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INTEGRAL REPRESENTATIONS FOR TRANSITION PROBABILITIES
OF MARKOV CHAINS WITH A GENERAL STATE SPACE

ZBYNEK SIDAK, Praha

(Received September 21, 1960)

The paper is devoted to the study of representations of types (1) and (2)
(see Introduction) for transition probabilities of Markov chains with a ge-
neral state space. Its sections deal with sub-invariant measures of a chain,
representations of type (1) for general chains, continuity properties of repre-
senting functions v of bounded variation in (1), conditions for self-adjointness
of a chain, representations of type (2) for self-adjoint chains. Attention is paid
to finitely additive sub-invariant measures and representations derived on
the basis of them.

1. INTRODUCTION

1.1. Introduction and summary. In the theory of homogeneous Markov chains
the representation of transition probabilities appears to be an old problem. These
probabilities can be derived from the one-step transition probabilities generally only
by recurrent formulae, so that their dependence on the number of steps n is often
too complicated. For this reason representations for transition probabilities have
been sought in the form of closed formulae in which the dependence on n would be
more simple, because such formulae are more useful for many purposes both theore-
tical and practical; let us recall here only the classical Perron’s formula for powers
of a matrix. This paper is a contribution to the solution of the problem; it deals
with a certain very general solution of the representation problem. For individual
chains (or classes of chains), of course, it would be necessary to specialize these gene-
ral representations.

The paper appears to be a generalization of a paper by D. G. KENDALL [8] who
studied the case of a denumerable state space. Our paper is based essentially on his
ideas. Unfortunately, the representations derived by us are less satisfactory than those
by Kendall; this is caused, on the one hand, by the basic fact that on a non-denu-
merable space there exists no o-finite measure giving to each point a positive measure,
on the other hand by the contemporaneous state of the Markov chain theory, since
chains with a general state space are considerably less explored than those with a de-
numerable state space.
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In the present paper some methods of functional analysis are used as fundamental
ideas, a common practice now in probability theory. The well-known Markov ope-
rator T generated by the transition probabilities is considered in the space L, and the
spectral representations of a unitary, resp. self-adjoint operator in a Hilbert space
are then used. In this way we get representations for the transition probabilities p™
of the following types which are studied in the paper:

O A = [Tetan. [ ot a)uion) - [

0 B 0

2

e™(dr),

1 1
2) PO, A) = j ra(dr) f P(x, A) u(dx) = J Pofdr) .

-1 B -1
Of course, in order to apply the operator T in L,, we must have for the Markov chain
a so called sub-invariant measure p with respect to which integration is performed.

Following the introduction (part 1) the paper is concerned with representations for

general Markov chains (part 2). First, some theorems on sub-invariant measures are
proved. Here, let us draw attention to the theorem asserting the existence of an inva-
riant finitely additive measure for an arbitrary Markov chain; by this theorem and
its further applications, finitely additive measures are brought into consideration in
Markov chain theory. Then theorems on representations of type (1) are presented,
and finally the continuity properties of representing functions v are studied.

Part 3 is concerned with self-adjoint operators T. Firstly some conditions for self-
adjointness and then theorems on representations of type (2) are given.

The concluding section (part 4) mentions a possibility of a further. generalization
and recapitulates the most interesting unsolved problems.

1.2. Notation and two known basic theorems. In the paper, we shall generally
make use of the following system of notation.

Abstract spaces will be denoted by X, Z, their elements X, z, ..., their subsets
A,B,...,E,F,G, ... c-algebras in them X, Xy, ¥,. The set of all x € X such that the
relation R(x) holds will be denoted by {x; R(x)} or shortly {R(x)}. The letter ¢ will
be reserved for a real variable.

Let us introduce the following convention: if ¢ is a mapping then this mapping
will be denoted either by the letter & only or when necessary by @(.). The symbol
@(w) will always mean the value of the mapping @ at the point w. For numerical
functions we shall use the letters f, g, h, ..., except that the characteristic function
of the set E will be denoted by .

By the term “measure” we shall mean (somewhat differently from the usual mean-
ing) a non-negative finitely additive set function which may take also infinite values,
but which is o-finite. An exception to o-finiteness will be found in one place only,
and we shall emphasize it explicitly there. If we have in mind s-additive measures
we shall always explicitly use this adjective. Measures in abstract spaces will be
denoted by p, v, 4, ..., where, as a rule, u is g-additive, A finitely additive. Complex
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(or real) numerical functions with bounded variation of a real variable will be denoted
by v, w, .... Further, for a mapping of a real interval into a Banach space we shall
use the bold-type v.

Abstract Lebesgue integrals with respect to the measure A will be denoted by
e f(x) A(dx), Riemann-Stieltjes integrals with respect to the function v of bounded
variation by [5 f(¢) v(d?), and the symbol [? f(t) v(dt) is defined (in a manner similar
to the definition used for the Riemann-Stieltjes integral) as the limit in norm (of the
basic Banach space) of the Riemann sums; this integral, of course, is an element of
that Banach space.

The letter i will always mean the imaginary unit, e the base of natural logarithms.
For indices, i.e. natural numbers, we shall use the letters j, k, I, m, n, ... .

As in N. DunrorD-J. T. SCHWARTZ [3] we will use the following notation of
Banach spaces: B(X, 2) is the space of all Y-measurable bounded functions on X,
C(X) is the space of all continuous bounded functions on the topological space X;
the norm in both these spaces is given by |f| = sup |f(x)|. ba(X, X) is the space

xeX

of all bounded finitely additive set functions on X with bounded variation, ca(X, %)
is the space of all g-additive set functions in ba(X, ), rca(X) is the space of all
regular o-additive set functions in ba(X, X) on the g-algebra X of Borel sets in the
topological space X; the norm in these three spaces is equal to the total variation
of the set function. Complex (real) L,(u) is the well-known space of complex-valued
(real-valued) functions on X integrable in their p-th power with respect to measure p,
the norm in it being given by the usual formula. The norms of elements of Banach
spaces will be denoted by ||. |, the scalar product in a Hilbert space by (f, g). The
letters T, U, ... will denote operators in Banach spaces and by the term operator
we shall always understand a linear continuous operator.

The transition probabilities of a Markov chain or a so called Markov system (see
below) will be denoted by p™(x, E) or shortly p®™, their Radon-Nikodym derivatives
or densities by h™. For random variables we use the Greek letter £ The probability
of the set E will be denoted by P{E}, and if E = {x; R(x)} then by P{R(x)}. Simi-
larly in another places we omit one bracket in fact and we write e.g. A{R(x)}.

We must further clarify the development by defining the mathematical concepts
of basic concern to this paper. Let X be an abstract space (of states of a Markov
chain) with a o-algebra X. By the term “Markov chain” we will mean a Markov chain
in space X with a discrete parameter which is homogeneous in time (i.e. with statio-
nary transition probabilities) acccording to the usual definition, i.e. the sequence of
random variables &,, n = 0, 1, 2, ..., with values in X, satisfying

P{ém+n € Eléma LR 60} = P{ém+n € El ém} = p(n)(ém’ E)
with probability 1 for m,n =0,1,2,..., E€X, where p®, n=0,1,2,..., is
a system of transition probabilities after n steps defined by this equation. On the other

hand, we can choose a more general approach, from a functional point“of view, as
follows:
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Definition 1.1. 4 Markov system (more completely a Markov system of transition
probabilities in the space (X, X)) is a system of functions p™(., .) of the variables
xeX,EeZX, forn=0,1,2,... which has the following properties:

(a) p"(x, .) is a probability measure on X for each x e X,n=0,1,2,...,

(b) p™(., E) is a real bounded X-measurable function on X for each E e I,n=
=0,1,2,...,

(c) for n,m = 0,1,2, ... so called transition relations

p"*"™(x, E) = J P(x1, E) p™(x,dx,) for xeX, EeX
x

are satisfied.

We now have thé following situation (under certain conditions which need not
be discussed here): Every Markov chain defines a Markov system of transition
probabilities; conversely, every Markov system defines a Markov chain supposing
an initial probability p, is chosen according to which &, is distributed. (These facts
are well-known and are exactly treated e.g. in J. L. Door’s book [2] pp. 8688,
190.) Nevertheless, as P. LEvy and W. FELLER [4] have noticed, there exist stochastic

sequences £,, n = 0, 1, 2, ..., which are not Markov chains although their transition
probabilities

P{nin€E| &y = x} = p™(x, E)
form a Markov system. Consequently, in this sense the concept of a Markov system
is more general in its scope than a Markov chain.

Throughout the paper we shall always deal with Markov systems of transition pro-
babilities in (X , E), we shall refer to them simply as Markov systems and denote
them by p™, and we shall also write pP(x, E) = p(x, E). Some common terms of
Markov chain theory will be used also for Markov systems.

The letter Twill always denote the mapping which a Z-measurable function fonX

(from a certain class of functions) maps onto a function Tf on X defined by the for-
mula

6) Tf = Lf(x) o, dx).

The mapping T is said to be generated by the Markov system p™. The domain of
definition of T will vary and will always be specified in the necessary place. Further,
the symbol T* will always denote the mapping which a set function 1e ba(X , 2)
maps onto a set function T*4 on X defined by the formula

(@ T* = f p(x%, ) A(dx) .

The mappings T and T* are well known, see e.g. [17], [13]. If B(X, X) is taken for
the domain of T'then T's an operator in B(X, Z) the norm of which is 1. Similarly T*
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is an operator in ba(X, X) with the norm 1. Also it is well known that there is an iso-
metric isomorphism between the space ba(X, X) and the space of functionals on
B(X, X), see the theorem IV. 5. 1 in [3].

