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YexocoBaukuii MaTeMaTHiecknii sxypuax 1. 16 (91) 1966, Ilpara

ON A DOMAIN OF THE TYPE

JAN KADLEC, Praha

(Received April 12, 1965)

In [1], domains of type P were defined. We shall recall this definition:

Let Q < E, be a bounded open domain in euclidean n-space E,; then Q x (— o0, 0)
is the set of all pairs (x, f) with x e Qand t < 0. Let k 2 0,/ = 0 be integers. Then M
denotes the space of all complex-valued infinitely differentiable functions ¢ with
compact support in Q x (— o0, 00), such that 0%[dt* (x,0) = 0 for & =0,1,...,
| — 1. Let .# be the closure of M, under the norm

le] = ([”Z_Eklbi(P[iz(Qx(—w,w)) + |t
where
olil

D= — = ,
axit ... 6x,, | | bt K

o = ([ [ et ot e dn)*

and where F.o(x,n) = (1/2n) [2, @(x, t) ™ dt is the Fourier transform of the
function ¢ in the direction t. Let I' = [ + %

By pW5!(Q x (— o0, 0)) we denote the space of all functions u for which there
exists a function & such that @ € .# and u(x, r) = d(x, t) for (x, ) e Q x (— o0, 0).
This latter space is a Banach space with respect to the norm

fule = = inf ||u|| =u,
e, i|Qx (- w,0)=U

and it is a Hilbert space with respect to a suitable scalar product.

Let us denote by 2(Q x (a, b)) the space of all infinitely differentiable complex-
valued functions with compact support in Q x (a, b).

Put
21+1
u, 92, = (- )’“.[f i C40dr

2H—1
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forp e 2(Q x (‘00,0))andu e W 1(Q x (— o0, 0)),and

o= s ot
lollrt==0<1

P2 ’(‘_(‘ 0, 0)) will denote the space of all functions u € gW5*' /(2 x (— o0, 0))
for which |“,p ™9 < 4 0. This space is a Banach space with respect to the norm

Julfs™>* = (ulli =) + (ufe=))*
(see [1]).
It is known [1], that 9(Q x (— oo, 0)) is dense in §W /(@ x (— o0, 0)). Hence

one may define Cu, v)®  for all uepWf*'(Q x (—o0,0)) and ve W H(Q x
X (—o0,0)) as lim <u, p>° , where ¢ € 2(Q x (-, 0)) and ¢ — v in the norm

G0
of SW(@ x (~0, 0)).

Now define Qe p&! iff Re (u, u>gw >0 for all u eng(k,l’)(Q % (—oo, 0)),
and then set P = N P&,

kz0
120

9 denotes the set of all bounded open domains Q whose boundary Q' can
be described locally by functions satisfying a Lipschitz condition (for the precise
definition see [2]).

The main aim of this paper is to prove that t(*! < .

In 14—17 it is shown that Re <u,u)®, =0 for uejW;>"(Q x (—o0, 0)),
employing some properties of solutions of ordinary differential equations. In the proof
of Theorem 19 we make use of the fact that (u, u>° _ depends continuously on u as u
varies continuously in the sense of both the strong topology in g W3*'(Q x (- o0, 0))
and the weak topology in JWi*!)(@Q x (—o0,0)). One first approximates u by
a function with suitable support, and then apply a regularization technique in the
direction of the space variables (cf. 5—12). Thus one obtains a u e pW,>'(Q x
x (—o0,0)). Using 14—17 we have N' = P.

1. Theorem. Let Q € ' and o(x) denote the distance from the point x to the
boundary Q. Then there is a function o(x) infinitely differentiable in Q and conti-
nuous on Q such that

o) = ox) < Co(x), Do) = — SO

[

for xeQ, M = 1. The constant C(i) depends only on i and Q.
For the proof see [2]. '
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2. Theorem. Let g(f) be a measurable function of a real variable on (0, )
Letl <p,a#p—1and

jwlg(t)l’ t*dt < +o0.

