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Yexoc0BanKHil MaTeMaTHYeCKHi xkypHau, 1. 15 (90) 1965, INpara

KRONECKER INDEX IN ABSTRACT DYNAMICAL SYSTEMS, I

Jozer NAGY, Praha
(Received September 22, 1964)

In this paper, the index of a simple loop and of a point with respect to
an abstract dynamical system in open plane R? is defined, and thetopo-
logical invariance theorem for the index proved. The main results are theo-
rems on the index of the frontier of a + invariant Jordan domain (with
theorems on the index of a cycle, of a closed transversal and on existence of
critical points in the inner domain of a cycle as corollaries), on the index of
a simple loop with inner domain not containing critical points, and on the
relation between the index of a simple loop and the indexes of critical points
in its inner domain. In the subsequent papers, some generalisations of these
results for dynamical systems on RP and on p-manifolds will be given.

In the qualitative theory of differential equations, in the investigation of isolated
critical points of a vector field on R? defined by an autonomous system of differential
equations, the notion of the index of a point or of a loop with respect to this vector
field is rather useful. It is known that the set of all solutions of an autonomous system
of differential equations in R? (which satisfies several further requirements) defines
an dynamical system in R?. Naturally there arises the question whether it is possible
to define and apply the notion of index also in the investigation of critical points of
abstract dynamical systems in R? which are not necessarily defined by a system of
differential equations. It will be shown that the answer is affirmative, and that some
main theorems regarding the index, valid in the case of differential dynamical systems,
also apply in the case of abstract dynamical systems.

In the definition of the index in an abstract dynamical system, the following idea
is used: trajectories define approximative “chordal” vector fields (in the obvious way:
given 6 > 0, to the point x there is assigned the direction form x to xT6). In the case
of a non-differential dynamical system these fields need not converge to a “‘tangential”
field of directions; but — under certain weak assumptions — they are mutually homo-
topic and thus enable us to define a homotopic invariant, the so-called index.
The methods of proof differ, of course, from those in differential dynamical systems.
As soon as it is shown that the index is topologically invariant, the proofs of all
further propositions regarding index are almost trivial.
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The main results of this chapter are formulated in theorems 10—17.

The following notation will be used.

Let P, Q be topological spaces; the notation f : P — Q states that f is a continuous
mapping of the space P into Q, and f: P ~ Q states that f is a homeomorphism P
onto Q. Given f: P - Q, R = P (with the induced topology), denote by f[R the
partial mapping of the space R into Q. If f; : Py = Q, f, : P, — Q are given with
fi(x) = fa(x) for each x € P, n P,, then f = f; U f, denotes the unique mapping
f:PyuU P, > Q such thatfl P; = f;,j = 1,2. The symbol R” denotes p-dimensional
euclidian space, I denotes the interval {0, 1).

1.1. First let us introduce some definitions and notations.

Let P, Q be topological spaces. A family of mappings
h,:P—->Q, A€el,
is called a hc;motopy if the mapping H : P x I - Q defined by
H(x,2) = hy(x), xeP, 1€l

is continuous. Two mappings f, g : P — Q are said to be homotopic (in Q; notation:
f =~ g), if there exists a homotopy, h, : P — Q, such that hy = f, h; = g. In this
case, h, is called a homotopy connecting f and g, and this is denoted by h, : f ~ g¢.
A homotopy, h, : P — Q is called an isotopy, if h,: P ~ Q for each Ae€l. The
relation =~ is an equivalence relation.

A mapping f is said to be null-homotopic, and this is denoted by f ~ 0, if f is
homotopic to a constant.

Observe that if f, g: P> Q, W:Q - Rand h, : f ~ g, then Wh, : Wf ~ Wg.

Let P be a topological space. A path in P is any continuous mapping f : I — P.
The points f(0) and f(1) are termed the initial and the terminal point of f respectively.
A loop is a path whose initial and terminal points coincide. The set

lfl ={zeP:z=f(1),tel}

is the track of the path f. If 'fl is a single point, f is a point-path. For every path f,
the path —f is defined by —f(t) = f(1 — t). Let f, f, be paths such that the initial
point of the path f, is the terminal point of the path f;. Then f, + f; denotes the
path fo, where fo() = f1(2t) for 0 < t < 4, fo(t) = fo(2t — 1) for } <t < 1.