The following lemma is easily shown:

Lemma 1.1. The operator T* in ba(X, X) is the adjoint of the operator T'in B(X, X).
Proof. We have to prove that for arbitrary f e B(X, X), A€ ba(X, X)

(5) ATS) = (T*A)

or according to the theorem just quoted [3],

©) J ] [ J S pss, dx):l Adxy) = J 19 H s dx)).(dxl):l .

But if f = xp, E € Z, the equality (6) obviously holds, and proceeding in the well-
known way from the theory of integrals we arrive at a general f € B(X, X) in (6). As
to integration with respect to a finitely additive measure needed here see Dunford-
Schwartz [3] IIL. 2. The analogue of the lemma is well known for pe ca(X %), and
we give it here only for explicit elucidation of its more general validity.

For facilitation of reading we shall quote here two known theorems which are
basic to our development using, of course, the present notation. First, however, it is
necessary to introduce another basic definition.

Definition 1.2. We say that the Markov system p‘™ has a sub-invariant measure 2,
when 1 is a measure on X for which the inequality

o j p(x, E) (dx) = A(E)

holds for each E € X. If in (7) the sign of equality holds for each E € X then we speak
similarly of an invariant measure. -

E. NELSON [13] has proved the following theorem:

Theorem I. Let the Markov system p™ have a sub-invariant g-additive measure p.
If the mapping T is defined by the formula (3) for feL,(u), where 1 < p < oo,
then T is an operator in L,(1) whose norm is ||T|, = 1.

Here L (1) may be complex or real, as it is easily seen from [13].

B. Sz.-NAGyY [16] has proved the following theorem:

Theorem IL. Let V be an arbitrary contraction operator in a complex Hilbert
space Hy, i.e. |V|| £ 1, and let V* be the adjoint of V. Then there exists a Hilbert
space H o H, and a unitary operator U in H such that

yr=pU", (VY =PU™", n=0,12...,

where P is an orthogonal projector of H onto H,.
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2. REPRESENTATIONS FOR GENERAL MARKOV SYSTEMS

2.1. Sub-invariant and invariant measures. As noted in introductory section 1.2,
we shall suppose that we are given a Markov system p™ in an abstract space X with
a g-algebra 2. By Nelson’s theorem (our Theorem I) if p™ has a sub-invariant ¢-ad-
ditive measure p then T generated by p™ is an operator in L,(u), particularly in
complex L,(u). This fact forms a basis for our representations of Markov systems
which will be explained more thoroughly in the following section (2.2).

Therefore, the first question is the problem of existence of a sub-invariant measure.
For a denumerable state space this problem was solved satisfactorily by D. G. Ken-
dall [8] who showed that in this case every irreducible chain has a g-additive sub-inva-
riant measure. We shall derive now a somewhat similar result for a general state
space, which is, however, considerably less satisfactory. We shall show that every
irreducible Markov system (under rather general assumptions) has a non-trivial
sub-invariant g-additive measure which need not be, however, g-finite. Here irredu-
cibility is understood according to Nelson [13]:

Definition 2.1. A Markov system p™ is said to be irreducible if the measures
e

Y. 27"p™(x, .) are equivalent for each x € X, i.e. they take the value O on the same
n=1

sets.

Now let us use the Markov chain &, generated by the Markov system p™ in the
following way: if x is a point from X we choose the initial probability p, for &,
concentrating all its mass in the point x, and then we take p™ as transition proba-
bilities for &,. (See also the text after definition 1.1 in section 1.2.) The resulting
probability for the whole Markov chain &, (i.e. on the space of sequences of elements
from X) will be denoted by P,. Let us suppose that p™ is irreducible and draw
attention to the following two definitions of recurrence. Following Nelson [13],
p. 683, p™ is said to be recurrent if P {¢, € E for at least one n} = 1 for each x € X

and each E € ¥ for which )" 27"p™(x, E) > 0; Harris [6] supposes that a g-additive
n=1

measure v on X is given and then introduces condition C requiring P, {¢, € E for
infinitely many n} = 1 for each x € X and each E e X for which v(E) > 0. Nelson’s
corollary 4.2 then shows that Nelson’s condition of recurrence evidently implies

0
Harris’s condition C whichever of the measures ) 27"p™(x, .) is taken for v. Let us
n=1

emphasize the important fact that the just mentioned probabilities in the conditions
of recurrence depend on transition probabilities p™ only, so that both kinds of re-
currence are clearly properties of the Markov system p™ in spite of their definition
by means of the chain ¢,.

Theorem 2.1. Let p™ be an irreducible Markov system in the space (X, 2),
where X is separable, i.e. X-is a g-algebra generated by a denumerable class of
sets. If p™ satisfies condition C for some o-additive measure v, then it has an
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invariant o-additive o-finite measure p which is not identically zero. If p™ does
0

not satisfy condition C for v =y 27"p™(x, .) then it has at least a sub-invariant
n=1

g-additive measure p which, however, need not be o-finite, but which has the following
property: there exists a set E, € X for which 0 < u(E,) < oo.

Proof. The first part of the theorem is merely the assertion proved by Harris [6]
repeated here for completeness. In the second part, it can be seen from our preceding
exposition that p™ does not satisfy Nelson’s condition. Nelson’s theorem 4.1,

0
however, gives the existence of xe X, EqeX such that Y 27"p®™(x,, Eg) > 0,
n=1

2. P™(xo, Eo) < 00. Let us define now the measure p(.) = Y. P™(xo, .). Clearly p
n=1 n=1

is a g-additive measure (which, however, need not be o-finite) and since
o0 [ee}
0< Z 2—"P(")(xo, Eo) = Z P(n)(xo, Eo) = ﬂ(Eo) < ©,
n=1 n=1

u has the last property required in the theorem. Finally p is seen to be sub-invariant
because using the well-known theorem on interchangeability of summation and inte-
gration of a non-negative function we have

f s EY @) = 3 [ s B) p0 03) = 35, ) 5

< 3P0, B) = u(E).

Theorem 2.1 just proved is not, however, too satisfactory because the sub-invariant
g-additive measure p constructed here can take the value oo for “too many’’ sets.
It would be interesting to know under which conditions p™ has a sub-invariant
o-additive o-finite measure. Towards a solution of this problem, the already quoted
result by Kendall [8] is known for a denumerable state space, further, a result by
Harris [6] on invariant measures and some results by Nelson [13]. Nevertheless,
none of the known results solves the problem satisfactorily for a general state space,
and we also have not succeed in doing so.

Therefore, we turn to another direction: we shall abandon the requirement of
g-additivity and then we shall be able to prove a quite satisfactory result.

Theorem 2.2. Every Markov system p™ has an invariant measure 1 € ba(X, X)
which is not identically zero.

Proof. We shall here often use known facts from the book by Dunford-Schwartz
[3]. There is an isometric isomorphism between ba(X, X) and the space of functionals
on B(X, X), so we can introduce into ba(X, X) the well-known weak topology which
will be called B-topology. Explicitly written: a generalized sequence (in the sense
of [3] 1.7) A, of elements from ba(X, X) B-converges to A if and only if for each
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f e B(X, X) the equation lim [y f(x) A,(dx) = [y f(x) A(dx) holds. The space ba(X, X)

in its B-topology is a locally convex linear topological space, see [3] v.3.

Let us now define M < ba(X, X) as the set of all A € ba(X, X) which are non-nega-
tive and for which 4(X) = 1. Theorem V.4.2 in [3] states that the closed unit sphere
in ba(X, X) is B-compact. Let a generalized sequence A, of elements from M B-
converge to 4 € ba(X, X) If we take for f characteristic functions of the sets from X,
we see that A is non-negative and A(X) = 1, which implies 1€ M. Therefore M
is B-closed according to 1.7.2 in [3], and being a subset of the B-compact unit
sphere M is B-compact itself. Clearly M is a convex set.

Now let us use the operator T in B(X, X) generated by p™ and its adjoint T*
in ba(X, ¥). Let 1, B-converge to A. If f e B(X, ) then also Tfe B(X, X), and the
definition of B-convergence gives lim 1,(Tf) = A(Tf). However, using lemma 1.1

this equation can be rewritten in the form lim (T*4,) f = (T*A) f which states that

T*2, B-converges to T*1. Now by 1.7.4 in [3] it is seen that T* is a B-continuous
mapping. Finally it is evident that T* maps M into M.

The well-known Schauder-Tichonov fixed point theorem — see V.10.5 in [3] —
now implies the existence of A € M such that T*1 = 4, that is [y p(x, .) A(dx) = A(.)
which concludes the proof.

Of course, by this method a result on a-additi\}e measures can also be obtained.

Theorem 2.3. Let p™ be a Markov system in (X, X) where X is a compact Haus-
dorff space and X the c-algebra of Borel sets in X. If the mapping T generated
by p™ maps C(X) into itself, then there exists e rca(X), not identically zero and
satisfying [y p(x, E) p(dx) = u(E) for all Baire sets E. If, moreover, T* defined
by (4) in 1.2 maps rea(X) into itself (e.g. this is the case for X second countable),

then this measure p is invariant (i.e. the preceding equation holds for all Borel
sets E)

The method of proof follows essentially that of theorem 2.2; we now need to
change B(X, ¥) into C(X) and ba(X, X) into rca(X), and instead of simple integrals
Jx x6(x) u(dx) = u(E) we must make use of integrals [y f(x) u(dx) with fe C(X).

The following theorem is proved quite simply, but its result serves well for elucid-
ation of the situation.

Theorem 2.4. Let the Markov system p™ have a sub-invariant finitely additive
measure A which is finite. Then A is invariant.