Then

j: U o) d{\ erdes (\g I;,+ lopj:\g(t)\” * dt

fora < p—1and

[T o= (oea) e

fora>p—1.
For the proof see [3].

3. Lemma. Let f be real-valued infinitely differentiable function of a real variable
such that f(t) =0 for t <%, f(fy =1 for t = 3. Put fi(t) = f(t/h) for h > 0.
Clearly, fi(t) = h™* f(t/h) and |f\®| < C(«) h™*. On setting Fy(x) = f,(o(x))
for x € Q, it results that

1) Fi(x) = 1 for o(x) = h,

2) Fi(x) € 2(Q),

3) D' Fy(x) = 0 for |i| > 0 and o(x) = h,

4), D'Fyx)| £ C(i)h™ for || = 0 and h < 1.

Proof. 1)—3) follow from the definition of F,. To prove 4) first establish the
following equality:

(1) D' F(x) = Z Coop fi?(0(x)) (D’ a(x)) .

12141

Il/\

Here

(2) °‘+1 |J|"1)BJ§H

ll/\

<

and Ci, s, are constants depending only on the indices i o, B;

Obviously (1) holds for |i| = 0. Let (1) be true for \tl = m. Differentiating (1)
with respect to some variable one obtains a sum of members of the form

ChirtP(ex) 11 (D a(x)

12121
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and of the form

AP TT (0 ol B(DR o) D ol

12 1j1=1i, i#do

where ljll = |j0‘ + 1.

The sums (2) corresponding to these members are

et i+ ¥ (-0 =i+t

1=1jl£1il
and

a2 Q=08+ (ol = DB = )+ (] = DB+ DS+

1=]jl=

Hence (1) follows by induction (for all i); by (2) and Theorem 1 we then obtain
for h < 1 that ‘

IDE Fh(x)l < Ch~ @+l 1)8) < Ch‘lil

as asserted.

4. Theorem. Let g(t) be absolutely continuous on the interval 0, ) and g(0) = 0.

‘Then
I

Proof. This follows from Theorem 2 where

@'\Zdr <c | loopa

j'g'<r)dr=g(r>, p=2. 40

0

5. Theorem. Let u € %' (Q x (=0, 0)), @ € RO, Put uy(x, t) = Fy(x) u(x, 7).
Then uy = u in W Q x (— o0, 0)).

Proof. Letdie M, i

ax(=w.0) = . Then Fyii € M and Fyii|gx(-m,0) = Fall-

It is easy to prove that F,i — @ in L,(Q x (— o0, c)) and lﬁ - Fhalz - 0.
Indeed,

i — Fja|* = j

Q

[ e 0 = o e i axon <

S| ] s s an = o,
xeR,0(x)<h

o0

where C(h) - 0 as h — 0.
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Let [X,, X,,] be a local coordinate system corresponding to U,, and a, functions
describing the boundary of 2. We denote by A, the projection of U, into the space
of the first (n — 1) variables. Also omit the index r and write u instead of ue,.

Put F,ii = i,. Clearly

|,

and if |dip, — (ip,)| - 0 as h - 0 for all r then ||[i@ — @, — 0 as h — 0. Thus it
is sufficient to prove our theorem for ug,.

Let M < k. Then

la - @l = €3 @) ~ @0

D'i(x, t) = F)(x) D i(x, 1) + Y. C;D'™7 Fy(x) D/ a(x, t),
J<i

where i — j = (iy — jy,..., i, — j,) and j < i means that j, < i, with j, < i, for
at least one . It is easily seen that F,(x) D' di(x, t) » D' ii(x, t) in L,(Q x (— o0, )
as h — 0. We shall prove now that

lim | D7 di(x, t) D9 Fy(x)|7 0 (= oo,y = O
h—0
forj < i:

I, = j |D7 di(x, ) D' Fy(x)|* dx dt =
JRJ -
= J |D7 di(x, 1) D' Fy(x)|? dt dx =
J—oJUn2

a(X)

(oo
= J‘J |D7 (X, x,, 1) D' Fy(X, x,)|* dt dX dx, .
—wd A

- 0

J

D’ ii(x, t) with j < i is absolutely continuous for almost every line X = const.,
t = const., and vanishes for x, = a(X), if suitably changed on set of measure zero.