Two paths, f; and f,, are related by a change of parameter if there exists a sense-
preserving topological mapping ¢ : I = I such that f, = f;¢. Clearly then [ f 1| = [ le
and f; =~ f, (in their common track). '

The just introduced operation of addition of paths is obviously not associative.
Since we shall mainly be interested in classes of homotopical paths rather than in
single paths, the following property of this operation is important. If f;, f,, f5 are
the paths such that (f; + f;) + f3 is defined, then f; + (f, + f3) is also defined,
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and both these paths are related by a change of parameter. Hence, (f; + f,) + f3 =~
~ fy + (f, + f3) (in their common track).

fis a simple path if f(t) # f(¢') whenever t * t'; it is a simple loop if f(0) = f(1)
but f(t) + f(¢') whenever 0 < t < ¢'.

According to Jordan’s Theorem every simple path, f, in the open plane R* has two
complementary domains, of each of which it is the complete frontier, i.e.

R? — |f| = Int|f] U Ext |f],

where Int |f| (inner domain of |f|) and Ext |f| (outer domain of |f|) are non-void
disjoint sets with common frontier lf] Thus the domain Int ,f| is bounded, Ext |f|
unbounded.

Let us prove the following lemma.

Lemma 1.1. Let 1, I,, I be simple loops in R?,
A Int|L,|. Thenl, ~ I, inInt [I] — {a}.

Proof. First we shall prove the lemma supposing that |l1l N |lz| = (). There
exists ([3]; p. 72) g : R> ~ R?, mapping the closed annulus bounded by paths I, [,,

onto a ring. Clearly, g(a) does not belong to this ring, and the boundary circles are
homotopic in the ring, via a homotopy say h;. Then g~ 'h; is a homotopy (in the

L|v|l| < Int]l], aeInt || A

annulus bounded by I, 1,) of the paths I;, I, hence g~ 'h, : I, ~ I, in Int |I| — {a}.
If |11| N [12[ #+ 0, we use the auxiliary simple loop [/ containing |11| and |lzl in its
inner domain. From the first part of the proof it follows that I; ~ I in Int |I| — {a},

and I ~ [, in Int ]l‘— {a}; thus I, ~ I, in Int |I| — {a}.

1.2. In this paragraph we shall introduce the concept of the order of a point with
respect to a path in R2.

If a, be R?, a # b, then the directed segment ab is the path defined by the relation
f(t)=(1—1t)a +t.b. Let by, by ..., b, be points in R, boby, byb,, ..., by_1b;
directed segments, then the path o = bob; + ... + b,_;b; is called a segmental
path. For every integer m let c,, denote the unit circle described |m| times in the di-
rection given by sgn m, more precisely, the path f:I — R? defined by f(f) =
= exp (2mnit). For any two paths fy, f2, let n(f1, f2) be the least distance of the
end-points of one path from the track of the other. A segmental path o = byb; +
+ ... + by_b is an g-approximation to a path f if by = f(0), b, = f(1) and there
is a decomposition 0 = ty < #; ... < t; 41 = 1 of the interval I such that, for each
r=0,1,...k, the set f(<t, t,.,») is part of the open circle with center at b, and
radius .

Let a + b be points in R2. The left and the right side of the directed segment ab
is that complementary domain of the set

R* —{z:z=a+t(b - a),teR},
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which contains the point a + i(b — a) or a — i(b — a) respectively. The directed
segment ab crosses a directed segment cd positively if the interiors of these segments,
ab, cd, have precisely one common point, and if a is on the right and b on the left
side of ¢d; and then ba crosses cd negatively.