Proof. If [y p(x, E) A(dx) < A(E) for some set E € X, then
J p(x, X E)A(dx) = f [p(x, X) — p(x, E)] X(dx) = j p(x, X) A(dx) —
- j p(x, E) A(dx) > 4(X) — E) = XX — E),

but this is a contradiction of the sub-invariance of the measure A.
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Let us recall the following definition and theorem — (see Dunford-Schwartz [3]
111.7.7—8): A non negative A e ba(X, X) is said to be purely finitely additive in case
0=<pu</and peca(X, Y) imply that 4 = 0. To every non-negative 1 e ba(X, ¥)
there exists its unique decomposition into a ¢-additive and purely finitely additive
part expressed by 1 = ¢ + x, where 0 = 0 and seca(X, Z), k 2 0, ke ba(X, ¥)
and « is purely finitely additive. ~

Theorem 2.5. Let the Markov system p™ have an invariant measure 1 e ba(X, x)
If A = 0 + k is its decomposition into a c-additive and purely finitely additive
part, then both ) and k are invariant measures.

Proof. If we use the operator T* in ba(X, X) given by formula (4) in section 1.2,
we have T*1 = A, thatis T*(s + k) = T*o + T*k = o + . Because evidently T*o
is g-additive, we see that the set function x — T*x = T*¢ — o is o-additive. Further
also its upper variation (k — T*x)* is g-additive, and since k = 0, T*x = 0, it is
easily seen that 0 < (x — T*k)* < . But by assumption « is purely finitely additive.
therefore (x — T*k)* = 0, that is k — T*x < 0. Thus we obtained x < T*x from
which T*o < o follows. Now theorem 2.4 states that a finite sub-invariant measure

is invariant; because ¢ € ca(X, 2), or o is finite, we conclude T*¢ = ¢ and also
T*k = k. :

Corollary 2.1. If p has an invariant measure ) € ba(X, X) which is not purely
finitely additive, then it has an invariant -additive measure p e ca(X, X) which
is not identically zero.

The proof is obvious from theorem 2.5.

2.2. Representations for transition probabilities. As usual we are given a Markov
system p™ and the mapping T generated by it. Let p™ have a sub-invariant o-additive
o-finite measure p. If we take complex L,(u) as the domain of definition of T, then
Nelson’s result [13] (see our theorem I) states that T'is an operator in L,(w). Let us
point out that L,(u) is a complex Hilbert space. We denote by T™ the adjoint operator
of T in L,(u). Let us suppose that (X, X) has the same structure as a Borel set of the
real line, i.e. there is a one-to-one mapping between X and a Borel set X’ of the real
line such that a subset of X is in X if and only if its image in X’ is a Borel set. Under
these assumptions Nelson’s theorem 3.1 in [13] states that there always exists
a function p*(., .) which is a sub-stochastic (i.e. p*(x, X) < 1) transition probability
such that

(1) T*f =J F) p*(.dx) for felLyu).
X
Let us define p*™(., .) forn = 1, 2, ... by a recurrent formula
2) Pt ®(x, E) = f Pz, E) p*(x,dz), xeX, Eez,
J X

where we put p*® = p*,
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Further we shall use the notation A(x, .)= dp(x, .)/du(.) for the Radon-Nikodym
derivative provided it exists. In the case of an irreducible Markov system by Nelson’s
theorem 3.2 in [13] this derivative exists as well as the derivative dp*(x, .)/du(.) =
= h*(x,.) and it is h*(x, y) = h(y,x) for (u x w)-almost all (x, ).

Theorem 2.6. Let p™ be a Markov system which has a sub-invariant o-additive
measure ji. Let T be the operator in complex Lz(u) generated by p™, T™ its adjoint,
and let the functions p™™ satisfy the formulae (1), (2). Then for each set Ae X
for which y(A) < oo there is a mapping v(A; .) of the interval [0, 27] into complex
L,(p) such that

2n

(3) p(., A) = f e"v(A;dt)  for n=0,1,2, ...,

0

P, A) = f

[

2n
e~ ™p(4;dr) for n=0,1,2,...,

where equalities of functions in Lz(y) are meant, i.e. y-almost everywhere.

Proof. By Nelson’s theorem (our theorem I) the operator T in the space L,(u)
has the norm || T|| £ 1, i.e. it is a contraction operator in the Hilbert space Lz(,u).
By the Sz.-Nagy’s theorem [16], quoted in our paper as theorem II, there is a Hilbert
space H o L,(u), a unitary operator U in H and a projection operator P of H onto

L t
2(”) SUCh tha Tnf — PUnf , (T+)nf — PU—nf
forn =0,1,2,... and for arbitrary f e L,(u). If we make use of the spectral repre-

sentation of a unitary operator and if we denote by E, its corresponding spectral
system of projections, we have

Tf = sznei"‘ d(E.f) = J‘znei"'v(f; di),

0 0
where o(f; t) = PE,f € Ly(u) for t € [0, 2x].
If now p(A4) < co, then the characteristic function y, € L,(1) and we obtain

T = f ) P 05) = ) = j 2

for a certain mapping v(4; .). It is easily seen that (T*)" f = [y f(x) p*®(., dx) and
therefore we obtain similarly

(T7)" 24 =J 24(x) P, dx) = p*O(, ) =J

X 0

e"v(A; di)

0
2n ) ’ ’
e "y(A; dr) .

Corollary 2.2. For an irreducible Markov system p equalities (3) can be written
in the form

2n
J H(.. x) pld) = f e"o(Asdt)  for m=0,1,2...,
A 0

2n
f h<"><x,.)u(dx)=f e~o(Asdr) for n=0,12...,
A

0
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where h™ is the usual n-th iteration of the density h defined by the recurrent for-
mula

W, y) = f KOs, 2) Wz, 3) pldz) . KO = b
X

Proof. Firstly h™(x, .) = dp™(x, .)/du(.) almost everywhere which implies
immediately the first equality. If we define further h*® by a similar recurrent formula
as h™, then we see similarly h*®(x, .) = dp*®(x, .)/du(.) almost everywhere,
and by an induction process it is easily shown h*™(x, y) = h®(y, x) for (u x p)-
almost all (x, y). Therefore p*®@(., A) = [, h*®(_, x) p(dx) = [, h®(x, .) p(dx).

Theorem 2.7. Let p™ be a Markov system which has a sub-invariant o-additive
measure p. Then for each two sets A, B € X, for which p(A) < oo, u(B) < o, there
is a complex-valued function v(A, B; .) of bounded variation in [0, 2n] such that

2n
(4) j p™(x, A) p(dx) =f e"v(A,B; dt)  for n=0,1,2,...,
B 0

2n
f p(”)(x, B) pz(dx) =J e_i”'v(A, B; df) for n=0,1,2,....
4

0

The equality v(A, B; t) = v(B, 4; t) holds where the bar denotes the complex con-
Jugate number provided the functions v are standardized in some appropriate way,
e.g. they are right-continuous and v(A, B; 0) = v(B, A; 0) = 0.

The proof is similar to the proof used in theorem 2.6. For the unitary operator U
we now use the representation of scalar products

2n
(U, g) = f "o(f, g; di) for f,gqeLyk),
0

n=..-—10,1,..., where v(f, g; .) is a certain function of bounded variation
in [0, 27z] If we put the characteristic function y, in place of f and y in place of g,
we obtain

(T"t4s 28) = LUXXA(X) Py, dX):] 2s(y) u(dy) = f Bp‘")(y, A) p(dy)

for n = 0,1, 2, .... On the other hand
(T"XA, XB) = (PU"XA, XB) = (UnXAs PXB) = (UnXA’ XB) >

from which the first formula in (4) follows. The second formula follows qulte analo-
gously, for

(T*) %4> x8) = (X4> T"x8) =J p™(x, B) ,u(dx)v, (T*) x4 = PU "t4-

The last assertion of the theorem is immediately evident if we take in (4) complex
conjugate numbers, having in mind a well-known fact that equality of all Fourier-
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Stieltjes coefficients implies equality of standardized functions of bounded variation
(seee.g. [18], p. 41).

Let us notice that the theorems 2.6 and 2.7 generalize similar representations for
a denumerable state space given by D. G. Kendall [7], [8] in his theorem II.

We return now to our result in theorem 2.2 that every Markov system has an in-
variant measure Ae ba(X, Z) and, in order to make use of it, we shall be con-
cerned with the representations on the basis of a finitely additive measure.
We shall use here the theory of integration with respect to a finitely additive
measure 4 as it is developed in Dunford-Schwartz [3] IIL.1. —3. Of course, we work
here with functions measurable with respect to a ¢-algebra X and with a non-negative
measure 4, so much is simplified in comparison with [3] Let us recall that a measur-
able function f is called a null function if for every ¢ > 0 we have A{|f(x)| > ¢} = 0.
We restrict ourselves further only to bounded measurable functions and to functions
differing from these by a null function. As usual, two functions differing by a null
function are treated as identical.

Notation. Let | < p < 0. By the symbol B,(1) let us denote the space of all
bounded measurable functions f (more exactly: of classes of equivalence) for which
[Jx If(x)I? A(dx)]"/* < oo and this quantity will be denoted by | f|,.

It is easily seen that | f|, has the properties of a norm. With this norm and with
the usual summation of two functions and multiplication of a function by a real
number, B,(1) is a normed linear space (which need not, however, be complete);
itis a dense sub-space of the Lebesgue space L, defined in IIL. 3 of the book [3].

Theorem 2.8. Let the Markov system p™ have a sub-invariant measure i€
€ ba(X, Z). If the mapping T is defined by formula (3) in section 1.2 for f € B,(2),
1 < p < o, then T'is an operator in B,(4), whose norm is | T, = 1.

Remark. For the proof, sub-invariance of A suffices formally, but by theorem 2.4
such a finite A is invariant.