On the other hand,
. C,yo(x) = [d(X) - x,| £ Cyox)

for x e U because a satisfies a Lipschitz condition. Thus for h < 1 by Lemma 3

I, £ CJ _f |D7 (X, x,, f) h~V92 dr dX dx, <
— o0 J x€Q,0(x)<h

IIA

c j J IDY (X, . 1) (o(x) 12 dr dX dx,
—o0 J XeR,0(x)<h .
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But by Theorem 4

[mj [D7 a(X, x, )| Jo(x)[?!1 =21 dr dX dx, <
v —wdJ XeQ

IIA

© a(
c,[ | j X)lDf (X, x,, 1)|? [a(X) — x, 2121 de dX dx, <

—oJA

o [ a(X)
J\_‘OOU A\[—oo

-
olil=1il

2
a—Xm Dj ﬁ(X, Xy t) dtdrdX dx,, :<__

IIA
a

<Cy (" j |D7 di(x, 1)|* dt dx < + o0
gk ) —nd @
and
J‘w J |D7 (X, x, ) o(x)|? =21 dt dx — 0
— 0o xeQ,0(x)<h
as h — 0.
Thus lim |[@ — @, = 0 and lim [ju — u,[ > = 0.
h—>0 h—0

6. Corollary. Under the hypotheses of Theorem 5
i 5 clulic =

where the constant C does not depend on h.

Proof. This follows easily from the proof of Theorem 5 and of Theorem 2.5
in [1].

7. Corollary. If vegW'(Q x (—o0,0)), then, under the hypotheses of
Theorem 5,

<uh’ U>(loo = <u, Uh>goo » ”uh”;—w’m é C““[IE’_OO’O)

and lim {uy, v) = {u, v).
h=0

Proof. If ¢ € 2(Q x (— o0, 0)), then

(3) (g 92 o = (Fyt, 92 o = <, Fyupd?
and

Iuhl;’_w,O) = sup l<uh’ (P>200l = sup |<u9 Fh¢>goo| §

llellr(== <1

<Pl s (Rl s cll .
llolir(-=0<1
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This inequality implies the first one in the assertion. Taking ¢ — v one obtains
Ly, 0%, = u, 0,5, and by Theorem 5 lim (u, v,>% , = <u, v)° .
h-0

This completes the proof.

8. Theorem. Let u € )W *')(Q x (=00, 0)) and u(x, t) = 0, whenever ¢(x) < & or

x ¢ Q. Put
1 [x — y|?
Byu(x, t) = — exp u(y, t)dy

®h" J sy < Ix - ylz — h?

where

2
x=j exp—M—dx
Ixf<1

X =1
and h < &. Then Zu — u in gW'(Q x (=0, 0)).

Proof. Let @ € ./, il|gyx (- 0y = u. It is well known that if |i| < k then D'#,d —
— Diiin L,(Q x E,)as h — 0. On the other hand, &%, i(x, n) = %8 i(x, n) and
I”ll,'%h( t ﬁ(x3 7[) = ‘%hln’l’;‘gt a(x, ’7) Thus

| Byt — a]* = f J |Z[n|" . dx, n) — [n|" &, d(x, n)]> dxdn.
2J —o

The right-hand side of this equality tends to zero as h — 0 because 'ﬂll’ & d(x,n) e
e Ly(Q x Ey).

Thus |24 — @ -0 and | Bu — ulf ™ > 0 because i €-# if i .
This completes the proof.

