g x G JP(S, M ) and 
let 0 g 5i + m^ + ... + 5„ + m,, G [S u M] . Then 0 ^ x л (s^ + m^ + . . . + 5„ + 
+ m„) = X л |si + m^ + .. . + 5„ + m„| ^ X л {\s^\ + |mi| + ... + |s„| + jm„j + 
+ |s„| + ... + |mi| + l^il) ^ (x л jsi|) + (x л |mi|) + .. . + (x л |ш„|) + ... + 
Ч- (x л |mi|) + (x л |si|) G M. Hence x G p([S u M], M). By (l), p(5, S n M) я 
ç p(S, M). If 0 ^ X G p(s, M) and if 0 ^ 5 G S, then x A se S n M and so x G 
e p(5, S n M). 

The proof at (3) is straightforward and will be omitted. For the remainder of this 
note it will be assumed that M is a convex l-subgroup of S. 

Lemma 3.4. (l) M = p{S, M) n S --= p{S, M) n p\S, M). 

(2) / / L is a convex l-subgroup of G such that Ln S ^ M, then L Я p{S, M). 
Thus p[S, M) is the largest convex l-subgroup of G whose intersection with S is 
contained in M, 

(3) p{S, M) = p'{S, M). 

Proof. (1) By assumption M ^ S and by (1) of Lemma 3.1, M ç p{S, M) and 
S я p\S, M). Thus M Я: p{S, M)nS ^ p{S, M) n p^{S, M). If 0 ^ x G p{S, M) n 
n p^{S, M) then X G p(S, MY and x G p{p{S, M), M). Therefore x = x A xe M. 

(2) If 0 ^ X G L and if 0 ^ s e 5, then x A seLn S ^ M, Hence x G p{S, M). 
The remainder of (2) follows from (l). 

(3) From (1) of Lemma 3.1, S ^ P^'{S, M) and so by (2) at the same lemma, 
p{S, M) ^ p(p^{S, M), M) = p\S, M). p{S, M) n p2(5, M) ^ M implies by (2) 
that p{S, M) Ç p\S, M). 

Let ^ = {J I Ĵ  is a convex /-subgroup of S} and let J = {p{S, J) \ J e^}. 
Define a mapping a from ^ into J' by Jcr = p{S, J). 
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Theorem 3.5. a is a one to one inclusion preserving mapping of 9" onto J such that 
for J, M eS^, (J n M) (J = J(7 n Ma. a~^ is given by p{S, J) ст~^ = p{S, J) n S. 
If L is a prime subgroup of G that does not contain S, then L = p[S, S n L) = 
= (^S r\ L) a, J is a prime [regular) subgroup of S if and only if p[S, J) is a prime 
(regular) subgroup of G. Moreover, if s e S, then J is a value of s in S if and only 
if p[S, J) in a value of s in G. Finally, if S = G(g), then M is a maximal convex 
l-subgroup of S if and only if p{S, M) is a value of g in G. 

Proof. Clearly d is a function. By (1) of Lemma 3.3, a is inclusion preserving. It 
follows from (l) and (2) at Lemma 3.4 that a is one to one and by the definition of J^, 
a is onto. (1) of Lemma 3.3 shows that a distributes over finite intersections and (1) 
of Lemma 3.4 shows that p(S, J) (т~^ = J = p(S, J) n S. 

Suppose that Lis a prime subgroup of G that does not contain S. By (2) of Lemma 
3.4, L Ç p[S, S n L ) . Suppose (by way of contradiction) that there exists 0 < x e 
G p{S, S n L)\L. Let 0 < 5 e S\L. Then xAseSnL^L, but this is a contradiction 
as Lis a prime subgroup of G ([3], Theorem 3.2). 

The proof of the remainder of this theorem is analogous to the proof of Theorem 
3.5 in [3] and will be omitted. 

If X is a subset of S{G), then N,{X) {N{X)) will denote the normalizer of X in S(G). 

Theorem 3.6. N,{M) = 5 n N{p{S, M)). Thus M is normal in S if and only if 
p(S, M) is normal in [5* u p[S, M)]. In particular for any y in Г, the following are 
equivalent. 