Proof of theorem 2.8. Firstly T has to be well defined on the equivalence classes,
for which it is sufficient to show that || f]|; = 0 implies || Tf||; = 0. But this fact is
easily seen, because then f is a null function and therefore for every ¢ > 0 we have

1T 1 = f (TS) ()] A(dx) = J

[ 10920509 29 =
éJ f If ()l p(x, dy) A(dx) + f J LF()I p(x, dy) A(dx) <
XJ(rol=se XJ{lromi>e

S [ oo WO = ) Ao + [ 0 pts 1700 > oy o) <
Se. AX) + 0. A{f() > &} = &. AX).
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k
Now let f be a simple measurable function f =} a;xg; Then for 1 < p < o0 we
obtain i=1

1Tf 12 = J () () ) = f ) f T0) ol dy)[" Adx) <

g J f LF()IP p(x. dy) A(dx) =z la,[? f p(x, E;) Adx) ;kgllajlv ME)j) =
ZJ If(x)IP (dx) = [If 2.

Because the uniform convergence implies the convergence in norm of B, (1) by means
of the well-known approximation by simple functions from the above inequalities
we obtain |Tf ||, < [|If|, for each fe Bp(/l). If we take for f the function identically
equal to 1, itis Tf = f, | Tf||, = [lf1,. As all of the other properties of T are clear,
the proof is finished.

If a scalar product is introduced into B,(4) by the usual formula as into L,, the
space B,(2) clearly satisfies the axioms of Hilbert space except it need not be complete.
Nevertheless, we can use the results by Sz.-Nagy [16]; if we go through the proof of
his theorem I in [16] (our theorem II in section 1.2) we see that he has proved, in
fact, the following theorem:

Theorem II'. If B is a space satisfying the axioms of Hilbert space except possibly
completeness and if T is an arbitrary contraction operator in it, then for each
/. g€ B there is a complex-valued function v(f, g;.) of bounded variation on
[0, 2%] such that

P27
(T7f, 9) =J e™v(f, g;dt)  for n=0,1,2,...,

0
2n
(. T9)=1| e ™o(f, g;dt) for n=1,2,....
0
Therefore, it is possible to prove an analogue of theorem 2.7. As we have already
pointed out, the advantage of this modification lies in that every Markov system has
an invariant finitely additive finite measure.

Theorem 2.9. If the Markov system p™ has a sub-invariant measure ) € ba(X, %),
then for each two sets A, Be X there is a complex-valued function v(4, B; .) of
bounded variation on [0, 27r] such that

O [ e - [ ’

0

e™v(A, B; dt)  for n=0,1,2,...,

2z
f p™(x, B) A(dx) =J‘ e""v(4, B;dt) for n=1,2,....
4 0

The equality v(A, B; t) = v(B, A; t) holds provided the functions v are standardized
as in theorem 2.7.
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The proofis easy on the basis of Nagy’s theorem I1” if we take B,(1) in place of B
and characteristic functions y 4, xp in place of the elements f, g.

Unfortunately, an analogue of theorem 2.6 cannot be proved, for here the comple-
teness of the Hilbert space plays an essential role; by an analysis of proofs we can
see that it is needed in order that the bilinear functional v(f, g; f) may be generated
by an operator V, by the identity o(f, g; 1) = (V.f, g)-

But if we took the completed space B of the space B,(4), evidently it would be

possible to prove

2n
(., A) =J‘ e"v(4;dr) for n=0,1,2,...,
0

where v(4; t) € B for each t € [0, 2] and it is understood that the equalities are in
the sense of space B.

According to the results by S. LEADER [12] it is possible to take as a completed
space B the space V? of finitely additive set functions absolutely continuous with
respect to 4 for which a certain norm is finite. Leader has shown that V2 is complete
and that simple functions are dense in V?; therefore, a fortiori, B,(1) is dense in V2.
Nevertheless, we obtain nothing new: first of all, speaking now more exactly, B,(4)
must be mapped onto a sub-space of ¥ (as in Leader) and then the element p™(., 4) e
€ B,(4) is mapped onto the set function v?(4;.)eV? defined by v"(4; B) =
= [5p"(x, A) A(dx) for Be X. Thus we should obtain a mapping v(4; .) of the
interval [0, 2n] into V? such that

2n
V(45 ) =J e™v(4;dt) for n=0,1,2,...,
0

where it is understood that the equalities are in the space V2, but these equations
express only a little more than the theorem 2.9.

At the end of this section let us point out that in the often treated K. YoSsiDA-S.
KAKUTANI [17] case of a quasi-compact operator T (We use here a more consistent
terminology speaking of a ‘“‘compact” operator as in [3] instead of a “completely
continuous” operator) a better representation can be simply derived.

Theorem 2.10. Let p™ be a Markov system and let the mapping T generated by
it be defined in B(X,ZX). Let there exist a compact operator V in B(X, %) and
a natural number m such that |T™ — V|| < 1. Then for each xe€ X, E € X there
exists a function w(x, E; .) of bounded variation on [0, 2r] such that

2n

p™(x, E) = J e™w(x, E; dt) for n=1,2,....
0

The function w may have jumps only at the points 2mjld, j =0,1,...,d — 1,
where d is a natural number, and the continuous part of w is absolutely continuous.
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Proof. Yosida-Kakutani [17] under the said assumptions have shown that
d
P“(x,E) =Y ipj(x, E) + s™(x, E),
i=1

where r; are d-th roots of 1, sup [s*)(x, E)| < K(1 + €)™", K, ¢ being positive con-
stants. xE
o0 @
Since Y [s"(x, E)]* < ¥ K*(1 + £)”?" < 0, by the well-known Riesz-Fischer
n=1 n=1

theorem — see e.g. A. ZyGMUND [18]IV. 1. 1 — we obtain

2z
s"(x, E) = f eMg(t)dt, n=1,2,...,
0

where g is square integrable on [0, 27]. Integrating g and adding the jumps p(x, E)
at the d-th roots of unity r; we get the function w and the assertion of the theorem.

2.3. Continuity properties of representing functions v of bounded variation. In the
whole section we suppose v(4, B; t) = qu(4,B; t + 0) + v(4, B; t — 0)] or right-
continuity or left-continuity of the functions v(A, B; ) by which, of course, the values
of integrals with respect to v are not changed.

Quite similarly as in Kendall’s paper [8] the following theorem is proved.

Theorem 2.11. Let p™ be a Markov system. Let A, B e X, A be a measure on X,
A(A) < o0, A(B) < o0, and let v(A4, B; .) be a function of bounded variation on
[0, 2n] such that formulae (5) hold. Let there exist a natural number d and natural
numbers r(A, B), r(B, A) between 0 and d — 1 such that

lim f p™ 4B (x, B) A(dx) = L(4, B), f p™(x, B) A(dx) = 0
m A A
for n + md + r(4, B),

lim f pmT B x, 4) A(dx) = L(B, A), f p(x, 4) A(dx) = 0
m B B

for n 4 md + r(B, 4).

Then the function v(A, B; .)
(@) is continuous except at most the points 2njld, j = 0,1,...,d — 1;
(b) at the point 2nj/d has a jump of magnitude
(2d)-1[L(A, B) eir(A,B)21!j/d + L(B, A) e~ i"(B,A)Zﬂj/d] .
Proof. Let us denote for brevity g,, = [, p™* @B (x B) i(dx). Forj=0,1,...,
m A
....d — 1 we have ’
n . 3 . [(n—r(4,B))/d]+1 3 .

(6) limn~tY [ p™(x, B) A(dx) e™?™/* = fim p~1 y et T2l
n k=1 Ja

m=1
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If we let N = [(n — r(4, B))/d] + 1, then (6) becomes

N
(7) hm (Nd)—l Z qmeir(A,B)an/d — d—lL(A, B) eir(A,B)an/d ,
N m=1

N
for clearly the assumptions imply also lim N™' " g,, = L(4, B). Similarly, it can be
N m=1
proved that

®  lima 'y j p®(x, A) Adx) e” ¥ = d=1L(B, A) e~ A2
n k=1 Jp

so that by theorem III. 9. 3 in Zygmund [18] formulae (7) and (8) imply the truth of
assertion (b).

Further, let us suppose that ¢ € [0, 2n] does not have the form 2nj/d. We have

n N
(9) hm n” Z ‘[ p®(x, B) A(dx) ™ = lim (Nd)™* Y. q,,e’™*r 4Bt
k= N m=1

N-1
= lim (Na)™'[ Zl Sldm = dm+1) + Snan]

where the last expression was obtained by means of Abel’s partial summation, and
where

10) Sm — < eit(kd+r(A,B)) .

( kgl

For t = 2nj/d, td # 2mj, and ¢ + 1, and summing the geometrical series in (10)
we have

(11) [Sml — |Zeit(kd+r(A,B))| — 2
k=1

< — =c¢c<00.
leztd___”

itmd
i@ +r(4,B) e — 1
eitd -1

By (9) and (11) follows that

n~1 _i f p®(x, B) A(dx) e

N-1
(12) lim < lim (N[ Y 1Sul - 19 — Gmsal +
m=1

-1
+ ISyl - lawl] = hmc (Na)~™* Z Gm = Gms1l + lim c.{Nd)™! gyl .

m=1

N-1
Since 11m 4m = L(4, B), then hm |gm — @m+1] = 0, and therefore hm Nt Z |gm —

- qm+1| = 0; finally |q,] = lj pNHAB)(x, B) A(dx)| < H(4) < 0. In summary,
(12) is equal to 0 and therefore

limn=tYy f p®(x, B) A(dx) e™* =0
n k=1 ) 4 '
In a quite similar manner it may be proved that
n
limn=") J‘ p®(x, A) A(dx) e ™ =0,
n k=1 Jp
and again by theorem II1.9.3 in Zygmund [18] assertion (a) of our theorem is true.
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The theorem just proved can be used for periodic chains, provided the transition
probabilities converge in the usual sense:

Corollary 2.3. Let p® be a Markov system which has a sub-invariant o-additive
measure p. Let p™ have the period d, i.e. there is a decomposition of the space X
into disjoint sets C,, Cy, ..., C4_;, D from X such that #(D) = 0 and for xeC,
we have p(x, Cyiq) = 1 (where we put C, = Co). Further let r(k, 1) denote the least
non-negative number n such that for xe Gy, p™(x, C,) = 1. Let lim pmitreD(x E) =

= po(x, E) for arbitrary xe X, E€ X with x e C., Ec C. If A,BeX are such
that p(A) < oo, u(B) < o, then theorem 2.7 states the validity of formulae (4)
and we have further:

(a) the function v(A, B; .) is continuous except at most the points 2mjld, j =
=0,1,...,d — 1;
b) if A = C,, B = C,, then o(A, B; .) has at the point 2njld a jump of magnitude
1

(2d)~girtk-021id [ j e B u(e) + f Dol 4) p(dx)] .