Let us define the intersection-number, v(ab, cd), of the directed segments ab, cd
(a, b, ¢, d distinct points in R?, ab, cd have at most a common interior point) as
follows: v(ab, ¢d) = 1 or —1 or 0 if ab crosses cd positively or negatively or ab and
cd do not meet, respectively. If the directed segment ab and the segmental path
o = bob; + byb, + ... + b,_b, are such that v(ab, b;b;.,) is defined for j =
=0,1,...,k — 1, then v(ab, o) is defined as

k-1
Wab, o) = Y v(ab, bb; ).
j=0
Given a path f, and a directed segment ab, assume that ¢ = {n(ab, f) > 0. Let
a4, 0, be two e-approximations of f, n{ab, 6;) > 0, n{ab, 6,) > 0. It can be shown
[5, VII, § 2] that v(ab, o,) = v(ab, 6,). The intersection-number, v(ab, f), of the
directed segment ab and the path f is defined as the common value of v(ab, o) for all
such e-approximations o, of f.
Let [ be a loop, and a and b points not on 1l| Then v(ab, I) remains constant if
a or b is varied within a residual domain of |l|
Let I be a loop, b a point not on ‘ll The order, w{b, ), of b with respect to I is de-
fined as v(bz, 1), where z is any point of the unbounded residual domain of lll
In [5, VII, § 3] there are proved properties of the order (b, 1); these are presented
in the following lemma.

Lemma 1.2.

() (b, 1) = —aw(b, I

(i) «(0,¢c,) =m

i) If lo ~ Iy + 1, + ... + L, in R? — {b}, then (b, o) = 3" (b, 1,).

i=1
(iv) If Lis a loop not passing through 0, then 1 ~ ¢, in R* — {0} if k = (0, I).
(V) For every homeomorphism f : R> ~ R? there exists a fixed number e, = +1
such that w(b, I) = e;w(f(b), fl) for all loops | and points b of the complement
of Il|

If x is a point of the inner domain of a simple loop 1, set &, = w(x, l); then
(vi) Ia,l =1

1.3. The propositions (V) and (vi) of lemma 1.2 will be used to classify simple loops
in R%. A simple loop is positively or negatively oriented if in (vi) & = 1 or —1
respectively. Similarly, proposition (v) (with (vi)) allows one to classify homeo-

397



morphisms of R? as follows: a homeomorphism f is said to preserve or reverse
orientation according as e, in (v) is 1 or —1. Clearly, the composition of two orienta-
tion preserving or two orientation reversing homeomorphisms is orientation pre-
serving, the composition of an orientation preserving homeomorphism with an
orientation reversing homeomorphism is orientation reversing. An example of an
orientation reversing homeomorphism is the mapping f defined by f(z) = Z, with Z
denoting the conjugate to z. Clearly, every orientation reversing homeomorphism
can ab obtained as the composition of this homeomorphism f and of a suitable
orientation preserving homeomorphism.

One immediate corollary of (v) will be mentioned. Let I be an arbitrary loop in R?,
f an orientation reversing homeomorphism, f(0) = 0. Then (0, ) = —w(0, f1).

Let I be simple loop in R?, f: R? ~ R, Evidently, Int |l| is compact and Ext |fl[
non-compact. Hence there easily follow the relations:

f(Int [1]) = Int |£1], f(Ext |1]) = Ext |£1] .

The following lemma will be used in the proof of the very important theorem 1.10.

Lemma 1.3. Every orientation preserving homeomorphism of R? is isotopic to the
identity mapping of R2.

The proof of this lemma is an easy modification of the proof of Tietze’s Deforma-
tion Theorem [3, pp. 186 —190].

1.4. Now we shall introduce the notions of a dynamical system and of the vector
fields associated with the dynamical system.

Definition 1.4. A dynamical system on R? is a mapping T : R? x R! - R? with
the properties (i), (ii) described below:

(i) T is continuous onto; if the value of T at (x, 0) is denoted by xT0, then
(i) (xT0,) TO, = xT(0, + 0,) for all 6;, 6, € R', x € R%

We shall prove that xT0 = x for every x € R2.

T maps onto R?, so that for every x € R? there is a point (y, ) € R* x R* such that
yT0 = x. Now, from (ii) there follows (yT8) TO = yT(6 + 0) = yT0 ie. xTO = x.