9. Corollary. Under the hypotheses of Theorem 8§,
[l < Cluficn.

Proof. This assertion is an immediate consequence of
|20 |caan ey S Clf|axrs -

Theorem 2.5 in [1] and the equality K#,u = #,Ku where K denotes the canonical
prolongation.

10. Corollary. Let u satisfy the hypotheses of Theorem 8, v € 2W2("’”(Q x (=0, 0))
and h < ¢[3. Then

@ [l < s
) (R, 0Y2 5 = u, BY°
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and
lim (Ryu, vD° , = {u, vD° .
h—0
Proof. Let y € 2(Q), ¥(x) = 0 for o(x) < ¢/3 and Y(x) = 1 for g(x) > 2¢[3.
Then

(©) B 0) o = A, )%, = R RYL o, = s Br0)?
and
|l = sup [Cu, Ry | S Jul 0 sup (Ao <
llollrt-=0 =1 lollrt-==<1
< Clulg=?

by Corollary 9, this implies (4). Taking ¢ — v in (6) one obtains (5), and by Theorem 8

lim {Ryu, v)° , = lim <u, BYvY° = {u, yo)° = {u, v)° .
=0

h—0

This completes the proof.

11. Theorem. Let u € gW$'(Q x (— 0, 0)). Then

lim <uh’ uh>goo = <u7 u>(luo .
h-0 .

Proof. By Corollaries 6 and 7,
|<uha uh>(-)-oo - <us u>goo| é
= |<uh7 u>(_)_°° - <u’ u>(l°0| + I<uh7 Uy — u>9~oo| =
é |<u’ U, — u>goo| + |<uh, u, — u>(lw| §

S (Jufsm ™ + [w ) Juy — uff ™ < Clufy = o = ule =,

where u;, — u|f>® — 0as h - 0.

12. Theorem. Under the hypotheses of Theorem 8,

lim (RByu, Bud° , = {u,ud’ .
h—0

Proof. This case may be treated in a similar manner as in Theorem 11.

13. Theorem. Under the hypotheses of Theorem 8, R, e gWZ(O,l')(Q X (_ o, 0))
for h < ¢[3 and

7 [t 3. 5 ) = el =,
where l” . |” is the norm H . ” inthe casek = 0, ¢ € @(Q % (_00’ 0))

254



Proof.

K, 932 | = [y B2 | < Jul& =0 | By
If K¢ is the canonical prolongation (cf. [1]) of ¢, then by Theorem 2.5 in [1],

(8) |Zso¥ i = ClKoy| <
< C( Z l%hDiK(pl/IIIZ.z(QX(—w,O)) + IﬂhK(PII/IZ)%-
lil <k
Now
) l@hK‘P‘PIZ = J‘ Jw l’ll"‘z I%,ﬂhK(pllx(x, n)!z dxdn =
QRJ -

= J;Jw |20 (x) [n]" FKo(x, n))|? dx dn .

It is known that
(10) |2D70| L0 x (- 0,0 = C(h) |@]L,0x (= o, -
By (10), (9) and (8),
|2uov = < C(h) (Ko ax - w0y + [Ko2)F < C(h) [[|o]]|=.
This completes the proof of (7). Hence Z,u € gWi>"(Q x (— o0, 0)).

14. Theorem. Let v € gW;*'(Q x (— o0, 0)) and suppose that

aZH—lU
(11) (=1 o2+t

+v=0 on Qx(—o0,0)

in the sense of distributions. Then v = 0.