Proof. The assumptions of theorem 2.11 are evidently satisfied for the measure u
inplace of 1, A = C,, B < C,, for 1is an integrable dominating function on 4 and B
and therefore lim [, p™*"®&D(x, B) y(dx) = fapo(x, B) u(dx) = L(4, B) and ana-

logously for A, B interchanged. We have obviously r(k, ) + (I, k) = d for k % [
and therefore
i(d=r(1,k))2nj/d

eif(k,l)lnj/d =e — e—ir(l,k)an/d .
for k = I the equality of both extreme terms is evident. The assertion (b) is now easily

seen, as

(2d) "'[L(4, B) @025l 4 [(B 1) o™ iU
= (2d)~1 frtkh2mild [f po(x, B) u(dx) + J polx, 4) ,u(dx)] L
A B

Further, let us have arbitrary sets 4, Be ¥ of a finite measure. Since (D) = 0 and
for xe X — D wehave p™(x, D) = 0, we obtain [sp®(x, A) p(dx) = [5_pp™ (x,
A — D) p(dx). Let us denote A, = (A-=D)nC, B,=(B—-D)nC, for
k,1=0,1,...,d — 1. Each function v(A4, C; ) is by theorem 2.11 continuous at
the points ¢ & 2rj/d. But we have

2n d—1 d—1
J‘ e™v(A, B; di) = f P(x, A) p(dx) = ¥ J Y. pA(x, A) p(dx) =
0 B 1=0 J g, k=0
2n
0

d-1d-1 ,
=y ¥ j e™v(A,, B;; dt)
1=0 K=0



and analogously for 4, B interchanged. The equality of all Fourier-Stieltjes coeffi-
d—1d—-1

cients implies (e.g. by [18]) the equality A4, B;1) =Y >, (A, Bj; 1) and thus
1=0k=0

assertion (a) is proved.

It is easily seen that in the special case of chains with a denumerable state space our
results agree with those by Kendall [7], [8]-

Theorem 2.12. Let p™ be a Markov system and let all conditions of theorem 2.11
be satisfied. Let in addition

13 ¥ | f P ADY 5. B) H(dx) — J POt DA By 1) < oo
A A

m=1 |

and analogously for A, B interchanged. Then the continuous part of the function
v(A, B; ) is absolutely continuous. ’

Proof. We shall use the same notation 4 as in the proof of theorem 2.11. Condi-
tion (13) is the well-known condition of bounded variation of the sequence g, (see
e. g Zygmund [18], p. 4).

Let a closed interval [1,, t,] < [0, 2n] contain no point 27j/d, j = 0, 1, e d — 1.
We shall prove that for all t € [¢,, t,] and for all n the Cesaro sums of the trigono-
metrical series corresponding to v(4, B; .) are uniformly bounded. These Cesiro
sums are equal to (omitting a constant factor)

(14) 1) =k=io (1 -k 1) i f PO B) () +
+k§"1 (1 -k )e‘"“Lp""(x, 4) M(dx) .

As a consequence of symmetry we can restrict ourselves only to the first sum in (14).
We divide all natural numbers into d groups (with respect to congruence): the j-th
group (j=0,1,....d — 1) contains the numbers n of the form n = Nd + r(4, B) +
+ Jj. Clearly it is sufficient to prove the uniform boundedness of s,() for eack of
these groups separately, for we have a finite number d of them. But in the j-th group
the first sum in (14) is by the assumptions of the theorem equal to

Nd+r(4,B) +j k . © )
15 1—— = )k x, B) A(dx) =
(13) k;o ( Nd + (A, B) +j 1) pr ( ()
ul - md + r(A, B)
Nd + r(4,B) +j + 1

As in the proof of theorem 2.11 we shall again make use of Abel’s partial summation,

m -

) eit(md+ r(4,B)) q

m=0

m
but now §,, = ¥ e"®*r4.B) and again as in (11) we obtain
k=0

m
. 2
IS I = I elt(kd+r(A,B))' § i
" k;o : le — 1|
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where the last expression is bounded by a finite constaut ¢ uniformly for all t € [t,, ¢, ]
and for all m. Analogously as in (9) and (12) we obtain

} i 1 — md + r(A, B) pit(md+ r(4,B)
jm=0 Nd + r(A,B) +j + 1

NZI{S ) \( md + r(4, B) )qm B

m=0 Nd+ r(A,B)+j+ 1

m

] <
i

A, B %,
(- (m+1)d+ g ) doesl + IS4l (1_ Nd+r(A,B? vl <
Nd + r(4,B) + j + 1 i Nd + r(A,B) +j + 1
N-t md + r(A, B d+r(4, B
éc‘z Am — 9m+1 — ( ) ~ m m r( ) Im+1 +
m=0 Nd + r(4,B) +j + 1 Nd + r(A,B) +j + 1
p _
m + c. §C- m — Ym +
Nd+ r(A B)+] I 1‘7 +1 lgnl l:mgo lq Gn+1l
N1 md + r(A B) d N-t
m m + m +
w20 Nd + r(4, B) +j O el Nd + r(A, B) + j 1 e
N—-1 d N—-1
+ l‘hvl] <c. [Z 9m = Gmstl + 2 1Gn = Gt + — 2 |Gmesl + anl]-
m=0 m=0 Ndm=0

In the last expression the first two terms are bounded by assumption (13), and the
N—-1

last two terms are bounded since q,, and therefore N1 Y G+ 1 also converges.
m=0
Summing up we have proved that the Cesaro sums s,(f) in (14) are bounded by
a finite constant uniformly in [7,, ,]. Since that constant is an integrable dominating
function in [1,, t,] we have

12 12
limf |s,()] dt =J [lim s,(7)| dt
n ty ty n

and by the theorem 1V.4.20 in Zygmund [18] v(4, B; .) is absolutely continuous
in [, 1,], i.e. clearly everywhere in [0, 2n] except the points 2mj/d, j = 0,1, ...,

.,d — 1. Theorem 2.12 is proved.

Finishing part 2 let us give a recapitulation. A Markov system always has a finitely
additive invariant measure by theorem 2.2 so that the representations of the theorem
2.9 always can be used. As for g-additive sub-invariant measures, we have such a situ-
ation: If the corresponding chain is recurrent according to the definition of T. E.
HaRRis [6] then there is a o-finite ¢-additive invariant measure (see Harris [6]) and
representations of theorem 2.7 can be used. If this invariant measure is finite, then
by the results by S. OREY [14] on convergence of transition probabilities we can
use corollary 2.3, eventually also theorem 2.12. On the other hand if an irreducible
chain is not recurrent according to Harris [6], it is not recurrent according'to Nelson
[13] as well (see the text after definition 2.1 and the proof of theorem 2.1). Then by
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the theorem 4.1 in [13] there are non-void sets E € X such that Y p(x, E) < oo.
n=1

For such sets the following representation theorem is easily proved.

Theorem 2.13. Let p™ be a Markov system and let xe X, E€ X be such that
Y. P™(x, E) < 0. Then there is a function 9(x, E; .) square integrable on [0, 2n]
n=1

such that
2

eg(x, E; t)dt for n=1,2,... .

p™(x, E) = J

0
Proof. Since ) |p™(x, E)* < Y p™(x, E) < oo, the well-known Riesz-Fischer
n=1 n=1

theorem (see e.g. Zygmund [18] IV.I.I) gives the required formula immediately.

3. REPRESENTATIONS FOR SELF-ADJOINT MARKOV SYSTEMS

3.1. Conditions for self-adjointness. Let us begin with a definition.

Definition 3.1. A Markov system p™ is called u-self-adjoint, if it has a sub-inva-
riant g-additive measure y and if for arbitrary 4, B € X the equation

(1) J p(x, A) p(dx) = j p(x, B) p(dx)

holds. p™ is called self-adjoint, if for some p it is u-self-adjoint.

Let us observe at once: If a Markov system p® is p-self-adjoint, then y is an inva-
riant measure. This fact is clearly a consequence of (1) putting there X in place of B.

Some authors use the term “reversible chain’ because self-adjointness in some
special cases is equivalent to “reversibility in time” understood in a certain intuitive
way; this situation appears particularly for irreducible chains which is seen from
Nelson’s results [13], in theorem 3.2, or for chains with a denumerable state space
(see Kendall [7], [8]). In this paper we prefer the term “self-adjointness™, for the
intuitive content of the term “reversibility” disappears generally.

Self-adjoint or reversible chains were studied by A. N. KorLmoGorov [10] as
early as in 1936 (for a finite state space and only reversibility without relation to self-
adjointness), D. G. Kendall [7]. [8], [9] (for a denumerable state space), H. P.
KRAMER [11] (for processes in continuous time, but the results are quite analogous);
further some results follow immediately from Nelson’s paper [13].