(1) Gy is normal in G'. 
(2) Gy n G(g) is normal in G{g) for all g e G^\Gy. 
(3) Gy n G{g) is normal in G{g) for some g e G'\Gy. This is the case if Gy is 

the only value of some g in G. 

Proof. If XES n N{p{S, M)), then x + M~x = x + p{S, M) n S - x = 
= (x + p{S, M) - x) n (x + 5 - x) = p{S, M)nS == M. Thus x e N^M). Con­
versely if X E N,{M), then M = x + M - x = x + p{S, M) n S - x = (x + 
+ p{S, M) - x) n S. By (2) of Lemma 3.4, x + p{S, M) - x Ç p{S, M). Therefore 
XES n N{p{S, M)). 

If M is normal in S, then S ç N{p{S, M)). Hence [S u p{S, M)] ^ N(p{S, M)). 
Conversely if [S u p{S, M)] ^ N(p{S, M)), then N^M) = S n N{p{S, M)) = S. 

Next suppose that (1) is true, let g e G^\Gy, and let S = G{g). Then N,{Gy n G{g)) = 
= G{g) n N{Gy)^ = {G{g) n G^ n N{G;) = G{g) nŒ = G{g). Thus (2) is true. (2) 
implies (3) is trivial. Suppose that (3) is true. Then since [Gy и G{g)] is a convex 
/-subgroup of G that properly contains Gy, it follows that Ĝ  Ç [G^ u G{g)^ ^ 
Ç N{Gy). If Gy is the only value of some g in G, then Gy n G{g) is the largest convex 
/-subgroup of G(g) and hence normal in G(g). This last assertion was proven in [2] 
(Proposition 2.4) by P. Conrad. 

The next theorem is a generalization of Theorem 2.3 in [4]. 
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Theorem 3.7. For M a S, the following are equivalent. 

(a) M is prime in p^'{S, M). 
(b) M is prime in S. 
(c) p(S, M) is prime in G. 
(d) p{S, M) = p{s, M)for each 0 < s e S\M. 
(e) p{S, M) is a maximal M-polar, 
(f ) p^{S, M) is a minimal M-polar. 
(g) p^(S, M ) is a maximal convex l-subgroup of G with respect to the property 

that M is prime in p^{S, M). 

Proof, (a) imphes (b). This follows from the definition of prime and the fact that 
S Ç p\S, M). 

(b) impHes (c). This follows from Theorem 3.5. 

(c) implies (d). By (2) of Lemma 3.1, p{S, M) с p(5, M) for each 0 < 5 e S\M. 
Suppose (by way of contradiction) that there exists 0 < x e p{s, M)\p[S, M) for 
some 0 < 5 e S\M. Then s ф p{S, M), for otherwise, s e S n p[S, M) = M. There­
fore X A s Ф p{S, M) as p{S, M) is prime ([3], Theorem 3.2), but this is a contradic­
tion as X л 5 G M ^ p{S, M). 

(d) imphes (e). Suppose that p(S, M) ç p(D, M) cz G, where D is a convex 
/-subgroup of G that contains M. p(D, M) cz G imphes that M Œ D.lf D ^ p(S, M), 
then D = D n p{S, M) ^ D n p[D, M) = M, a contradiction. Let 0 < d e 
G D\p{S, M). d Ф p{S, M) implies that there exists 0 < s e S such that d A s ф M 
and hence d A s e D n {S\M). By (2) of Lemma 3.1, p{D, M) Ç p{s л J, M) and by 
(d), p{S, M) = p{s A d, M). Therefore p{D, M) = p{S, M). 

(e) implies (f). Suppose that M с p(D, M) я p^{S, M), where /) is a convex 
/-subgroup of G that contains M. By (2) of Lemma 3.1 and (3) of Lemma 3.4, 
p\D, M) ^ p^{S, M) = p{S, M) and since M с: p{D, M), G = р(М, M) з p\D, M). 
Since p{S, M) is maximal, it follows that p(5, M) = p^(l>, M). Therefore p(D, M) = 
= / ( 5 , M ) . 