Proof. Put
1 [x =y + ]t = of
k% = ,s)dyd
hv(x’ t) %lh exp ')C _ ylz + lf _ S|2 _ h2 D(y 9) yas
x=y|2+]e=s|2<h?
where
x|? + t]2
Ky = exp ,xlz+|t|2——1dxdt’ h>0.

|x|2+]t]2<1
Let O* = @, ¢ > 0. Then there is a hy = ho(Q*, &) such that &, v(x, 1) satisfy
(11) on Q* x (—o0, —¢) for all h < ho(Q*, &). '

Denote by 4, the roots of A2'*' 4+ (—1)! = 0 so arranged that Re 4, < Re /4.
21+1

Then &, v(x, 1) = Y, Cx) ™' on Q* x (— o0, —¢). On the other hand, & — v
a=1
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as h -0 in Ly(Q* x (—o0, —¢)). Thus v(x, 1) = 3, C,(x) ¢’ a.e. on Q x (— o0, 0).
a=1

For almost all fixed x e @ there is v(x, t) € L,(0, o). Hence C,(x) = ... =
= C;,1(x) = 0 a.e. in Q because Re A, < 0 for o < I + 1,

Now v(x, 0) € Ly(Q), ..., (' 'v/ot'~") (x, 0) € L(Q) (see [4]), and v(x, 0) = ... =
= (0" vfor' ") (x, 0) = 0 for a.e. x € Q because v e?(WZ(O»")(Q X (=00, 0)). Thus
2i+1

Y. Cyfx) 45 = 0for =0, ..., | — Land, consequently, C, ,(x) = ... = Cy . (x)=

a=1
= 0 a.e. in Q. This completes the proof.

15. Definition. Let §(Q x (a, b)) be the space of all infinitely differentiable function
on Q x (a, b) which have continuous partial derivatives of all orders in Q@ x <a, b).

16. Theorem. Let v € WS> (Q x (— o0, 0)) satisfy

0 al-&-l—al . 0
t

(12) Dy(u, v) = J

QJ - —

for all u e gW*'"(Q x (—00,0)) N (2 x (=00, 0)). Then v = 0.
Proof. Put u e 2(Q x (— o0, 0)) in (12) and obtain that v satisfies

82’+11)

at2l+l

1) (1)

+0v=0

on Q x (—oo, 0) in the sense of distributions. As in the proof of Theorem 14,
20+1

v(x, 1) = Y C,x)e*" ae., where A, (x=1+1,..,2[ + 1) are the roots of
a=1+1
S2041

2 + (=1)""* = 0 with positive real parts. On differentiating (13) one obtains
that (v)/(01") e L,(Q x (— o0, 0)) for all integers § and, consequently,

2041 . o
Y, Cix) M = — (x,1) e Ly(Q x (—0,0)).
a=1+1 ot .

Thus C,(x) €™ € L,(Q x (— o0, 0)) and consequently C,(x) € L,(2).
Let now u € &(Q x (=00, 0)) n pW>'(Q x (=00, 0)). Integrating by parts one

obtains
0 I+1= Al 0
0= O mOV G dr + v dx df =
NJ - atlJrl atl 2J -

1 2i+1
=J Fulx, 0) *5" () 2 dxdr = 0
2]

ot o=T+1
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whence
21+1

(14) Y Cfx)2=0

' a=1+1

a.e.in Q.

Now v e gWs»(Q x (— oo, 0)) and thus

21+1

(15) Y Cx)A =0
a=1+1

ae.inQforf=0,1,..,1 - 1.
From (14) and (15) we obtain C,(x) = O a.e. in Qand v = Oa.e. on Q X (=, 0).

17. Theorem. &(Q x (— o0, 0)) N §WL>'(Q x (— 0, 0)) is dense in
SWLOI(Q x (— o0, 0)).
Proof. Let H be the closure of the set
H = E(Q x (=0, 0)) N gW»H(Q x (—00,0)).