Theorem 3.1. A Markov system p™ is u-self-adjoint if and only if the mapping T
defined by formula (3) in section 1.2 for f e L,() is a self-adjoint operator in L,(w).
If this is the case, then we have more generally

) f P(x, A) u(dx) = f P(x, B) u(dx) for n=1.2, ...
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Proof. First, let T be a self-adjoint operator in L,(x), which means the equality
of scalar products

&) (7f, 9) = (/. Tg)

for arbitrary f, g € Ly(u). If 4, Be X are such that u(A4) < o, u(B) < oo, then (3)
gives

4 (TXA’ x8) = (X4 Tts)
Wthh is (1) If A B e X are arbitrary, they can be written as disjoint unions 4 =

—UA,,B—UB where A;, B;eX, p(A4;) < oo, p(B;) < oo for j=1,2,.
=1

Now (1) holds for A;, B; and interchanging the summation and integration, which is
permitted for the non-negative function p (e.g. by theorem 2 § 27 in P. HaLmos [5]),
we obtain (1) for arbitrary 4, B.

If, on the other hand, (1) holds, then by a common method of the theory of inte-
grals we get (3).

If T'is a self-adjoint operator, then also all powers T", n = 1, 2, ..., are self-adjoint,
and thus (2) is proved.

In the following we shall use the Cartesian product of measurable spaces (X x X,
Z x Z, v X v) defined in the usual way v being some g-additive measure, and in the
usual corresponding way we shall understand the propositions concerning measurabi-
lity, almost everywhere properties etc. Analogously we shall have k-fold Cartesian
products. In the rest of the section 3.1 we suppose for simplicity that ¥ is generated
by a denumerable class of sets (although this supposition can be weakened at the
costs of a certain complication of theorems). Let us introduce the following conven-
tion: if the Radon-Nikodym derivative dp™(x, .)/dv(.) = h®(x, .) exists for v-
almost all x, in the rest of the section we shall always take for h™(., .) a non-nega-
tive (£ x X)-measurable function; this is possible by the assumed. structure of ¥
following Doob [1], p. 753, or [2], p. 616, similarly as in Nelson [13], lemma 3.3.
We denote h)(., .) = h(., .)

Theorem 3.2. Let p™ be a Markov system. Let p be a o-additive measure on X,
for which Radon-Nikodym derivatives dp(x, .)/du(.) = h(x, .) exist for p-almost
all x. Then p™ is p-self-adjoint if and only if
(5) . h(x, y) = h(y, x) for (u x p)-almost all (x, y).

If this is the case, and if we define recurrently h®(x, y) = [x "~ V(x, z) h(z, y) p(dz),
D = h, then h™(x, .) = dp™(x, .)/du(.) almost everywhere and

(6) h(x, y) = h®(y, x) for (u x p)-almost all (x, y)

and foralln =1,2,....

Remark. This theorem generalizes a little the characterization of self-adjoint
chains, following easily in the irreducible case from Nelson’s theorem 3.2 in [13].
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Proof of the theorem 3.2. In the following we shall always have in mind that
h(x, y) = 0 so that the order of integration can be arbitrarily interchanged. If (5) is
true, then for arbitrary sets 4, B e X we have

j ol 4) () = j [ Lhoc, ) u(dy)] u(dx) = j ) (% ) (o) =
- j ) [ j 1,9 #(dX)] u(dy) = j 20 B) (@)

therefore (1) holds. Conversely, if (1) holds, then evidently by a simple change of
notation we get

J, U ) "‘d”] uan = [ [ [ #0. ﬂ(dx>] u(dy) -

- f ) [ f Ah(y, x) u(dy)] p(dx)

M [ M) ) et ) = [

B

h(y, x) (u x p)(d(x, y))

for arbitrary A4, B e X. Each side of (7) represents a set function on the semi-ring of
sets of the type B x A, therefore it can be uniquely extended to X x ¥ and equation
(7) is preserved even when writing an arbitrary set from X x X in place of 4 x B.
But from this we see that (5) holds.

If the system is p-self-adjoint then the first assertion about h™ is easily proved
by induction, and the last assertion is proved by the same method as (5) using the
equations (2) of theorem 3.1.

The content of following theorems may become more comprehensive if the points
of X are now called the states of the Markov system p®.

Theorem 3.3. For a Markov system p™ to be self-adjoint, the set of following
conditions is sufficient:

For some ¢-additive measure v on ¥ Radon-Nikodym derivatives dp™(x,.)/dv(.) =
= h®™(x, .) exist for v-almost all x. There exists a state Xo € X having the following
properties: for each state x € X there is a natural n such that

(®) h™(xo, x) > 0, h™(x, x;) > 0
and
(XKy) h®(xo, x1) B, x3) KO(x,, x) = h®(x,, x,) h(x5, x1) h®(x, xo)

Jor all natural k, 1 and (v x v)-almost all (x,, X3).
Conversely: if the system is v-self-adjoint and if dp®(x, .)/dv(.) = h™(x, .)
exist for v-almost all x, then for v-almost all Xo € X the condition (K,) holds.
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Remark. Condition (8) means a certain kind of intercommunication between the
state x, and an arbitrary state x (see e.g. T. A. SARYMSAKoOV [15]), i.e. a condition
similar to irreducibility (of course, here h™ need not be continuous). If for each
x € X the least natural n satisfying (8) is denoted by n(x), then from the proof it is
seen that it suffices to verify condition (K,) only for k = n(x,), ! = n(x,). Practically
e.g. if n(x) have an upper bound N, then it suffices to verify (K;)for k, [ = 1,2, ..., N.

Proof of theorem 3.3. Let us denote E, = {x; n(x) = n}; then U E,= X.

By our permanent assumption h®(.,.) are (X x X)-measurable, so h("’(xo, ),
h®(., x,) are E-measurable. Therefore F, = {x; h®(xo, x) > 0} N {x; h®(x, x,) >
n—1

> 0}eX for each n=1,2,.... Clearly E, = F, — U F; which gives E, e X for
i=1
eachn=12,....
Let us define a function g by the prescription that for x € E,, it takes the value g(x) =
= h®(x, x)/h™(x, x,). Since the definition of g is composed from denumerably
many subsets E, € X and on each E, the function g is measurable, evidently g is
measurable on X; furthermore g is clearly finite.

Let us define a measure y on X by the formula u(E) = [ g(x) v(dx), E € X. The

measure v is o-finite, which means X = U D;, D; e Z, v(D;) < oo; we denote D; , =

Ji=1
=D;n {x; g(x) k} for k natural. There are denumerably many sets D;, and we
have X = U Djk and u(D;;) = [p,, 9(x) v(dx) < k . v(D;,) < k.v(D;) < o0, so

Jsk
that the measure u is o-finite.

Let us have two sets from 2, 4,  E,, B, = E,. Then by condition (K,) and by
Fubini’s theorem for non-negative functions we obtain

j p(x2, Ay) p(dx,) = J; p(x35 Ap) g(x2) v(dx,) = J (%, 4y) Z(I)Exo, xz; v(dx,) =

_ L U Mh(xl,xz) (dxz)] Wdx,) = J p(x. B ,)h xo, xl) Wdxy) =

h(x,, x h®(x,, x
- j p(x1. B) u(dxy) .
A

Thus we see that (1) is true for these particular A = 4,, B = B, and with the mea-
sure p. Finally let A, Be Z be arbitrary. We know already that (1) holds for 4, =
= AN E, B, = Bn E, and in general (1) is obtained by summation over all k, I.
Therefore the system p™ is u-self-adjoint.
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Conversely, let p™ be v-self-adjoint. Then by theorem 3.2 we have
(9) h(k)(xm xl) = h(k)(xp xo)

for (v x v)-almost all (x,, x,), h(x,, x,) = h(x,, x{) for (v x v)-almost all (x, X3),
h®(x2, x0) = h(x,, x,) for (v x v)-almost all (xo> X;). By Fubini’s theorem on
null sets (9) is satisfied for v-almost all Xo except some x; from a v-null set N, .
If we consider h®(x,, x,) as a function of the triple (x0» X1, X,) (Which remains con-
stant for varying x,) we see also that (9) is satisfied for v-almost all X, except some
(x1, x5) from a (v x v)-null set N,, X X. An analogous conclusion can be drawn
concerning h(x,, x,). Combining the above results and intersecting the sets on
which all equalities for the functions h hold, we obtain the last assertion of theorem
3.3 concerning the truth of condition (Ky).

In the following we shall use this notation: If Z, X are two spaces and M some
subset of Z x X, then its projection into the space X (ie. the set of all xe X for
which there is a z € Z such that (z, x) € M) will be denoted by M*. Analogously M?
denotes the projection of M into the space Z.

Lemma 3.1. Let (Z x X, X, x Zx) be the Cartesian product of two topological
measurable spaces (Z, 27) and (X, ), let Xy be the g-algebra generated by open
sets and let Z be separable. If G is an open set in Z x X, then on its projection GX
there exists a mapping z(.) of G¥ into Z with the following properties:

(a) (2(x), x) € G for each x e GX,
(b) z(.) is measurable. .