For subsets A = R', X = R?, let XTA4 denote the set (z = xTO: x€ X, 6 € A}.
If xTR! coincides with the singleton {x}, then x is said to be a critical point of the
dynamical system T. Obviously, the set of all critical points of the dynamical system
is closed [4, V, § 1]. The set xTR” is said to be a trajectory of the dynamical system T
if there exists a 0 € R' — {0} such that xTO =+ x. The trajectory xTR! is called
a periodic trajectory of the dynamical system T, if there exists a 0 € R! — {0} such
that xT0 = x. In this case the number 0, = inf {0 : 0 > 0, xT0 = x} will be called
the primitive period of the periodic trajectory. Every periodic trajectory has a positive
primitive period [4, V,§ 1]. Let 6, be the primitive period of xTR'; then for every
y € xTR! and integer k there holds y = yT(kf,); conversely, if y = yT6 holds for
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some y € xTR!, then 0 = kO, for some integer k. Every such number k0, k > 0,
will be called a period of the periodic trajectory xTR!.

If xTR! is a periodic trajectory of the dynamical system T, and 0, the primitive
period of xTR!, then every path f, f(0) = xT(00,), 0 €1, will be called a cycle of the
dynamical system T. The number 0, will then be called a period of the cycle.

A subset 4 < R* is termed +invariant (or —invariant, invariant) if
A = A0, + ), (4 = AT(—0, 0>, 4 = ATR! respectively).

Let D be a subset of R%. Consider a dynamical system T and any mapping
9 : D — R, A vector field of the dynamical system T on D is the mapping W: D — R?
defined by

(1) W(x) = xT(x) — x .

The mapping W is continuous. Clearly, W vanishes at a point x, if either x, is a
critical point of the dynamical system T, or x, is on the track of a cycle with period
9(x,), or 9(x,) = 0. In the sequel, vector fields which are, in certain sense, “small”
will play very important role.

Lemma 1.5. Given a dynamical system T and a compact subset F = R? containing
no critical point of T. Then there exists an A > 0 with the following property:
The mapping W : F — R? defined by (1) is, for every 3 : F — (0, A), a vector field
of the dynamical system T, continuous and vanishing nowhere on F.

Proof. First prove the following proposition: the g. I. b. of the set of periods of
cycles whose tracks intersect F is positive.

Suppose that the proposition does not hold. Then there are x,€ F, 0 < ¢, € R!
such that x, » x€ F, ¢, — 0, x,To, = x,. Given 9§ € R, one has § = k,o, + 0, for
some integer k,.

Now, x,T0 = x,T(k,0, + 0,) = x,70, > x and hence xT0 = x. Thus x is a
critical point of T on F; this is a contradiction.

Now it suffices to take for A in the assertion the g. I. b. just constructed.

It may be noted that in the situation described, for any pair of maps 9, 9, :
:F — (0, A) one has a linear homotopy, 9, : 9, ~ 9, defined by 9,(x) = (1 — 4).
. 96(x) + A. 94(x); then each 9, again maps into (0, 4), so that

Wy(x) = xT9,;(x) — x

defines a vector field on F vanishing nowhere on F.

Still preserving the notation of lemma 1.5, every vector field Won F given by the
relation (1) with 9 : F — (0, 4) will be termed a small vector field of the dynamical
system T on F.

From lemma 1.5 it follows that for every loop I whose track contains no critical
point of T, there exist small vector fields on |I|. If W;, W, are two small vector fields
on |l|, then the tracks of the loops Wy f, W,f do not contain the origin 0, and there-
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fore w(0, W, f) = (0, W,f) according to lemma 1.2. Now we can set up the following
definition.

Definition 1.6. Let T be a dynamical system, / a simple loop whose track contains
no critical point of T, W a small vector field of T on ]ll The Kronecker index ind; I
of [ relative to T is defined as ¢; . {0, WI).