Ifued,pe?(Q x (—o0,0))then

0 l+]—al
(16) <u,<p>‘1w=H T B9 gear.
X o

_p ottt ot

If ¢ > u in WL>(Q x (=00, 0)), then d'p[ot' - d'ufor' in Ly(Q x (—oo, 0))-
Taking ¢ — u in (16) one obtains that

0 1+1= Al
<u,u>gw:j ja BOU 4 dt =

ol 08! ot
0 I- Al+1 1= Al olul?
=—J\ j\a—b—la——-‘—-udxdt‘*’jd—Lf’a—LIldx:—<uau>o—oo+J\ —“de
—wlo 0t orttt o 0t' ot a0
Thus
o'ul?
(17) 2Re<u,u>‘1m=J Maxzo.
o|0t
On the other hand,
(18) <, up® = <o, 0)% ] S [Cuyu — o) +

o= 2] 5 ol el =) e = el
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In view of (18), the inequality (17) extends to an arbitrary u € H. Put Dyu=
= (—1)"(0*"*'u/or*'* ") + u. Then, by Theorem 4.2 in [1],

”lu”';‘w,o) = ClDoulszw‘- 1)

and consequently DoH is a complete subspace of the space adjoint to gW;%!(Q x
x (=00, 0)). This latter space is reflexive. Let f(v) = Oforall f € Do(H),i.e. Do(u, v) =
= 0 for all ue H. By Theorem 16, v = 0. Thus Dy(H) coincides with the space
adjoint to pW3*(Q x (— o0, 0)).

Let now u € pW{%")(Q x (— oo, 0)). There exists au, € H such that Doug = Dol
ie. Do(u — ug) = 0. Then u — uqy € pWs»'"? (@ x (— o0, 0)) and, by Theorem 14,
u — ug = 0,i.e. u e H. This completes the proof.

18. Corollary. Re (u, u)?,, = 0 for every u € pW;>'(Q x (-0, 0)).

19. Theorem. N1 = .

Proof. Let u e dw{®'(Q x (—o0, 0)) 0 sW;*"(Q x (=0, 0)). Then, by
Corollary 18,
lim Re {u, )%, =

Q-u

where ¢ — u in QW(Q x (=00, 0)). If now ¢ — u in gW'(Q x (=0, 0)),
then ¢ — u in RW%1(Q x (— oo, 0)) and therefore

(19) Re {u, ud®, = 0

By Theorems 11, 12 and 13, the inequality (19) extends to all functions u €
Ow(kl)(g % (__w 0))
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Pesrome

Ob OBJIACTAX THUIIA P

SAH KAJJIELL (Jan Kadlec), ITpara

B pa6oTe onpesienseTcs PocTpacTBo gWik ! FH(Q x (=00, 0)) dyukumii, nnte-
IPHPYEMBIX C KBAJPATOM BMECTE CO BCEMH TIPOM3BOAHBIMY TOPSAKA k [0 IIPOCTpaH-
CTBEHHBIM NIEPEMEHHBIM U TPOW3BOAHON Mopsaaka / + 1 1o BPeMeHH B LMIMHADPE
Q x (-0, 0), TaKux, 4TO

ou oF 1ty

. ou o't
=—=..=——=0Ha @%x(-0,0) " u=—-=,.,=— =0
ov vkt ot o't
Ha Q x {0}. [anece, onmpenensercst mpoctpanctso pW b H(Q x (-0, 0)) Beex

dysxuuii 13 npoctpanctsa g (Q x (— o0, 0)), nst KOTOPBIX

0 621+1 !
f J 7’ %dedi <+
o) o |

sup
@EB

=

rue B — MHOXecTBO BeeX ¢ € D(Q X (— 00,0)), AJIst KOTOPBIX ”(p“(,RWZ(k’”%)(m(_w'o)) <
< 1. Tenepp ckaxem, 4to Q€ Y, eciu MJIss BCeX u € gwg‘”*%)(g x (=0, 0)),
u s BoeX @, € Z(Q x (—o0,0)) Takux, 4T0 @, - U B npocrpapcree SWi T
(@ x (=, 0)) umeer mecro, ’

[ 21+1
(—1)’“]imReJJ il Pdodrs .
RJ -0

no oo 6121+1

B pabore mokaszano, 4yTo o6sacTh ¢ rpanuuel Jiuniumna (Qe 9}(0),1) 00s3aTENILHO
HaxoauTcs B Kiacce .
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