(f) imphes (g). Suppose (by way of contradiction) that M is not prime in p^'{S, M). 
Then there exists 0 < x, y e p^{S, M)\M such that x л j^ = 0. x G p^{S, M) imphes 
that p(x, M) ^ p^{S, M) = p{S, M) and so ^^(x, M) Ç ^^(5, M). Since p^{S, M), 
is assumed to be minimal and x G p^{x, М)\М, it follows that p^'{x, M) = p^(S, M). 
Hence р(х, M) = p{S, M), j ; л x = О implies that у e p{S, M). Since y e p^{S, M), 
it follows that y e p{S, M) n p^'(S, M) = M, a contradiction. Thus M is a prime sub­
group of p^{S, M). Suppose that Б is a convex /-subgroup of G such that p^{S, M) ç 
с В and such that M is prime in JB. Let 0 < se S\M £ Б\М. Since it has been 
shown that (b) implies (d), it follows that p{B, M) = p{s, M) = p{S, M). Therefore 
В с р2^Б, M) = p^{S, M). 

(g) implies (a) is immediate. 
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Corollary 3.8. If M is a proper prime subgroup of S, then the following are 
equivalent. 

(a) M is prime in G. 
(b) p\S, M) = G. 
(c) p{S, M) = M. 
This corollary follows from the theorem and Theorem 3.5. A convex /-subgroup С 

of G is said to be closed if whenever {g^\ae A] ^ С such that Уд^ exists implies 
that Vé'a G G. It is well known that polars are closed subgroups. 

Lemma 3.9. (1) M is closed if and only if p{S, M) and p^(S, M) are closed. 

(2) For each Àe A let S;^ be a convex l-subgroup of G such that M £ 5^. Then 

f)p{S,, M) = p{[{JS,l M). 

(3) / / T is a convex l-subgroup of G that contains M, then p^(S n T, M) = 
= p^S, M) n p\Z M). 

Proof, (l) To show that a convex J-subgroup is closed, it suffices to consider 
positive elements. Suppose that M is closed and let {gf̂  | a e Л} ^ p(S, M)"^ such 
that Vö̂ a exists. If 0 ^ s e S, then ^̂ ^ л s e M for each ae A, hence (Vö^a) л s = 
= V(^a A s)eM ([1], p. 221) since M is closed. By a similar argument it follows 
that p^{S, M) is closed. The converse is trivial as the intersection of closed subgroups 
is closed and p{S, M) n р^(5, M) = M. 

(2) For each a e Л it follows by (2) of Lemma 3.1 that p(S^, M) ^ p{\\)S^, M), 
hence (\p{S^, M) з р([и5'я], M). Conversely for each a e Л, {Ç\p{S^, M)) n S« Ç 
^ p(S,, M)nS,^ M, hence У Л П К ^ А , M)) n 5,) = {(\p{S,, M)) n {[\JSj) ^ M 
([7], Theorem 2). Therefore by (2) of Lemma 3.4, f)p{Sx, M) ç pil{JSлЪ ^^)-

(3) From (2) of Lemma 3.1 it follows that p^{S n T, M) ^ p^{S, M) n p%Z M). 
Let 0 йхЕ p%S, M) n p^(T, M), let 0 ^ у e p{S n T, M), let 0 ^ s e S, and let 
0 ^ te T. Then s A t e S n T, therefore j л s л f G M and soxAyASAteM. 
It follows that X л j ; л s e р{Т, M), x G р^{Т, M) implies that x A y A se р^(Т, M). 
Therefore x A y A s e p{T, M) n p^(T, M) = M, hence x A y e p(S, M). Now 
X A ye p^{S, M) as x e p\S, M). Thus x A ye p{S, M) n p^(S, M) = M. There­
fore X G p2(5 n T, M). 

It is easy to construct examples to show that (3) of this lemma is not true for 
arbitrary intersections. 