Immediately from the definition 1.6 there follow these properties of the index:

(i) indy!is an integer;

(ii) ind;(— I) =ind; [;

(iii) if simple loops I, j = 0, 1, 2, ..., k are all positively or all negatively orien-
ted and l2 ~Il, +1l,+...+ 1 in R* — {x:x is a critical point of T}, then

ind; Iy = Z ind; I;; in particular, if the loops I;, I, are related by a change of para-
j=1 .

meter, then ind; l; = ind; [,.
Lemma 1.1 and property (iii) of the index allows one to set up the following de-
finition.

Definition 1.7. Let T be a dynamical system, ! simple loop, u the inner domain
of ‘ll, x € u such that # — {x} does not contain critical points of T. The Kronecker
index ind; x of the point x relative to T is defined as the number ind I.

In the following paragraphs we shall formulate the main results of this paper.

1.5. From the definition 1.4 of dynamical systems it follows immediately that the
homeomorphic image of a dynamical system is again a dynamical system; more
precisely, if T is a dynamical system in R? and f : R? ~ R?, then the relation f(xT0) =
= f(x) T,0 defines a dynamical system T, in R?. Clearly, every critical point of T is
mapped onto a critical point of T, every periodic trajectory of T with primitive
period 0, is mapped onto a periodic trajectory of T, with primitive period 0, again
and analogously for + or —invariant sets. Naturally, there arises the question, how
is the index changed by a homeomorphism. The solution of this problem will be
preceded by several lemmas.

A dynamical system T’ is said to be isotopic to a dynamical system T if there exists
a homeomorphism, f: R? ~ R2, isotopic with the identity mapping of R? and such
that T" = T,.

Lemma 1.8. If T, T’ are isotopic dynamical systems, f:R?* ~ R%, 1 = Tj,
I simple loop whose track contains no critical points of T, then ind; [l = indr, fl.

Proof. Let h, be an isotopy between the identity mapping id of R? and the homeo-
morphism f, i.e. h; : id ~ f, hy = id, h; = f. Take a small vector field W on |l|, )

W(x) = x10 —x, 0€(0,4), (Aasinlemma 1.5.)
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Then there hold the following relations:
Wi(x) = f(x) 7,0 = f(x),
ind; I = ¢,. w0, Wl), ind;, fI =& .0, Wfl).

Since ¢;,; is an integer-valued continuous function of 4, it is constant on I, hence
& = &1 Define the homotopy Wh, : W ~ Wf in R? — {0}; this is described by

Whj(x) = hy(x) T,,0 — hy(x) .
These results (0, WI) = (0, Wfl), so that ind; | = indy, fI. Lemma 1.8 is proved.

Lemma 1.9. Let f: R* ~ R? be defined by f(z) = Z, Z the complex conjugate
to z. Then ind; | = indr, fL
Proof. Clearly, &, = —&,. Thus it suffices to prove w0, W,fI) = — w(WI).

There is

Wefl(t) = (1), 0 — L)

)70 — 171) = [1) 70 — Lt) = WL1) = fWIt),

hence
(0, W, f1) = (0, fWl) = —w(0, WI),

since f is orientation reversing and f(0) = 0 (see proposition (v) of lemma 1.2).
Therefore ind; I = indy, fL
Now we shall formulate and prove the main results of this paper.

Theorem 1.10. Let T be a dynamical system, | a simple loop whose track contains
no critical points of T, f: R> &~ R%. Then ind; | = indy, f1.

Proof. Since every orientation reversing homeomorphism of R* can be composed
of the homeomorphism of lemma 1.9 and some orientation preserving homeo-
morphism, we may suppose f to be orientation preserving.

Since the mapping f is isotopic with the identity mapping (see lemma 1.3), the
dynamical systems T and T, are also isotopic. Thus (lemma 1.8) ind; I = indy, f1.
Theorem 1.10 is proved.

Theorem 1.11. Let a simple loop I, not containing any critical points of T in its
track, be the frontier of a +invariant set. Then ind; | = 1.

Proof. Having theorem 1.10 and the definition 3.6 we may assume that [ is the
positively oriented unit circle (since any simple loop is the image of the unit circle
under some homeomorphism R? & R?). Let W be a small vector field of T on l],
W(z) = zT0 — =z.