Proof. Let zy, z,, ... be a denumerable dense subset of Z. We denote by R}, j =
= 1,2, ..., the sections of the set G determined by the point z, i.c. R; is the set of
all x € X such that (zj, x) € G. Clearly R; are open, and we shall show

(10) G*¥ =UR,.

ji=1
To show it, let x € G*. Then there is a z € Z such that (z, x) € G. But then G contains
a “‘rectangular” neighbourhood N of this point, the projection NZ into the space Z
is open, and therefore there exists z; € N Clearly (z;, x)e N < G, x € R;, which

gives G¥ = U R;. The converse inclusion is obvious, therefore really (10) is true. It
j=1
also follows from this that G is open.
Jj—1
Now, for x € R, we define z(x) = z,, for xe R, — U Ry, j = 2,3, ..., we define
k=1

2(x) = z;. Clearly by such a prescription the mapping z(.) is defined on the whole GX
and it satisfies (a). If E is a set from X, then z(x) € E is true for at most denumerable
i1
union of subsets of X having the form R; — U R, i.e. for a set from X,, since R;
‘ k=1
being open belong to . Thus (b) is proved.
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Theorem 3.4. For a Markov system p™ to be self-adjoint, the set of following
conditions is sufficient:

X is a topological separable space, Xy is the c-algebra generated by open
sets of X. For some o-additive measure v on Xy Radon-Nikodym derivatives
dp(x, .)/dv(.) = h(x, .) exist for v-almost all x, and h(., .) is a continuous function
of (X, y). There exists a state Xo € X having the following properties: for each state
X € X there are finite sequences of states x}, x5, ..., x; and x|, x5, ..., xj such that

(11)  h(xo, x}) h(x7, x3) ... h(x}, x) > 0, h(x, x7) h(x], x{_,) ... h(x], x) > 0
and

(KZ) h(xo, yl) h(yl’ yz) e h(ym~1’ ym) h(ym> xo) =
= h(xo» J’m) h(ymr ym-—l) h()’za yl) h()’l» xo)
for all natural m and all y,, y,, ..., y, € X.
Conversely: if the system is v-self-adjoint and if dp(x, .)/dv(.) = h(x, .) exist for
v-almost all x, then (K,) holds for (v x v x ... x v)-almost all (X0s Vis Y25 oo vs V)
Proof. For brevity let us denote by Z, = X x ... x X the k-fold Cartesian pro-
duct of the space X, k being a natural number; the elements of Z,arez, = (x Ls ooos xk).
We see that Z, is separable. By our assumption of continuity of h it follows im-
mediately that the function hy(.,.) defined by h(zis X) = h(xo, x1) h(xy, x;) ...
... h(x;, x) is continuous as a function of (2> X) = (%4, X35 -+, X, X). Therefore, the
set of all (z,, x) for which hy(z,, x) > 0is open, and we denote it by G,. By the lemma

34 now there exists a measurable mapping z,(.) = (x,(.), ..., x,(.)) defined on the
projection GY, for which

(12) , hy(zy(x), x) > 0 for xeGy.
But by the assumption of the theorem for each x € X there exist X1, ..., X; such
that the second inequality of (11) holds. By (12), (11) and (K,) we obtain
0 < h(xg, x4(x)) ... h(x(x), x) h(x, x}) ... h(x}, xo) =
= h(xo, x7) ... h(x}, x) h(x, x(x)) ... h(x,(x), xo)
for x e Gy, which implies also h(x, x,(x))... h(x,(x), xo) > 0. Thus for xe G¥
it is possible to define a function g by
' h(xq, x1(x)) ... h(x,(x), x
(13) g(x) = (X0, X1(x)) - h(x(x) )
h(x, x(x)) ... h(x4(x), xo)
It is easily seen, that the function taking the value
h(xo, xy) ... h(x;, x)
h(x, x;) ... h(xy, Xo)

at the point (x,, ..., x;, x) is measurable on Z, x X (as soon as it is defined). Evi-
dently this gives measurability of g(.) on Gj. )
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By the assumptions for each x € X there is a natural k and a point z} = (x4, s xp)

such that hy(z;, x) > 0, that is (z;, x) € G, x € G5. Thus we have shown X = U G}.
k=1

But X can be written in the form of a disjoint union X = U E,, where E, = G¥ —
k—1 k=1

- U G;‘ . Here G{ are open as was observed in the proof of lemma 3.1 which implies
j=1
E, € X for each k.

If we define the function g(.) by (13) on each E,, then g(.) is defined everywhere
on X and clearly it is measurable. Now the proof may be completed as in theorem 3.3.
We define a measure p on Iy by the formula u(E) = [ g(x) v(dx), E € Z. Then g
is g-additive and o-finite. If 4, < E,, B, = E, are two sets from Zy, by condition (K,)
we obtain

_ ) v(dx h(xq, x5(¥)) ... h(x,(y), ») ody) =
Jo o moton = [, [ w0 | om0

_ f [ J h(xg, x4(x)) ... h(x,(x), x) W) v(dy)] ) =

h(x, x(x)) ... h(x(x), x

= J g(x) p(x, B;) ¥(dx) =J; p(x, B)) p(dx) .

If A, B € Xy are arbitrary, then we set 4, = A n E,, B, = B n E,;, and summing the
equations obtained for A4,, B, we have (1); therefore the system p™ is p-self-adjoint.

The converse assertion of theorem 3.4 is obtained in a manner quite similar to the
proof given in theorem 3.3.

Remark. Let us observe that condition (11) from an intuitive point of view means
a certain kind of intercommunication \between x, and an arbitrary state x. Our
conditions (K,) and (K,), particularly the second of them, appear to be an analogy
of Kolmogorov’s condition in [10], or of condition (K) introduced by Kendall
[7]. [s].

Theorem 3.4 does not seem to be too satisfactory, because it has rather strong
assumptions: separability of X and continuity of h. These assumptions are needed
for the proof of lemma 3.1 which gives the key assertion. Though it seems that
there are some possibilities of generalizing lemma 3.1, we have not yet succeed in
doing so.

Nevertheless, for many practical cases theorem 3.4 may be quite sufficient; for
example, in Sarymsakov’s book [15] it is always required that the state space X
is a compact set on the real line and is therefore separable, and that h(. R ) is conti-
nuous. It is also seen, however, that theorem 3.4 in its present form generalizes
a result by D. G. Kendall [8] for X = {1,2,3,...}. Here X is denumerable itself,
the measure v is defined v{k} = 1 for k = 1,2, 3, ..., and then h(x, y) = p,, is con-
tinuous and clearly our characterization contains that given by Kendall.
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Let us still pay some attention to condition (K,), understanding that our remark
is valid also for Kendall’s case of a denumerable state space. First of all it is sufficient
to require (K,) only for a single fixed point x, as a starting point (in contradistinction
to Kendall’s condition). Further from the proof the following fact is evident: denoting
for each xe X by k(x), I(x) the least lengths of sequences Xi, ..., xj, X, ..., x|
satisfying (11) it is sufficient to verify condition (K,) only for products

h(xo ¥1) h(¥5, ¥5) ... W(Yiay, ) h(x, Yico) - k(5 ¥) bV, x,)
h(xo, 1) B(y1s ¥3) - h(Vheys X) B, y) h(y, Vi) - by, ¥7) h(y7, xo)

for all yi, ..., Vi V1o voos Vi Vi oo Yy (ie. for products of respective least
lengths), for which these products are positive. Practically e.g. if k(x), I(x) have an
upper bound N (in the extreme case may be even N — 0), then it suffices to verify (K ,)
for products of lengths 1, 2, . 2N + 3.

Concluding the section let us turn for a while to the case of a finitely additive in-
variant measure 1 € ba(X, 2).

An initial idea for a general Markov system p™ was that the mapping T generated
by it is an operator in B,(2) (see theorem 2.8); quite a similar idea can be used also
in the present case of self-adjoint systems. Since B,(1) is not a Hilbert space but only
a dense subset of the Hilbert space V2 (which is seen from Leader’s results [12]),
we shall speak of a symmetric operator instead of a self-adjoint one. By a symmetric
operator T we understand an operator whose domain D is dense in a Hilbert space
and for which (Tf, g) = (f, Ty) for all £, g € D.

Theorem 3.5. Let p™ be a Markouv system which has an invariant measure
/€ ba(X, X). The mapping T generated by the system p™ is a symmetric operator
in B,(2) if and only if

f B, 4) dd) - f Bl ) A

holds for arbitrary A, Be 3.

Proof is similar to that given for theorem 3.1, using the fact that each function
from B,(4) can be uniformly approximated by simple functions from B,(2). -

3.2. Representations for transition probabilities. In a quite similar way as in section
2.2 the representations for self-adjoint systems can now be obtained.

Theorem 3.6. Let p™ be a p-self-adjoint Markov system. Then for each set Ae 3
Sfor which p(A) < oo there is a mapping v(A; .) of the interval [—1, 1] into real
L,(u) such that

(14) (., 4) = J

1
"0(A;dt) for n=0,1,2,... s
1

where equalities of functions in Lz(ﬂ) are meant, i.e. u-almost everywhere.
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Proof. It is essentially similar to the proof of theorem 2.6, but somewhat simpler,
because the spectral representation of the self-adjoint operator T in the Hilbert
space Lz(u) is used directly. The limits of the integral are obtained from ||T| < 1.

Theorem 3.7. Let p' be a p-self-adjoint Markov system. Then for each two sets
A,BeZ, for which u(A) < o, pu(B) < oo, there is a real function v(A, B; .) of
bounded variation in [ —1, 1] such that

(15) J B p(x, A) p(dx) = J

A

1

p"(x, B) p(dx) = J' "o(A4,B; dt) for n=0,1,2,....

-1
The proof is quite similar to that of theorem 3.6 or 2.7.