A Boolean algebra is a lattice with a smallest element 0 and a largest element 1 
which is complemented and distributive. Let M be a fixed convex /-subgroup of G 
and let J* denote the collection of all M-polars of G. By Lemma 3.3 ^ = {p{C, M) | С 
is a convex l-subgroup of G} = {p{D, M) \ M ^ D and D is a convex /-subgroup 
of G } . We define a partial order on Ш by set inclusion. For {р(5д, M) | Я G Л} ^ J^, 
define u,p{S„ M) = p'i[[Jp{S„ M)], М) and п,р{8„ M) = p{l\Jp'iS„ M)], M). 

Theorem 3.10. T/îe collection ^ = if ( U, n , ^) of ail M-polars of G is a complete 
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Boolean algebra where the 1 is G and the 0 is M. p{A, M) U p{B, M) = p{A n B, M) 
and p{A, M) П p{B, M) = p{[Ä u B], M) = p{A, M) n p{B, M). Moreover, if 
p(T, M), p{S,, M) e ^{X e A), then n ,p(S^, M) - f],p{S„ M) and (T, M) П 
n (ияК^я, M)) = u,(p(T, M) п p{S,, M)). 

Proof. Let {p{S^,M)\XeA] Ç ^ . By Lemmas 3.9 and 3.4 it follows that 
ЫЗ,. M) == Pilopos,, M)l M) = OP'{S,, M) = C\P{S,. M) = p{[(JS,l M). 
Therefore С)р{^л^ M) is an M-polar and is a lower bound for {p(5'^, M) | Я e Л}. If 
p{C, M) is any other lower bound for {p{S;^, M) | Я e Л}, then С)Р{^А^ ^) ^ p{C, M), 
Thus Г\р{^л^ Щ is the greatest lower bound for {/?(5 ,̂ M) | Я e Л}. For each осе A, 
p{S,, M) Ç [ир(5я, M)], hence p(5„ M) = |7^(S„ M) ç P ^ ( [ U K ^ A , M ) ] , M ) . If 
p{cM) is any other upper bound for {p{S^,M) | Я G Л}, then p{C,M) 3 [Up(5;^,M)]. 
Therefore p{C, M) = p'{C, M) ^ p\\{jp{S,, M)], M). Thus p\\{)p\s,, M)], M) 
is the least upper bound for {p{S^, M) | Я e Л}. In particular, if A is finite, then it 
follows from Lemma 3.9 that р^{\\)р{8^. M)], M) - p{p{\\Jp{S^, M)], M), M) -
== КПР^('5 'Д, M ) , M ) - р^(П5'я, M) = p{Ç\S^,M). Thus ^ is a complete lattice. Let 
р{Т, M) E J*. Then by Lemma 3.4, M = р{Т, M) n р^{Т, M) and from the above 
G = p{M, M) = p{p{T, M) n p\T, M), M) - p{Z M) u p2(T, M). Thus if has a 0 
and a 1 and is complemented. To show that ^ is a distributive lattice, it suffices to 
show that p{T, M) П {u^p(S^, M)) - U^(p(r, M) П p{S;_, M)). By an application 
of Lemmas 3.4 and 3.9, the definition of LJ, and Theorem 2 in [7], it follows that 

p{T, M) П {u,p{S,, M)) = p\T, M) n (р^([ияК^я, M)], M)) = 
= р'{р{Т, M) n [ияК^я, M)lM) = р\[оЫТ. M) n p{S,, M))], M) = 

= р'ШлРЦТ^ SJ), M)], M) = U,P{[TKJ 5 J , M) = 

:=. U,(p(T, M) n Х^я, M)) = U,(p(T, M) n К^я, M)) . 

This completes the proof of the theorem. 
Let L and L be lattices. If тс is a mapping of L into L with the property that 

{x V y) 71 = xn V yn and (x л y) тг = XTI л уя for all x, у e L, then тг is called 
a lattice homomorphism. A one to one lattice homomorphism is called a lattice 
isomorphism. If L has a least element 0, then the set Kiji) = {x e L\ xn — 0] is 
called the kernel of n. If тг̂  and 712 are two lattice homomorphisms of a lattice L, 
then Til is said to be greater than 712 (see [8]) if for all x, >' e L, X712 = 7̂X2 implies 
that XKi = ути .̂ 

Let ^ denote the lattice of all convex /-subgroups of G and let M be a fixed element 
of ^ . For A in ^ define An = p^{A, M). The next theorem is a generalization of 
a result of K. LORENZ ([7], Theorem 4). 