First let us suppose that Int |I| is +invariat. Let W, : |l > R? be defined by the
relation W;(z) = — z.Then W ~ W, in R? — {0} (for the homotopy take the system
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W, of the maps defined by W,(z) = (1 —2)(zT0) —z as (1 — %) |zT0‘ < Izl for
(%, z)e(0,1) x |I]). Now, & = 1 and

ind; | = £w(0, WI) = (0, W;l) = 0(0, Cy) = 1,
where C,(t) = —exp (2rit), tel.

Now, let us suppose that Ext | is +invariant. Define W, : |I| - R, by the rela-
tion W,(z) = z. Then W ~ W, in R* — {0} (it suffices to take for the homotopy the
system W, of maps defined by the relation Wy(z) — zT[(1 — 4)0] — (1 — A)z, z € 1),
hence by the same way as in preceding part of the proof it follows ind I = 1.

The theorem 1.11 is proved.
The following two theorems are immediate corollaries of the preceding.

Theorem 1.12. If I is a cycle of dynamical system T, thenind; | = 1.
We recall the definition of transversals:

A closed transversal of a dynamical system T is a simple loop I with the following
property: there exists an ¢ > 0 such that |l| N (|l| T0) = @ whenever 0 < |0| <e.

Theorem 1.13. If | is a closed transversal of dynamical system T, then ind; |l = 1.
Let T be a dynamical system. A point a € R* is orbitally stable if, for every neigh-
borhood U of a, there exists a neighborhood V of the point a such that
11€0, + ) = U.

Theorem 1.14. If x is an orbitally stable isolated critical point of dynamical
system T, then ind; x = L.

Proof. Every isolated orbitally stable critical point of T is either a point of the
inner domain of arbitrarily small cycles, or it has arbitrarily small neighborhoods
bounded by an closed transversal [2].

Theorem 1.15. If [ is a simple loop such that the closure of its inner domain does
not contain any critical point of T, then ind; | = 0.

Proof. Evidently we may suppose that [ is the unit circle. Let W be a small vector

field on Int |I|. Since I ~ 0 in Int ll (e.g. via the projection into the center), there
follows Wl ~ 0 in R* — {0}, and hence

indr I =¢,. 00, WI) =0.
The theorem is proved.

Corollary 1.16. At least one point of the interior of the +invariant set in 1.11
is a critical point of T. In particular, the inner domain of a cycle of a closed trans-
versal of a dynamical system T contains at least one critical point.

Theorem 1.17. If a simple loop | contains no critical points of T in its track, and
if the inner domain of M contains only a finite number of critical points X, x,, ...
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.eos X, Of T, then
ind; I = ) ind; x; .
=1

Proof. The theorem will be proved by induction on n. The validity of the theorem
for n = 1 follows directly from definition 1.7. Suppose the assertion holds for n — 1
critical points; and let there be exactly n critical points x,, X,, ..., X, in the inner
domain of |I| (see fig. 1).

We may suppose that [ is the unit | /11
circle, Imx; <0 for j=1,2,...,n — 1,
Im x, > 0. Denote by I, l,, sy, 5, Ly, L,
the mappings given by the relations

L =103, L =1|G1),
sit) =1—41—1) for te} 1),
s(t) =1—4¢ for te<0,%>,

L=1lLvus,, Ly=s,0Ul,.

Clearly, L,, L, are simple loops, s, Us, ~ 0,
L, +L,~1 ind;L; =ind;x,
n—1
ind; L, = Y ind; x;. Hence there follows ;
i=1 |/2l

n
ind; I = ind; L, + ind; L, = ) ind; x; . Fig. 1.
j=1

1.7. Finally, we shall prove that ind; [ is really a generalisation of the Kronecker
index used in the qualitative theory of differential equations.