Theorem 3.8. Let p™ be a Markov system which has an invariant measure
J.eba(X,X) and let the mapping T generated by p™ be a symmetric operator
in BZ(A). Then for each two sets A, B € X there is a real function v(A4, B; ) of bounded
variation in [ —1, 1] such that

(16) j P 4) 2d) = f

1
p™(x, B) A(dx) = J t"v(A, B;dt) for n =0,1,2,....
4

-1
Proof. A bounded symmetric operator T in B,(1) can be continuously extended

to a self-adjoint operator in the Hilbert space V2. Similarly, as in the text after the
theorem 2.9, we define v*(4; B) = [5p™(x, A) A(dx) for B X and we get a mapping
v(4; .) of the interval [ —1, 1] into V? such that

1

vi(4; ) =j t"o(4;dr) for n=0,1,2,...,

-1
where the equalities are understood as equalities of set functions in V2. Putting set B
here and using for the integral on the right side its definition and Leader’s theorem 17
in [12], we have the equality of both extreme terms in (16). The first equality in (16)
is evident by (T"%4, x5) = (X4 T"x5)-

4. CONCLUSION

Concluding the paper let us point out that all integral representations (or in different
terminology, moment representations) for the transition probabilities discussed in
this paper can be immediately generalized in the following way:

Let f be a measurable function on the space X. Let us denote by E{”{f} the expect-
ation of f with respect to the distribution on X after the n-th step, provided the chain
started at the point x, that is

EM{f} = j f(xy) p™(x, dx;), n=0,1,2,....
x
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For these E”{f} representations similar to those for p™(x, E) can be immediately
obtained by quite similar proofs. For example the generalization of theorems 2.6,
2.7 is that for f, g € L,(u) the representations

2n
EPX{f} = f e™o(f; dt) for p-almost all x ,

0

2n
J EP{f} . g(x) u(dx) =f e"o(f, g; di)
x 0
are obtained, and similarly for 1 e ba(X, ). For self-adjoint systems we have the

representations
1

EP{f} = J "v(f; dt) for p-almost all x ,

-1

f E®(f} - 9(x) u(d) = j " s, g di)

etc.

However, since these generalizations are quite obvious and, moreover, seem to be
uninteresting, we did not study them in the paper but contented ourselves with this
brief concluding remark.

In the paper some unsolved problems were touched. At the end let us recapitulate
the most important of them. ;

1. Has every Markov system a sub-invariant ¢-additive o-finite measure? Which
conditions are sufficient for the existence of such a measure? (See section 2.1,theorem
2.1, 2.2 and the text before it, theorem 2.3.)

2. If p™ is a Markov system having a sub-invariant A € ba(X, ), and if T'is the
mapping generated by p™, is then T an operator in the whole space L,(2)? (See
theorem 2.8.) i

3."Under which conditions would it be possible to find representations for p™(x, E)
for all x, and not only for almost all x (as was done in theorem 2.10 or in the case of
a denumerable state space)?

4. In the representation formulae (4) of theorem 2.7 is the continuous part of
(A, B; .) always continuous, as it is in the case of a denumerable state space? (See
section 2.3.)

5. Would it be possible to generalize lemma 3.1? That is, if we have a Cartesian
product (Z x X, X, x Zy) and a set GeZX, x Xy, under which conditions is it
possible to define a measurable mapping z(.) of the projection GX into Z such that
(2(x), x) € G for all x e G¥? From this a generalization of theorem 3.4 might follow.
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Pe3rome

UHTEI'PAJILHBIE MIPENCTABJIEHUS A4 BEPOSATHOCTEN
TMEPEXOJA MAPKOBCKUX IIETIEV C OBHIEN CUCTEMOMN
COCTOSIHUA

3BBIHEK IMMIAK (Zbynék Sidak), IMpara

B paﬁoTe HCCIICAYHOTCS NPEACTaBJICHUS THUIIA

(1) (., A) = jzne‘"‘v(dt)a Lp(n)(x, A) p(dx) = J‘

0

%) P, A) = f 1

-1

2n .
e™v(dr),
0

ot [ w0 A) ) = [

t"v(dt)
1

BEPOATHOCTeH Iepexona p™ OXHOPOIHBIX MapKOBCKHX Lemeil ¢ IHCKPETHBIM Bpe-
MEHEM M C obmlelf cHCTeMOil coCTOsHMH. Pe3ynpTaThl 1 METOIBI BOSHUKIH IO CY-
wecTBy ob6o6uiernem paborst . k. Kenmamna [8]. MHOTo HCOONB3YIOTCS METO-
Jibl GYHKIMOHAIBHOTO aHaxu3a. I JlaBHAst HES COCTOMT B TOM, YTO M3BECTHBIA Map-
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KOBCKUH onepatop T, NOPOXIEHHBIA BEPOSITHOCTAMM Tepexosia no popmyne Tf =
= [xf(x) p(., dx) (rme f HexoTopas yHKmms), ompemenseTcst B mpocTpancTse L,
M [OTOM MCIOJIB3YIOTCS CNEKTPAJIbHBIE NPENCTABJICHHS YHHTAPHOLO MK CaMO-
COTPSKEHHOTO OIEPaTOpOB B I'MibGEpTOBOM mpocTpancTBe. st Toro, 4tobni T
Obi onepaTopom B L,, Halo MMETH /1Ist MAPKOBCKOIA LEMH Tak HA3KIBAEMYIO CyOUH-
BAPUAHTHYIO Mepy 1 (4TO 3HAYMT, It KOTOPOit [y p(x, E) p(dx) < W(E) mas xaxmoro
MHOXecTBa E U3 OCHOBHOl o-are6pkl X), 1o KoTopoit mMHTerpupyercs. Bo Beeii
paboTe ynenseTcs BHUMaHIEe KOHEYHO-aIATHBHBIM CyOHHBAPMAHTHBIM MepaM.

PesynbTaTel 3T0# pabOTHI KACAIOTCS HE TOIBKO MAPKOBCKHX LIEIEH, a GoJiee 06mux
TaK Ha3bIBAEMBIX MAPKOBCKMX CHCTEM, 4TO eCTh cucTema (ymkmuii p™(x, E), rre
p®(x, .) BepositHoCTh, p™(., E) M3Mepumas dyHxius, # p™ yIOBIeTBOPSIOT ypas-
HenusiM Ysnmena-Koamoroposa.

B wacTu 1 BBomsTCS 0603HAYCHHS M /IBE M3BECTHbIC OCHOBHBIE TEOPEMBL.

YacTs 2 3aHMMAETCS IPECTABICHAAMI 001X MAPKOBCKUX CHCTeM. IIpex e Beero
HOKa3aHbl HEKOTOPbIE TEOPEMBI O CYOMHBADUAHTHBIX M WHBAPHAHTHEIX Mepax,.
HAIPUMEp: TIPH JIOBOJILHO OGIIMX IIPEIOJIOKCHUSIX Kak/[asi HENPHBOIMMAS Map-
KOBCKasl CHCTEMa MMeeT HEeTPHBHAILHYIO CyOMHBADHAHTHYIO 0-aITHTHBHYIO MeEpY,
KOTOpast OHAKO He HOJDKHA OBITh 0-KOHEHOM; KaXk/Ias MAPKOBCKAS CHCTEMA MIMEET
MHBAPHAHTHYIO KOHEYHO-aUTHBHYIO KOHEUHYIO Mepy. Jlaee BHIBOISTCS TEOPEMBbL
0 mpezcTaBeHusx THNa (1): ecm u cyGuHBApHAHTHAS 0-aJIATHBHAS Mepa, (A) < o,
TO IIEPBOE PABEHCTBO B (1) BepHOo it n = 0, 1, 2, ... u-moyTH BCIOAY, TOE v HEKOTO-
poe otobpasxenne [0, 2] B xommtekchbIit L,(u); Bropoe pasenctso B (1) anamormy-
HO, HO 3[€Ch 0 THCIICHHAS KOMIUICKCHO3HAYHAS (YHKINA C OrpaHIMEHHBIM H3MeHe-
HHEM; 3TO PaBEHCTBO HOKA3BIBAETCS TOXKE IS | KOHEUHO-aIAUTHBHON. Hakomer
HCCIIE/YIOTCSL CBOKCTBA HempephIBHOCTH (yHKuMH v u3 (1): IpH HEKOTOPHIX ycIto-
BUSIX U MOKET MMETh CKauKM TOJIbKO B TOUKaX 27j/d, B OCTAJIBHBIX TOYKAX OHA HEIpe-
PBHIBHA; 3Ta TeopeMa IPHMCHSETCS K NEPUOIMYECKHM IEemsM; JAeTCs HOCTATOYHOE
YCIIOBHE, 4TOOBI HEMPEPHIBHAS YACTh ¥ ObLiIA aGCOJIOTHO HENPEPHIBHOM.

Yacte 3 3aHMMAeTCs IPEJCTABICHUSIMI CAMOCOTPSKEHHBIX MAPKOBCKUX CHCTEM,
TO €CTh JJISL KOTOPBIX BhmoMHseTCs [ p(x, A) p(dx) = [ p(x, B) u(dx) mns xaxmoit
napbl MHOXECTB A, B U3 g-anreGpsl J. DKBUBAJIECHTHOE YCIOBME €CTh, YTOOBI T GbLI
camMoCOnpsuKEHHBIM onepaTtopoM B L,(u). Ecim cymecTByroT miioTHOCTH h BeposiT-
HoCTel mepexosa, To h(x, y) = h(y, x) moutm Bcrogy. Cremyiolnue JiBe TeOPEMBI
YKa3BIBAIOT JIBA KJIACCA JOCTATOYHBIX YCIOBHH JUIS CAMOCONPSIKEHHOCTH, B KOTOPBIX
OCHOBHBIME SIBJISIFOTCST TpeOOBaHUS (Kl) wi (K,), Bo3uukume 0606iuienyeM ycio-
Bust Konmoroposa [107, [7], [8] mmst cuérroit cucTemsl coctosauit. JIyist camocompsi-
KEHHBIX CHCTEM BEPHBI IIPE/ICTABIICHNS THIIA (2), I/le 3HAYCHUE CHMBOJIOB aHATOTHY-
HO Xak B (1); omsTh BTOpoEe PaBEHCTBO B (2) IOKA3aHO TOXE MJIS {t KOHEUHO-aIH-
THMBHOM, '

3aKmrounTeNbHAS YaCTh 4 OTMEYaeT BO3MOXKHOCTH JajibHEeHIIero 6G6o6LIeHHs
Y NPUBOJIUT TIepeueHb HanboJiee MHTEPECHBIX HEPEIIEHHBIX TPobieM.
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