Theorem 3.11. n is a lattice homomorphism of ^ onto M. If [C^^ | Я e Л} Ç ^ , 
then [ U Q ] ^ — ' - J ( Q ^ ) ' ^ ^^ the largest element in K{n) and n may be charac­
terised as a maximal lattice homomorphism of ^€ such that M is the largest element 
in К(я). 
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Proof. Clearly я is a function. It follows from (3) of Lemma 3.4 that ж 
restricted to ^ is the identity, hence л is onto. If Л, Б e ^̂ , then by Lemma 3.9, 
An n BTL = p\Ä, M) n p^{B, M) = p^{A СЛ B, M) = {A r\ B) тт, and by Lemma 
3.9 and Theorem 3.10, An U Bn = p\A, M) U p\B, M) = p{p{A, M), M) U 
Up{p{B, M), M) - p{p(A, M) n p{B, M), M) - p\[A u B], M) - {[A u B]) n. 
Thus 7г is a lattice homomorphism. If {C; | л e /1} ç ^ , then by successive use of 
Lemmas 3.9, 3.4, and 3.9 and the definition of U, it follows that [ U ^ A ] ^ = 

= ]^'([ися], M) = р(К[иСя], M), M) = КПК^я, M), M) = КПР'(СЯ, M), M) = 
= Р'ЦОРЧ^Л. M ) ] , M ) = LJp^C,, M) = и(С,7г), 

Mn = i?^(M, M) = M, hence M еК(я). If Л G ̂  such that An = M, then G = p(M, M) -
= p^{A, M) = ]7(Л, M) and so by Lemma 3.3, A ^ M, Let т be any lattice homo­
morphism of ^ such that M is the largest element in К(т). For each A in ^̂  let Л(^ ) = 
= {С e^ \ AT A CT = Mr}. Now suppose that there exists A, В e^ such that AT = 
= Вт. Then Д(Л) = Д(5). If С e Л(^) , then (Л n С) т = Лт л Ст = Мт and so 
А n С ^ M. By Lemma 3.4, С Ç /?(У1, M). In particular, p{A, M) e Д(Л) and is 
the largest member of Л(^)- Similarly p(B, M) is the largest member in Л(^) and 
since Д(Л) = Д(Л), it follows that p{A, M) = p(ß, M). Therefore An = p^{A, M) = 
= p\B, M) = Bn. 

It is easy to show that the mapping p(C, M) -> p^(C, M) is an anti-lattice iso­
morphism of J* onto J*. Now let ^ = {p^{a, M)\a e G^}. We shall call the elements 
of ^ principal M-bipolars. The next theorem uses the result by K. Lorenz ([7], 
Lemma 1) that for a, beO^, G(a A b) = G{a) n G(b) and that G(a v b) = , 
= [G{a) и G{b)]. With this we extend Theorem 3 in [7]. 

Theorem 3.12. The set ^ is a sublattice of ^ , where p^{a, M) n p^(b, M) = 
= p^{a A b, M) and p\a, M) U p\b, M) - p\a v b, M), a^beG"-. Thus the 
mapping Q of G^ into Q) defined by ag = p^{a, M) is a lattice homomorphism of G^ 
onto ^ with kernel M^. Moreover, if [g^ \ a E A} Ç G^ such that \/g^ exists and 
if M is closed, then (Vö â) Q = ^{OaQ)-

Proof. By Corollary 3.2, p\a, M) = p^{G{a), M). Let p\a, M), p\b, M)E 9. 
Then by Lemma 3.9, ag n bg =^ p^{a, M) n p\b, M) = p\G{a) n G(b), M) = 
= p^{G(a A b), M) = {a A b) g and by Theorem 3.11, ag U bg = p^{a, M) U 
U p\b, M) = p\[G{a) и G(b)], M) - p\G{a v b), M) = {a v b) g. Therefore 9 
is a sublattice of J^ and ^ is a lattice homomorphism of G^ onto ^ . If ag = M, %then 
p(a, M) = p^{a, M) = p(M, M) = G, hence by Lemma 3.3, a e M^. Conversely if 
ae M^, then ag = p^{a, M) ^ p^(M, M) = M and so a G K{g). 