Consider a mapping P : R —» R? of class C! on R? such that every solution of
the equation
@ = P
is prolongable on R!. It is known [1, I, § 7] that every solution of this equation is
of class C? on R!, and that through every point x € R? there passes exactly one solu-
tion of (2). Define a mapping T: R* x R! - R? thus: T(zo, 0,) is the value at
0 = 6, of that solution of (2) which assumes the value x, for § = 0. Denoting
T(z, 0) = zT0, one obtains a dynamical system T. Such dynamical systems will be
called differential dynamical systems. '

Let I be a loop, P(x) =% 0 for every x€ |ll The number Ind; ! = ¢ . (0, PI)
is called the Kronecker index of the loop I with respect to the differential dynamical
system T [1, XVI, § 4]. We shall prove that Ind; I = ind; I. This implies that indy !
is indeed a generalisation of the concept of the Kronecker index Ind; I.
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The mapping W, : R? - R?, defined for every 0 # 0 € Rt py
1
W) = Lm0 ),

is a small vector field of T on |I|. Evidently, lim Wy(x) = P(x). Set Wy(x) = P(x);
60+

then there is a A > 0 such that, for every 0 € <0, A), W, is continuous and vanishes
nowhere on ll] Since w(0, Wpl) is a continuous function of 6 on <0, 4> assuming
only integer values there, (0, Wjl) is constant on <0, 4>. Hence

Ind; I = ¢;,. (0, Pl) = ¢,. 0(0, W,l) = ¢,. w(0, Wyl) = ind; [.
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Pe3rome

UHAEKC KPOHEKEPA B ABCTPAKTHBIX JUMHAMUWYECKUX
CHUCTEMAX, 1

MOCE® HAZIb (Jozef Nagy), Ilpara

B pa6oTe cHauasa onpeaenseTcs (rro6aabHas) ouHamuueckax cucmema T B OTKPbI-
Toit mrockocTH RZ?, obobuiaromas moHsTHE AMbOEpEHINATLHON AUHAMITYECKOM
CHCTEMBI, U3BECTHOM M3 KaueCTBeHHOM Teoprn AuddepeHnanbHbIX ypaBHEeH I (CM.,
Hamp., [4]). [Totom ompenensiercs (onpenenenue 1.6 u 1.7) undexc ind; I mpocroro
3aMKHYTOTO NyTH [, He NMPOXOISIIET0 4Yepe3 KPUTUYECKHE TOYKH AMHAMHYECKOM
CUCTEMBI T, M uHOexc ind; X TOUKM X € R2 OTHOCHTEJIbHO JUHAMHYECKON CHCTEMBI T.
B Teopeme 1.10 moka3bIBaeTCs, YTO 3TH IMOHSATHS TOIOJOTMYECKM WHBaPHAHTHBI.

JlanbHeiilne BaXKHbIe pe3yJIbTAThl 3TOM PabOTHI comepXKaTcs B CICAYIOLIUX Ipea-
JIOXKECHHUSIX.
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Teopema 1.11. ITycme npocmas nemas 1, Henpoxodawas yepes Kpumuyeckue MoKy
OuHamuyeckoil cucmemsl T, Asaaemca epanuyeil + uneapuanmmoii ooaacmu. Tozda
ind; I = 1.

N3 Teopemsl 1.11 B kayecTBe CIEOCTBHSI BBITEKAET CJEAYyIOIIEe IPEIJIOKEHUE
(teopemsl 1.12 u 1.13). Ecau | — yuxa uiu 3a MKHYymMas mpanceepcats OUHAMUUECKoil
cucmemel T, mo ind; [ = 1.

Teopema 1.14. Ecau x — u304upo8aHHas opoumanbHo yCmouuueas Kpumuueckas
mouxa ounamudeckoii cucmemsl T, mo indy x = 1.

Teopema 1.15. Ecau | — npocmas nemas, u 3amvikanue ee eHympeHHeil 061acmu
He CO0epXHCUm KpUmu4eckux mouek ounamuyeckoti cucmemst T, mo indy 1 = 0.

Teopema 1.17. ITycme npocmas nemas 1, Henpoxodawas uepes Kpumuueckue mouKu
OuHamuyeckoli cucmemol T, cooepaicum 8 ceoeli 6HympeHHell 00Aacmu MoAbKO KOHeu-
HOe YUCN0 KPUMUYECKUX MOYeK Xy, Xy, ..., X, cucmemsl T. Toz0a umeem mecmo co-
omHowenue

ind; I = ) ind; x; .
is1
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