Next suppose that {of« | ô  ^ Л} Ç G^ such that g = \/g^ exists and suppose that M 
is closed, g ^ g^ imphes that p(g, M) ^ p(^g^^ M) for all a in Л. Therefore p(g, M) ^ 
^ Г\р{Оа^ M). Let 0 g X e ПК^а^ ^ ) - Then x A g^e M for all a and so x л ^ = 
= X A (Vö â) = V(-^ A g^) G M. Thus p{g, M) = fl/'lö^a. Щ- Therefore by Lemmas 
3.4 and 3.9 and the definition of U, it follows that gg = P^'{g, M) = p{p{g, M), M) = 
= р{ПрЧ9а, Щ M) = p\[öp\g.. M)], M) = Up'{g,, M) = U{g^g). 
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In the case M = {0} there is a natural lattice isomorphism of the lattice of all 
carriers of G (see [6], p. 72) onto the collection of all principal bipolars of G. 

A convex /-subgroup Л of G is called an M-summand of G if there exists a convex 
/-subgroup Б of G such that G = [A и B] and A n В = M.lî this is the case, then 
it will be denoted by G = A \ + \B. 

Lemma 3.13. (i) If G = A\ + \ В and if С is a convex Isuhgroup of G that 
contains M, then С = (C n Л) | + | (C n Б). 

(2) If G = Л I +1 Б, then A = p(B, M) and M = p{A, M) n p{B, M). 

Proof. (1) {€ пА)п{С пВ) = С пАпВ = С пМ = M and [{С n А) и 
и {С п В)] = С п [А \j В] = С п G = С. 

(2) By Lemma 3.4, АпВ = M imphes А ç р{В, M). If О ^ х 6 р{В, М), then 
X = а^ + bi + ,.. + а„ + b„, where а̂  е Л and Ь̂  е Б and without loss of generality 
it may be assumed that â  and b^ are greater than or equal to 0. Thus for each i(l ^ 
^ i ^ n),0 S hi = hi A hi S {^1 + bi + .. . + a„ + Ь„) л fc. = x л Ь,- e M as 
X e p{B, M). Therefore hiSM ^ A and soxeA.M = p{G, M) = р([Л u Б] , M) = 
= p{A, M) n p{B, M) by Lemma 3.9. 

For a fixed convex /-subgroup M of G, let ^ be the collection of all M-summands 
of G. In particular, G, M e e^. If M = {O}, then this is precisely the collection of all 
cardinal summands of G. 

Theorem 3.14. ^ is a subalgebra of ^. Moreover, for A, С e Ji, A\-} С — 
= [Л u С]. Thus M is a sublattice of ^. 

Proof. By Lemma 3.13 ^ is a subset of J*. If Л, С G J^, then G = Л | + | Б = 
= С I +1 D for some B, D e M. By Lemma 3.13 it follows that G = (Л n C) | +1 (Б n 
n C) I -b I D = Л I +1 (Б n C) I +1 (Б n D). Л n C, Л I +1 (Б n C) G y# and clearly 
[Л u C] = Л I +1 (Б n C). Thus Л U С = р^([Л u С], M) = ^^(^ | +1 (Б n 
n С), M) = Л I +1 (Б n С) = [Л u С]. It follows from Lemma 3.13 that if Л G ^ , 
then p{A, M) G J^, Hence ^ is a subalgebra of J*. Since n in ^ agrees with П in ^, 
it follows that ^ is a sublattice of ^ . 

In general ^ is not a complete subalgebra of J*. It is not difficult to construct 
examples to show that the hypothesis that ^ is a complete subalgebra of ^ is not 
sufficient to insure that J^ will be a complete sublattice of ^, 
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